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This dissertation presents my study of Non-Redundant Aperture Masking Interfer-

ometry (or NRM) with Adaptive Optics, a technique for obtaining high-contrast

infrared images at diffraction-limited resolution. I developed numerical, statisti-

cal, and on-telescope techniques for obtaining higher contrast, in order to build an

imaging system capable of resolving massive Jupiter analogs in tight orbits around

nearby stars. I used this technique, combined with Laser Guide Star Adaptive Op-

tics (LGSAO), to survey known brown dwarfs for brown dwarf and planetary com-

panions. The diffraction-limited capabilities of this technique enable the detection

of companions on short period orbits that make Keplerian mass measurement prac-

tical. This, in turn, provides mass and photometric measurements to test brown

dwarf evolution (and atmosphere) models, which require empirical constraints to

answer key questions and will form the basis for models of giant exoplanets for the

next decade.

I present the results of a close companion search around 16 known brown dwarf

candidates (early L dwarfs) using the first application of NRM with LGSAO on

the Palomar 200” Hale Telescope. The use of NRM allowed the detection of com-

panions between 45-360 mas in Ks band, corresponding to projected physical sep-

arations of 0.6-10.0 AU for the targets of the survey. Due to unstable LGSAO

correction, this survey was capable of detecting primary-secondary contrast ratios



down to ∆Ks ∼1.5-2.5 (10:1), an order of magnitude brighter than if the system

performed at specification. I present four candidate brown dwarf companions de-

tected with moderate-to-high confidence (90%-98%), including two with projected

physical separations less than 1.5 AU. A prevalence of brown dwarf binaries, if con-

firmed, may indicate that tight-separation binaries contribute to the total binary

fraction more significantly than currently assumed, and make excellent candidates

for dynamical mass measurement. For this project, I developed several new, ro-

bust tools to reject false positive detections, generate accurate contrast limits, and

analyze NRM data in the low signal-to-noise regime.

In order to increase the sensitivity of NRM, a critical and quantitative study

of quasi-static wavefront errors needs to be undertaken. I investigated the impact

of small-scale wavefront errors (those smaller than a sub-aperture) on NRM using

a technique known as spatial filtering. Here, I explored the effects of spatial fil-

tering through calculation, simulation, and observational tests conducted with an

optimized pinhole and aperture mask in the PHARO instrument at the 200” Hale

Telescope. I find that spatially filtered NRM can increase observation contrasts by

10-25% on current AO systems and by a factor of 2-4 on higher-order AO systems.

More importantly, this reveals that small scale wavefront errors contribute only

modestly to the overall limitations of the NRM technique without very high-order

AO systems, and that future efforts need focus on temporal stability and wavefront

errors on the scale of the sub-aperture. I also develop a formalism for optimizing

NRM observations with these AO systems and dedicated exoplanet imaging instru-

ments, such as Project 1640 and the Gemini Planet Imager. This work provides a

foundation for future NRM exoplanet experiments.
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2.13 Primary-Secondary Contrast Ratio Detectable with Direct AO
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∑
N exp(ix), if x is
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is unable to recover that the mean phase is zero after any number
of measurements by this approach. . . . . . . . . . . . . . . . . . . 64

xviii



3.5 Closure phases increases the precision with which long-baseline
Fourier content can be measured. The x-axis is the set of eighty-
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4.2 Interferogram and power spectrum generated by the aperture mask.
(Left) The interferogram image is comprised of thirty-six overlap-
ping fringes, one from each pair of holes in the aperture mask.
(Right) The Fourier transform of the image shows the thirty-six
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5.4 Imaging An Unresolved Targets Through a Pinhole. The point
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6λ/D overlaid. Square root contrast scaling is used to highlight
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CHAPTER 1

PERSPECTIVE

1.1 Directly Imaging Faint Companions to Stars

At the present in 2011, this decade opens at the era of directly imaged exoplan-

ets. The successful detections of new planetary systems by transit and radial

velocity methods during the last decade have fueled remarkable new advances and

interest in high-contrast imaging. Whereas transit and radial velocity detections

of exoplanets tell us volumes about the bulk and statistical properties of plane-

tary systems, full characterization of individual planetary atmospheres awaits their

successful (spectroscopic) imaging, and the use of complex chemical and thermo-

dynamical models to interpret their atmospheres. As often stated in the literature,

this is a challenge of very high contrast imaging, and one in which the fundamental

limitations of which are also only recently being discovered.

