New Opportunities for XPCS

Mark Sutton McGill University Thanks to many collaborators.

- 1. Introduction (the science)
- 2. XPCS Basics
- 3. XPCS: SAXS
- 4. XPCS: SAXS heterodyne
- 5. High angle XPCS
- 6. The future in XPCS

Stolen from N. Provatas, McMaster University

Length and Time Scales Again

Fig. 4: Research opportunities with synchrotron radiation: spatial structure.

Fig. 5: Research opportunities with synchrotron radiation: temporal structure.

Ref: David E. Moncton, Toward a Fourth-Generation X-ray Source, XIX International Linear Accelerator Conference (LINAC'98) (1998).

Coarse Graining: Phase Fields

$$\widehat{\Psi}_{L} = \frac{1}{N} \sum \Psi_{L}(\vec{x}_{i})$$

$$\sigma_{\Psi_{L}} = \frac{1}{N-1} \sqrt{\sum (\Psi_{L}(\vec{x}_{i}) - \widehat{\Psi}_{L})^{2}}$$

$$\sigma_{\widehat{\Psi}_{L}} = \frac{\sigma_{\Psi_{L}}}{\sqrt{N}}$$

Statistical Mechanics 101

 $P(\Psi_L(\vec{x}_i)) \sim e^{-F(\Psi_L)/kT}$

$$P(\widehat{\Psi}_L) \sim e^{-F(\widehat{\Psi}_L)/kT} \ \sim e^{rac{-F(\Psi)}{N_bkT}}$$

- 1. Introduction (the science)
- 2. XPCS Basics
- 3. XPCS: SAXS
- 4. XPCS: SAXS heterodyne
- 5. High angle XPCS
- 6. The future in XPCS

Coherent diffraction

(001) Cu₃Au peak

Sutton et al., The Observation of Speckle by Diffraction with Coherent X-rays, Nature, **352**, 608-610 (1991).

Why Coherence?

Coherence allows one to measure the dynamics of a material (X-ray Photon Correlation Spectroscopy, XPCS).

$$\langle I(\vec{Q},t)I(\vec{Q}+\delta\vec{\kappa},t+\tau)\rangle = \langle I(Q)\rangle^2 + \beta(\vec{\kappa}) \frac{r_0^4}{R^4} V^2 I_0^2 \left| S(\vec{Q},t) \right|^2$$

where the coherence part is:

$$\beta(\vec{\kappa}) = \frac{1}{V^2 I_0^2} \int_V \int_V e^{i\vec{\kappa} \cdot (\vec{r}_2 - \vec{r}_1)} \left| \Gamma(\vec{0}, \vec{r}_2^{\perp} - \vec{r}_1^{\perp}, \frac{\vec{Q} \cdot (\vec{r}_2 - \vec{r}_1)}{\omega_0}) \right|^2 d\vec{r}_1 d\vec{r}_2$$

and $\beta(\vec{0}) \approx \frac{V_{coherence}}{V_{scattering}}$ with widths $\lambda/V^{\frac{1}{3}}$ Reference: M. Sutton, Coherent X-ray Diffraction, in Third-Generation Hard X-ray Synchrotron Radiation Sources: Source Properties, Optics, and Experimental Techniques, edited by. Dennis M. Mills, John Wiley and Sons, Inc, New York, (2002).

SAXS of Au particles in PS

Time fluctuations in coherent scattering.

Define correlation function:

$$g^{(2)}(\vec{Q},\tau) - 1$$

$$= \frac{\langle I(\vec{Q},t+\tau)I(\vec{Q},t)\rangle - \langle I(\vec{Q},t)\rangle^2}{\langle I(\vec{Q},t)\rangle^2}$$

$$= \beta \left| g^{(1)}(\vec{Q},\tau) \right|^2$$

$$= \beta e^{-2\tau/\tau_Q}$$

Two-time correlation functions

Au in polystyrene

Cu₃Au

Requirements of XIFS

- 1. Scattering Volume comparable to coherence volume (diffraction limited beam resolved by detector).
- 2. Broad scattering (i.e. disorder so there is interesting structure within beam)
- 3. Sufficient counts per correlation time (like about 1)
- 4. Sufficient number of correlations times measured (either many times at one speckle or many speckles and times with the same time constant).

