3D Ptychography with Differential Aperture Microscopy

Gene E. Ice Oak Ridge National Laboratory

Cornell June 2011

Vision builds on existing expertise

- Achromatic X-ray infrastructure developed on 34-ID-E to study local structure and defects
- Elastic strain tensor
- Pushes envelope of what is possible

Single Dislocation Rotations

Existing infrastructure near what is needed to observe and characterize discrete defects deep in sample

Differential aperture microscopy resolves submicron along incident beam!

- Simplifies data interpretation
- Submicron Z resolution
- Isolates weak diffraction from strong
- First demonstration by Larson et al. on deformed Cu -

We are pushing in two directions

 Improve spatial resolution of focused beam

• Explore achromatic coherent diffraction methods

Nested (Montel) optics will push spatial resolution

- More compact
- Improved thermal/vibration stability
- First tests
 - ~150 nm beams
 - Increased intensity
- 50-100 nm very practical
- More recent tests ~100 nm resolution

7 Managed by UT-Battelle for the Department of Energy

Presentation_name

New approaches will address remaining technical challenges

- Low figure errors at edge-small spot
- Figured edge shapehigher efficiency
- Novel alignment/angle control

Focused-beam Coherent Imaging Offers Significant Advantages

- Full field imaging
- Nm resolution
- Focusing improves resolution at expense of fieldof-view

Schroer et al. Phys. Rev. Lett. **101** (2008)

10⁸ photons/s x 600 seconds=6 x 10¹⁰ \rightarrow 5 nm

In 100x100 nm²

~ 2 x 10¹⁴→0.2 nm In 10x10 nm²

Takahashi et al. reach 2 nm resolution with 1 μ m beam

- Diffractionlimited focusing (Osaka mirrors)
- Treat beam as plane wave at focus

Takahsi et al. Phys. Rev. B 82 21412 (2010).

Challenges

- Sample damage/ heating
 - Heating of a thin sample

$$\Delta T = \frac{P_o}{2\pi\mu K} \left(\frac{1}{2} + \ln\left(\frac{r_1}{r_2}\right) \right)$$

- $\Delta T_{Aluminum}$ =10 ° C @ 4 x 10¹⁴ 20 keV x-rays/sec

Synchrotron Radiation	VV5014
ISSN 0909-0495	
Radiation-induced melting in coherent X-ray diffractive imaging at the nanoscale	

O. Ponomarenko et al.

Synopsis

- Reconstruction of topologic defects (dislocations)
- Signal-to-noise
- Extended objects-ptychography
- Extended 3D objects

Coherent diffraction in Bragg mode offers strain sensitivity-but additional Challenge

 Must collect multiple reflections to measure strain tensor-rotate sample

Coherent diffraction from a Au nano particle

Robinson et al. approach Most studies to date on small isolated particles

Can Achromatic Methods Extend Lensless Diffraction Imaging?

- Diffraction imaging provides strain tensor 4 Bragg reflections
 - Multiple Bragg reflections accessed by Energy Scans
 - NO SAMPLE ROTATIONS
- Ptychography subdivides sample complexity in two dimensions.

Real revolution will be to extend ptchography to 3 dimensions

•Differential aperture provides additional spatial information

- Resolves discrete particles with nonoverlapping diffraction
- Can it be used to determine regions contributing coherently, partially coherently and incoherently

•Aperture will itself diffract intensity

Osaka group uses diffraction from knife edge to achieve nm spatial resolution

First experiments begun

- Nanoscale particles indexed with white beam
- However simple surface samples do not work well with white beam or high intensity monochromatic beams

Eutectic pillar samples (Bei/George) provide stable sample

- Locked into matrix
- Complicated with multiple pillars illuminated simultaneously

Really need 3D ptychography!

17 Managed by UT-Battelle for the Department of Energy

Presentation_name

High Q-space resolution helps separate Mo/NiAl pillar scattering

for the Department of Energy

Summary

- X-ray imaging needed for things that can't be done with electrons.
 - Buried samples
 - 3D samples
 - Samples in environmental chambers
- New approaches needed to study real materials.
 - 3D ptychrography
 - Energy scanning methods for reciprocal space mapping

• Existing achromatic hardware provides model for future

Presentation_name

Reconstruction of dislocation still an unsolved challenge

•Temporary solution compare to models

•Work on alternativesptychography near dislocation to characterize strain field