The atmosphere introduces rapid phase variation into the incoming wavefront

which, even after suppression by adaptive optics (AO) systems, produces diffraction

effects which litter the image with bright speckles. The image noise is overwhelm-

ingly dominated by the movement and random fluctuation of speckles (Racine

et al., 1999); distinguishing true companions from bright speckles requires longer

observations than initially anticipated (e.g., Racine’s ’speckle tax’) dampening the

hopes of early, optimistic planet searches (e.g., Nakajima (1994)).

Speckles at close separations – those which inhibit high-angular resolution

searches – are much more nefarious. Speckles are not placed randomly, but are

preferentially pinned to the first and second Airy rings (Bloemhof et al., 2000,
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2001; Sivaramakrishnan et al., 2003). Furthermore, the precise shape of the Airy

rings and pinned location of the speckles shift on timescales of tens of seconds to

tens of minutes (e.g., Hinkley et al. (2007)), driven by slowly varying instrumen-

tal wavefront errors. In recent years, the impact of these quasi-static wavefront

errors have been extensively explored, mostly in the pursuit of high-contrast coro-

nagraph observations Lafrenière et al. (2007). These wavefront errors evolve due

to temperature or pressure changes, mechanical flexures, guiding errors, changing

illumination of the primary mirror, or other phenomena (Marois et al., 2005, 2006).

Those originating from optical components located after the wavefront sensor can-

not be corrected by adaptive optics (named non-common path wavefront errors),

and give rise to quasi-static speckle behavior.

Quasi-static speckles present a particularly difficult challenge for high contrast

imaging: purely static speckles could be removed by calibration with a reference

star (i.e., treated as a non-ideal point spread function), but quasi-static speckles

evolve too quickly to calibrate and too slowly to effectively average out over even

hour long exposures (Hinkley et al., 2007). Quasi-static speckles dominate long

exposures within separations of 5-10 arcseconds at the Keck and Palomar Hale

Telescopes, and longer exposures do not yield any higher contrasts (Macintosh

et al., 2005; Metchev et al., 2003). My own investigation using the Palomar AO

system and PHARO instrument show intensity variations of as much as 10% the

peak flux over ten minute spans (2-5% on the second Airy ring), and pinned speck-

les that change locations irregularly (Figure 1.1). (Similar results were obtained

with PHARO by Bloemhof et al. (2000).)

Unequivocally, quasi-static speckles set the ultimate noise floor of high contrast

imaging, generating a slowly varying distribution of flux that can be mistaken for
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faint companions.

Several techniques have been developed to differentiate and remove the quasi-

static speckles simultaneously with observation of the science target. Angular

Differential Imaging (ADI) employs multiple observation of the same target while

changing the rotation of the primary mirror on the sky (Marois et al., 2006);

the speckles move with the optical system rotation but target does not. Several

newly commissioned instruments aim to exploit the inherent dependence of speckle

behavior on wavelength (or polarization) by obtaining simultaneous images across

multiple wavelengths (or polarizations) (Marois et al., 2005; Lenzen et al., 2004;

Hinkley et al., 2009; Hinkley, 2009; Crepp et al., 2010). These include Project

1640 at Palomar (Hinkley et al., 2009), the Gemini Planet Imager (Macintosh

et al., 2008), and SPHERE on VLT (Beuzit et al., 2006) which use integral field

spectrographs for simultaneous chromatic imaging.