Possible systems to study

- 1. polymers, glasses (visco-elastic effects)
- 2. critical scattering
- 3. quasi-crystals (phasons)
- 4. low dimensional systems
- 5. charge density waves
- 6. grain boundaries, domain walls, defect motion
- 7. switching in ferroelectrics, piezoelectrics
- 8. colloids
- 9. non-equilibrium systems

Signal is $g_2 - 1 = \beta$ and variance of is $var(g_2) \sim 1/(\bar{n}^2 N)$. So:

$$rac{S}{n} = eta ar{n} \sqrt{N}$$
 $= eta I au \sqrt{rac{t_{total}}{ au} N_{speckles}}$
 $= eta I \sqrt{ au t_{total} N_{pixels}}$

Note 1: This is linear in number of photons (as opposed to \sqrt{n}). Note 2: For fixed $s/n \sim \alpha I \sqrt{\tau/\alpha^2}$. Thus an α -fold increase in intensity is an α^2 -fold increase in time resolution. Need very fast detectors.

Reference: Area detector based photon correlation in the regime of short data batches: data reduction for dynamic x-ray scattering, D. Lumma, L.B. Lurio, S.G.J. Mochrie, and M. Sutton, Rev. Sci. Instr. **71**, 3274-3289 (2000).

More explicitly:

$$\frac{s}{n} \approx \beta B_0 dx dx' dy dy' \frac{\Delta E}{E} \frac{1}{V} \frac{d\sigma}{d\Omega} L \sqrt{N_{sp}} \\ \approx \beta B_0 f_x f_y \lambda^2 \frac{\Delta E}{E} \frac{1}{V} \frac{d\sigma}{d\Omega} f_z \frac{\lambda^2}{\Delta \lambda} \sqrt{N_{sp}} \\ \approx \frac{1}{max(1, f_i)^3} B_0 f_x f_y f_z \lambda^2 \frac{\Delta \lambda}{\lambda} \frac{1}{V} \frac{d\sigma}{d\Omega} \frac{\lambda^2}{\Delta \lambda} \sqrt{N_{sp}} \\ \approx B_0 \lambda^3 \frac{1}{V} \frac{d\sigma}{d\Omega} \sqrt{N_{sp}} \\ \approx f B_0 \lambda^3 \frac{1}{V} \frac{d\sigma}{d\Omega} \sqrt{N_{sp}} \quad \text{(ifany } \mathbf{f}_i < 1\text{)}.$$

Note: should be a $\lambda^3/8$ as normally use $\lambda/2$.

Cross-sections and S(q)

$$\frac{1}{V}\frac{d\sigma}{d\Omega} = \frac{r_0^2}{V} \left| \sum_{l,k} F_l^* F_k e^{-i\vec{q} \cdot (\vec{r}_l - \vec{r}_k)} \right|^2$$

Small crystals

$$\frac{1}{V}\frac{d\sigma}{d\Omega} = r_0^2 \frac{|\bar{\mathbf{F}}|^2}{N_x N_y N_z v_c} \left[\frac{\sin(N_x q_x a/2)}{\sin(q_x a/2)} \frac{\sin(N_y q_y b/2)}{\sin(q_y b/2)} \frac{\sin(N_z q_z c/2)}{\sin(q_z c/2)} \right]^2$$
$$= r_0^2 \frac{|\bar{\mathbf{F}}|^2}{v_c^2} V \left[\frac{\sin(N_x q_x a/2)}{N_x \sin(q_x a/2)} \frac{\sin(N_y q_y b/2)}{N_x \sin(q_y b/2)} \frac{\sin(N_z q_z c/2)}{N_z \sin(q_z c/2)} \right]^2$$
where $v_c = abc$ and volume $N_x N_y N_z v_c = N v_c$.

