Dynamics of Crystallization and Melting under Pressure

Vitali Prakapenka

GSECARS, University of Chicago, Chicago

prakapenka@cars.uchicago.edu

R.Wenk, 2005

Body-Centered Cubic Iron-Nickel Alloy in Earth's Core

L. Dubrovinsky,¹ N. Dubrovinskaia,² O. Narygina,¹ I. Kantor,¹ A. Kuznetzov,³ V. B. Prakapenka,³ L. Vitos,^{4,5,6} B. Johansson,^{4,5} A. S. Mikhaylushkin,^{6,7} S. I. Simak,⁷ I. A. Abrikosov⁷

Science 316, 1880 (2007), Times Cited: 53

At pressures above 225 gigapascals and temperatures over 3400 kelvin, Fe0.9Ni0.1 adopts a body-centered cubic structure

High P-T phase diagram of Germanium

Prakapenka et al., High Pressure Research, 2008, 28:3,225

Fe : SiO₂, 38 GPa,

Carbon transport in diamond anvil cells

Prakapenka et al, High Temperatures High Pressures, 2003/2004, volume 35/36, pages 237-249

Dewaele et al, PRL, 2010

Prakapenka et al, 2011

SEM images of FeO sample after laser heating

Leonid Dubrovinsky, BGI

Melting of Fe-Ni alloy at 60 GPa

Ice VII, 7 GPa, T_m ~ 600K

Ice VII, 7 GPa, $T_m \sim 600K$

Pn-3m: 3.17/3.17/3.17 <90.0/90.0/90.0> H2 O

Ice VII, 7 GPa, T_m ~ 600K

Laser effect?

Pt foil: melting at ambient pressure with double sided laser heating

Images of electron back scattered diffraction at 1000"C and 0.5/sec under various strains; (a) 10%, (b) 50% and (c) 500%

Grain boundary misorientation maps of electron back scattered diffraction

Kim et al, METALS AND MATERIALS International, Vol. 8, No. 1 (2002), pp. 7~13

Dynamic recrystallization

X-ray Laser

Chemistry
Sample diffusion
Crystallization

X-ray detector

Probing fundamental ultrafast processes

Finite-element calculations of the temperature profiles in the DAC cavity

Goncharov, JSR, 2009

Pulse laser heating

Goncharov, Prakapenka et al, Rev. Sci. Instrum. 81, 113902 (2010)

Prakapenka et al., High Pressure Research, 2008, 28:3,225

Journal of Synchrotron Radiation

ISSN 0909-0495

Received 9 December 2008 Accepted 9 February 2009

Picosecond time-resolved laser pump/X-ray probe experiments using a gated single-photon-counting area detector

T. Ejdrup,^a* H. T. Lemke,^a K. Haldrup,^a T. N. Nielsen,^a D. A. Arms,^b D. A. Walko,^b A. Miceli,^b E. C. Landahl,^c E. M. Dufresne^b and M. M. Nielsen^a

Standard Operating Mode, top-up

102 mA in 24 singlets (single bunches) with a nominal current of 4.25 mA and a spacing of 153 nanoseconds between 40 ps singlets.

Special Operating Mode - hybrid fill, top-up

Total current is 102 mA. A single bunch containing 16 mA isolated from the remaining bunches by symmetrical 1.594 microseconds gaps.

The remaining current is distributed in 8 group of 7 consecutive bunches with a maximum of 11 mA per group. The total length of the bunch train is 500 ns.

Pt, 69 GPa

The time-resolved radiometric measurements of temperature

Goncharov, Prakapenka et al, Rev. Sci. Instrum. 81, 113902 (2010)

Pulsed laser heating Ir at 40 GPa

• Melting can be detected by observing a diffuse diffraction ring

Chemical reactivity is very fast in pulsed heating experiments
New possibilities for studying of chemical reactions

Compare XRD for CeO₂ collected with PILATUS detector for different exposure time:

continues 10s (divided by 50) and 0.2s averaged over 10⁵pls, 2us window

Standard Operating Mode, top-up: 102 mA in 24 singlets (single bunches) with a nominal current of 4.25 mA and a spacing of 153 nanoseconds between 40 ps singlets

Standard Operating Mode, top-up: 102 mA in 24 singlets (single bunches) with a nominal current of 4.25 mA and a spacing of 153 nanoseconds between 40 ps singlets

Standard Operating Mode, top-up: 102 mA in 24 singlets (single bunches) with a nominal current of 4.25 mA and a spacing of 153 nanoseconds between 40 ps singlets

MAR-CCD Readout time: 3.5 s Dynamic range: 16 bits Size: Ø165 mm Pixel size: 79 um PILATUS 100K Readout time: 2.7 ms Dynamic range: 20 bits Size: ~84x33 mm² Pixel size: 172 um Dynamic x-ray probe optimization:

General:

Detector: larger area, higher efficiency above 30 keV

Sample: thick, high Z, single crystal

Pulse laser heating and optical spectroscopy combined with time-resolved x-ray probe

Reliable experimental conditions at higher then static T and P

Probing fundamental ultrafast processes

- high temperature EOS
- \odot phase transition kinetics
- o structural dynamics & deformation
- chemical reaction dynamics
- transport properties (e.g., diffusion)
- electronic properties

GSECARS: Mark Rivers, Steve Sutton, Yanbin Wang, Peter Eng, Matt Newville, Przemek Dera, Nancy Lazarz, Fred Sopron CIW : ESRF : A. Goncharov I. Kantor V. Struzhkin