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Coherent diffraction imaging and why it will never work for
X-rays.

Coherent diffraction imaging - how it works.
Can you really use a lens for that?

Why should | use phasing algorithms when | have a lens?
Putting it all together.
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Some thoughts by Sayre

Acla Crypst. (1952). 5, 843

Some implications of a theorem due to Shannon. By D.Saves, Jobnson Foundation for Medieal
Phyeics, University of Pennaylvania, Philadelphia 4, Pennsylvania, U. S, A.

[Heceived 3 July 19562)

Shannon (1848), in the fisld of communication theory,
has given the following theorem: If a function diz) is
known to vanish outeide the points © = S=a/2, then ita
Fourier tranaform F({X) is completely specificd by the
valuea which it assumes at the pointsa X = 0, 41/a,
+2fm, ... In faoct, tha sontinuons F{X) may be filled
in merely by laying down the function sin aeX/maX at
each of the above pointa, with weight equal to the valua
of FiX} at that point, and adding.

Now the electron-density function &iz) describing o
gingle unit coll of a erystal vanishes outside the points
r = 443 where o is-the length of the coll. The reci-
procal-lattics points are at X = 0, + 1o, - 2/a, ..., and
henee the experimentally observable wvalues of FUX)
would suffice, by the theorem, to determine F{X) every-
where, if the phases were Jmown. {In principle, the
necessary points extend indefinitely in reciprocal apace,
but by using, say, Goussian atoms both diz) and F{X)
can be effectively confined to the unit eell and the ob.
aervable region, respectively.)

For centrosymmetrical structures, to be able to fill in
the |F|* function would suffice to vield the structurs,
for aign changes could occur only at the points where
[F|* vanishes, The atructure corresponding to the |F|2
function is the Patterson of & single unit eell, This has

twice the width of the unit cell, and henes to fill in the
F|? funetion would require knowledge of |F[? at the half.
integral, as well as the integrl k's. This is equivalant
to n statement made by Gay (1051).

I think the conclusions which may be stated at this
point dre:

1. Direct structure determination, for centrosymmetric
structures, could be accomplished as well by [inding the
sizes of the |F|® at hali-integral & ae by the usual proce-
dure of finding the sipne of the F's at integral k.

2. In work like that of Boyea-Watson, Davidaon &
Perutz (1847) on heemoglobin, where |F|* was observed
ot non-integral A, it would suffice to have only the values
nt hndf-integral A,

The extension to three dimensions s obwvious.
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Fourier intensity measurements and the
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m If only intensity measured, sampling requirement doubled.

m In greater than one dimension, autocorrelation uniquely
determines original function.
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m e : Gerchberg and Saxton - Optik 1971, 1972

intensity measurements in exit plane and far field

alternately enforced known intensities, kept phase
estimates, propagated with FFT

algorithm equivalent to steepest descents

m visible light: Fienup

* finite source size, positivity, and measured far-field

* correct for atmospheric disturbances

* diagnose aberration in Hubble's main mirror

* explored range of algorithms with degrees of feedback
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regarding symmetry or even periodicity. On the other hand this
method is not suitable for X-ray analysis owing to the practical
impossibility of producing a strong coherent background.”
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Rotating anode

Ad _ 0.14nmx2m __
2s — 2x1mm 70nm

m fractional coherence ~ 214
Coherent
diffraction — APS undulator A

theory

| LT:N

m fractional coherence~ 874
m 2.51ph/s/0.1%

ERL helical mode delta

m fractional coherence~ 271
m 4.8'ph/s/0.1%
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CDI moves into 3D and biology

Lensless

Werdawl  Au decorated Si3N4 pyramids

e Chapman, JOSA 2006. Pb crystals - strain mapping
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Pfeifer, Nature 2006.

Fig. 4. Three dimensional diffraction pattern (left) (with a quad-
rant removed for visualization) and reconstructed 3D images '
{right} showing the isosurface as well as the projection images of

Coherent the sample.
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A nice flow chart showing how CDI works
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Coherent X-ray diffraction intensity (arb. unit)
Coherent 10° 10°
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Fresnel CDI — lllumination
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Complex wave field reconstructed in region of focus.
Only need far-field intensity pattern and knowledge of focal
length.



Fresnel CDI — Sample Results
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Interconnect from

circuit board Garth Williams Cytometry 2008.

Malaria infected red blood Cell
(a) Ay, (b) BN

Structured
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comparison of light microscopy, SEM
and FCDI




Ptychography
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Au star test pattern measured
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Signal to noise

Garth Williams Acta Crys A
2006.

Effect of Poisson noise in
diffraction pattern similar to
Poisson noise in image.
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imaging
methods

Signal to noise

Andreas
Schropp and
Christian G
Schroer NJP
2010.
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X-ray microscopy comparison
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X-ray microscopy comparison

imle:;innsée\s;\fith NA efficiency mode contrast
e TXM | ;A =0.01 €lons X €q4er | full field | absorption,
phase
FCDI sin(N—;‘) =0.5 | eget full-field | absorption,
phase
ptycho- | sin (N—;\) =0.5 | eget scanning | abs., phase,
graphy fluorescence,
photoelec-
trons
assuming

Comparison of
imaging
methods

m A = 0.1nm wavelength

m AAr = 5nm finest zone width in zone plate

m NV = 1000 number of rows/columns in area detector

m a = 50nm illumination size




Lensless
imaging with
lenses

M. Pfeifer

A few (crazy)

ideas

Multi-modal diffraction imaging

Fresnel CDI
m Full field imaging with variable zoom

m No fast scanning

m Dosing more even — take multiple exposures of same
illuminated area and cross correlate — no partially
overlapping illumination

Ptychography
m X-ray fluorescence

m Photoelectrons

Potential for z-scanning instead of tomography (poorer
resolution)



Strain mapping within polycrystalline film

 Lensless Diff. aperture diffraction imaging.
Sl \\ang, Micron 2004. Matt I\/I|IIer Group

A few (crazy)
ideas
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Single shot three dimensional imaging of 3D strain

_m;zn::ss_th Consider a detector at a distance / from a sample, centered
lenses about a Bragg peak, G, at an energy E.
M. Pieifer Measurements made over values py, p,, and %E.

G=*p.g, + (kp, — °EG cosb) g, + £ Gsin 04,

For 5nm resolution imaging of 500nm particle at detector

distance / =2m, and energy E =6keV, require:

m 2002 pixels of (1001m)?

m 480eV range at 2.4keV resolution
If an appropriate energy discriminating detector were possible,
then a full three dimensional mapping of the strain a
nanocrystal could be made in situ in a single measurement,
with no scanning.

A few (crazy) If three detectors could be located at three Bragg peaks (i.e.

deas three {200} peaks when the incident beam is co-axial with the
{111}, then a three dimensional mapping of three different
strain projections could be made in real time,
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m STXM without phase retrieval is throwing away
information.

Coherent diffraction will be able to stay ahead of purely
lens based imaging - but high efficiency lenses help.

m Fresnel CDI and ptychography have same basic geometry
and optics, and can recover your focal spot complex wave

field.

Efficiency of optic (or optical system) and detector as
Important as source properties.

A few (crazy)
ideas