Amorphous/liquids High q limit gives:

$$\begin{aligned} \frac{1}{V} \frac{d\sigma}{d\Omega} &= \left. \frac{r_0^2}{V} \right| \sum_{l,k} F^* F e^{-i\vec{q} \cdot (\vec{r_l} - \vec{r_k})} \right|^2 \\ &= r_0^2 |F|^2 \frac{N}{V} = r_0^2 |F|^2 \bar{n}, \\ &= r_0^2 \frac{|F|^2}{v_c^2} v_c, \end{aligned}$$

Here $v_c = 1/\bar{n}$ is the volume per atom. So for all q: $\frac{1}{V}\frac{d\sigma}{d\Omega} = r_0^2 |F|^2 \bar{n}S(q) = r_0^2 \frac{|F|^2}{v_c^2} v_c S(q).$ General S(q)

$$\frac{1}{V}\frac{d\sigma}{d\Omega} = r_0^2 V_{coh} \rho_e^2(q)$$

- 1. Introduction (the science)
- 2. XPCS Basics
- 3. XPCS: SAXS
- 4. XPCS: SAXS heterodyne
- 5. High angle XPCS
- 6. The future in XPCS

Shear

Imagine that velocity varies over the diffraction volume but is in steady-state.

 $\vec{V}(\vec{r}) = \vec{V}_0 + \Gamma \cdot \vec{r}$

Then we get:

$$G_{1}(\vec{q},t) = \exp\left\{-\int_{0}^{t} [Dq'^{2} + i\vec{V}_{0} \cdot q'^{2}]dt'\right\} \int d\vec{x}I(\vec{x}) \exp\left\{-i\int_{0}^{t} dt'\vec{q}' \cdot \Gamma \cdot \vec{x}\right\}$$

$$= \exp\left\{-\int_{0}^{t} [Dq'^{2} + i\vec{V}_{0} \cdot q'^{2}]dt'\right\} \bar{I}\left(\int_{0}^{t} dt'\vec{q}' \cdot \Gamma\right)$$
and
$$G_{2}(\vec{q},t) = \exp\left\{-2\int_{0}^{t} dt'Dq'^{2}\right\} \left|\bar{I}\left(\int_{0}^{t} dt'\vec{q}' \cdot \Gamma\right)\right|^{2}$$
For us, $\vec{q}' = \vec{q}$, and
$$\bar{I}(\vec{q} \cdot \Gamma Lt) = \operatorname{sinc}(\vec{q} \cdot \Gamma Lt) = \frac{\sin(\vec{q} \cdot \Gamma Lt)}{\vec{q} \cdot \Gamma Lt}$$

Ref: G.G. Fuller, J.M. Rallison, R.L. Schmidt and L.G. Leal, J. Fluid Mech., 100, 555 (1980).

In-situ stress-strain cell

Homodyne, shear fits

Homodyne, collapsed fits

gep6cC_8_431 g2's with shear dependence divided out (normalized)

- 1. Introduction (the science)
- 2. XPCS Basics
- 3. XPCS: SAXS
- 4. XPCS: SAXS heterodyne
- 5. High angle XPCS
- 6. The future in XPCS

Experimental Setup

$$G_2(\vec{q},t) = I_r^2 + \langle I_s(t) \rangle_t^2 (1 + \beta |g_1(t)|^2) + 2I_r \langle I_s(t) \rangle_t + 2I_r \langle I_s(t) \rangle_t \beta Re(g_1(t))$$

Moving at constant velocity gives phase factor

 $e^{i\vec{q}\cdot\vec{\mathbf{v}}t}=e^{i\boldsymbol{\omega}t}$

So correlation becomes $(x = I_s/(I_s + I_r))$

 $g_2(q,\phi,t) = 1 + \beta(1-x)^2 + x^2\beta\gamma^2(t/\tau) + 2x(1-x)\beta\cos(\omega t)\gamma(t/\tau)$

- 1. Introduction (the science)
- 2. XPCS Basics
- 3. XPCS: SAXS
- 4. XPCS: SAXS heterodyne
- 5. High angle XPCS
- 6. The future in XPCS

Critical X-ray scattering from SrTiO₃ – Coherent diffraction

•First ever observation of static (a) (b) speckle pattern within central component of critical X-ray scattering •Supports central peak origin as transition precursors - static lattice fluctuations wetting on defects 500 nm 8x10⁵ (c) (d) Superlattice Peak Intensity (Arb Units) (a) 7x10^t (020) 6x10⁵ (d) 5x10⁵ 4x10⁵ 3x10⁵ 2x10⁵ 1x10⁵ 0 104 108 98 100 102 106 110 Temperature (Kelvin)

Martensitc Phase Transition in Co: FCC to HCP K. Ludwig, C. Sanborn (B.U.) M. Rogers and M. Sutton (McGill)

Quench from 600 C to 360 C.

