Tomography in a diamond anvil cell

Wendy Mao Geological and Environmental Sciences, Stanford University & Photon Science, SLAC National Accelerator Laboratory

Current state of the art in high pressure x-ray imaging

Microtomography of a-Se to 11 GPa

- Sector 2, APS
 - 1 micron resolution

nanoXCT

- Xradia instruments:
 - 6-2 SSRL & 32-IDC APS

Image small samples

- Small domains
 - Resolve heterogeneity
- Higher P-T
 - Quenched samples
 - *in-situ* high P
 - *in-situ* high *P*, variable *T*

J. Andrews et al, J. Phys. 2009

Laser-heated Diamond Anvil Cell

Diamond anvil cells for tomography

Contrast mechanisms

- Absorption
- Fluorescence
- Scattering
 - Diffraction
 - -IXS

Huotari et al, Nature Mat. 2011

X-ray Raman

Huotari et al, Nature Mat. 2011

- Texture and shapes of multi-phase assemblages
- Volume determination of amorphous materials
- Density of light element phases
- Morphology of nanomaterials
- Defects in materials
- Diffusion rate
- Chemical reactions
- Viscosity

- Texture and shapes of multi-phase assemblages
- Volume determination of amorphous materials
- Density of light element phases
- Morphology of nanomaterials
- Defects in materials
- Diffusion rate
- Chemical reactions
- Viscosity

Planetary core formation

6 GPa, 2073 K

Fe+10wt%S spheres within a SC olivine, $(Mg_{0.88}Fe_{0.12})_2SiO_4$

7080 eV

а

normalized absorbance

Volume determination within a DAC

- Texture and shapes of multi-phase assemblages
- Volume determination of amorphous materials
- Density of light element phases
- Morphology of nanomaterials
- Defects in materials
- Diffusion rate
- Chemical reactions
- Viscosity

Sn sample

10 micron

HPCAT 16-IDE

J. Wang et al, J. Appl. Phys. submitted

J. Wang et al, J. Appl. Phys. submitted

- Texture and shapes of multi-phase assemblages
- Morphology of nanomaterials
- Density of light element phases
- Volume determination of amorphous materials
- Defects in materials
- Diffusion rate
- Viscosity
- Chemical reactions

Harris, Philos. Mag. 2004

Glassy carbon

- Texture and shapes of multi-phase assemblages
- Volume determination of amorphous materials
- Density of light element phases
- Morphology of nanomaterials
- Defects in materials
- Diffusion rate
- Chemical reactions
- Viscosity

Lin et al, J. Phys. Chem. C 2011

$LiMn_2O_4$ nanorods

- Texture and shapes of multi-phase assemblages
- Volume determination of amorphous materials
- Density of light element phases
- Morphology of nanomaterials
- Defects in materials
- Diffusion rate
- Chemical reactions
- Viscosity

Cao et al, Acta Mater. 2010

Shear bands in bulk metallic glass

 $Cu_{64}Zr_{36}$

- Texture and shapes of multi-phase assemblages
- Volume determination of amorphous materials
- Density of light element phases
- Morphology of nanomaterials
- Defects in materials
- Diffusion rate
- Chemical reactions
- Viscosity

Diffusion

- Texture and shapes of multi-phase assemblages
- Volume determination of amorphous materials
- Density of light element phases
- Morphology of nanomaterials
- Defects in materials
- Diffusion rate
- Chemical reactions
- Viscosity

- Texture and shapes of multi-phase assemblages
- Volume determination of amorphous materials
- Density of light element phases
- Morphology of nanomaterials
- Defects in materials
- Diffusion rate
- Chemical reactions
- Viscosity

Falling sphere viscosity

Texture and shapes of multi-phase assemblages: grain shape, intergrowth, orientation, and foliation

Direct determination of volume:

- <u>New crystalline phases</u>: when coupled with XRD to determine number of atoms per unit cell and stoichiometry
- <u>Amorphous materials:</u> accurate measurement of equations of state of noncrystalline phases
- <u>Density of light element phases:</u> determination of volume change by using negative contrast (putting low Z sample within higher Z surrounding medium).
- *Phase transition mechanism*: Spatial relationship between original & new phase when crossing a phase boundary
- *First order liquid-liquid transitions*: scan across phase boundaries to probe for discontinuous volume change and study near edge for electronic changes

Morphology of nanomaterials: image changes in size and shape Rheology: image changes in shape under applied stress Defects in materials: development of shear bands in metallic glasses

Hardness and toughness: fracture development & propagation

- *Diffusion rate*: probe changes in composition with time at interface between two materials
- *Chemistry*: provide quantitative information on composition coordination, oxidation states, and spin states, etc.

Viscosity: imaging falling sphere experiments

and much more!

Acknowledgements

<u>SLAC</u>

Piero Pianetta Joy Hayter Yijin Liu Florian Meirer (AIAU TI, Vienna) Jie Chen (USTC, Hefei)

<u>Stanford University</u> Yingxia Shi Yu Lin <u>HPSynC</u> Junyue Wang Wenge Yang

<u>APS</u> Steve Wang

Geophysical Laboratory

Li Zhang Yingwei Fei Ho-kwang Mao

<u>U. Minnesota</u> David Kohlstedt