Kinetics of Co transition.

Detection of avalanche in (00.2) speckle pattern.

after quench.

Avalanche distribution.

Scattering from Cu₃Au

Two-Time Correlation Functions

t2

t2

q=0.0086576 A⁻¹ (265x705)

Tranverse direction

T(x) is a telegraph wave with crossings Poisson randomly distributed. Use to model domain walls. The trick (T(x) is ± 1):

$$e^{ih_0T(x)} = \cos(h_0) + iT(x)\sin(h_0)$$

converts the phase to an amplitude.

 $S(q) = |F^*(q)F(q)| = \int \int |f_{\delta}|^2 e^{2\pi i(1+\delta q)(x-x')} (\cos^2(\pi/2(1+\delta q)) + \langle T(x)T(x')\rangle \sin^2(\pi/2(1+\delta q)) dx dx')$

Reference: E. Jakeman, B. J. Hoenders. Optica Acta, 29, 1587, (1982).

- 1. Introduction (the science)
- 2. XPCS Basics
- 3. XPCS: SAXS
- 4. XPCS: SAXS heterodyne
- 5. High angle XPCS
- 6. The future in XPCS

The future with XPCS

- 1. Coherent diffraction imaging demonstrates that coherent diffraction contains full information on structure.
- 2. XPCS uses only the time behaviour.
 - (a) This allows us to use partial coherence.
 - (b) It is a differential technique so very sensitive.
 - (c) Using array detectors, can measure full correlation functions in a total times of several correlation times. IE nonequilibrium and time resolved.
- 3. First and foremost the future is to use current and new sources to continue to make routine XPCS measurements in ever more systems at higher time resolutions.

- 4. Coherent diffraction is diffraction and so use more then time evolution, such as full width at half maximum and other coarse features like number and orientational information. (Higher order moments.)
- 5. High angle XPCS is harder (smaller diffraction volumes), more complicated to analyze (\vec{q} fluctuates in and out of diffraction) but has more information and this information is useful.
- 6. Ideally would like tunable focussing from .1 μ m to 10 μ m and scanability. Covers length scales *simultaneously* from Åto mm.
- 7. Take advantage of high q resolution (speckle -10μ m) in diffuse scattering. (Repeatablity, hysterisis, thermal expansion.)

Theory of Everything *Else*

Langevin dynamics (Models A through J):

$$\frac{\partial \Psi_{\mu}(\vec{x},t)}{\partial t} = \{F, \Psi_{\mu}(\vec{x},t)\}_{PB} - M_{\mu\nu} \frac{\partial F}{\partial \Psi_{\nu}} + \eta_{\mu}(\vec{x},t)$$

$$= -\int \{\Psi_{\mu}(\vec{x},t), \Psi_{\nu}(\vec{x}',t')\}_{PB} \frac{\partial F}{\partial \Psi_{\nu}} d\vec{x}' - M_{\mu\nu} \frac{\partial F}{\partial \Psi_{\nu}} + \eta_{\mu}(\vec{x},t)$$

$$= V_{\mu}(\vec{x},t) - M_{\mu\nu} \frac{\partial F}{\partial \Psi_{\nu}} + \eta_{\mu}(\vec{x},t)$$

where

$$\langle \eta_{\mu}(\vec{x},t) \rangle = 0$$

and (generalized Einstein-Stokes/fluctuation-dissipation) $\langle \eta_{\mu}(\vec{x},t)\eta_{\nu}(\vec{x}',t')\rangle = -2M_{\mu\nu}k_bT\delta(\vec{x}-\vec{x}')\delta(t-t')$

Reference: Section 8.6.3 Principles of condensed matter physics, Chaikin and Lubensky (1995).