The work of this manuscript confronts the quasi-static imaging challenge us-

ing the technique of Non-Redundant Aperture Masking Interferometry (NRM , or

aperture masking). NRM provides a powerful, established method for obtaining

higher contrasts at diffraction-limit separations despite the atmospheric that pro-

duce speckles. Aperture masking employs a small metallic mask which transforms

the pupil into an ad-hoc interferometric array; utilizing the unique structure of the

transformed point spread function allows the construction of a dataset (i.e., clo-

sure phases, Jennison (1958); Lohmann et al. (1983); Baldwin et al. (1986); Haniff

et al. (1987); Readhead et al. (1988); Cornwell (1989)) which retains the fidelity of

high-resolution spatial information while discarding the effect of many wavefront

error sources.

The heritage of aperture masking extends back to short-exposure speckle inter-
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AO Direct Image (T= 37.2s)
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AO Direct Image (T= 80.6s)
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AO Direct Image (T= 86.8s)
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AO Direct Image (T=136.4s)
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AO Direct Image (T=285.2s)
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AO Direct Image (T=669.6s)
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AO Direct Image (T=700.6s)
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Figure 1.1: Close-up of the diffraction core and first and second Airy rings of 6
second exposures of HIP 52942, taken with the Palomar AO system and PHARO
instrument. The field of view is 600 mas. Contours are peak intensity divided
by 1.05, 1.18, 1.33, 2., 2.5, 3.33, 5., 10., 20., and 50. Each row contains three
images taken roughly ten seconds apart. The middle and bottom rows have sets
of images taken 1 and 10 minutes after the first row, respectively. The tendency of
speckles to ’pin’ to the Airy rings is readily apparent, as well as a three-fold and
four-fold symmetry of the speckle locations on the first Airy ring which evolves on
minute timescales. (For instance, between the first and second image of the first
row.) These produce flux variations as much as 10% of the peak (seventh contour).
Variations on the second Airy ring of as much as 2-5% are also observed. These
quasi-static speckles limit the image contrast.
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ferometry and non-redundant experiments (Weigelt, 1977; Roddier, 1986; Naka-

jima, 1988; Tuthill et al., 2000). The development of adaptive optics has altered

the requirements of non-redundancy and short exposure times, but the technique

remains highly effective for mitigating quasi-static instrumental wavefront errors.

Importantly, the technique provides a method for mitigating or calibrating out the

effect of quasi-static wavefront errors from a single image, i.e., before quasi-static

wavefront errors evolve. These features allow aperture masking to reach much

higher contrast in routine observing and a much lower noise floor, particularly at

separations close to the primary and at the diffraction limit (Figure 1.2).

Aperture masking with adaptive optics is well-established for resolving stellar

companions within the formal diffraction limit (down to 0.5λ/D) and at high

contrasts (200:1 at λ/D)(Tuthill et al., 2000; Lloyd et al., 2006; Ireland et al.,

2008; Martinache et al., 2007). This range of high-resolution and high-contrast

make aperture masking ideal for close companion searches. Binaries resolved with

aperture masking also have higher precision photometry and relative astrometry.

The ultimate limitation of the NRM technique, although certainly due to quasi-

static wavefront errors which cannot be mitigated by closure phases, has not been

well-explored before the start of this body of work. The relationship between wave-

front errors, AO performance, and closure phase errors will be critical for designing

NRM experiments optimized for new systems, and ultimately, reaching planetary

contrasts. In particular, their interplay at high-strehl ratio correction or with inte-

gral field spectrographs is completely unexplored. These various techniques aiming

to solve the quasi-static imaging problem are complementary. Given that the exo-

planet dedicated instruments (Project 1640, Gemini Planet Imager, and SPHERE)

are equipped with aperture masks, now is the time to lay the groundwork for fu-
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Figure 1.2: Comparison of imaging techniques in infrared H Band (Strehl ∼
20%) at Palomar Hale 200” Telescope. Aperture Masking (red) routinely achieves
∆H∼5.5 magnitudes (150:1) at the diffraction limit, much better than direct imag-
ing alone (black). Coronagraphy (blue), although capable of providing very high
contrast is obscured at close separations by its Lyot stop. High contrast at close
separations is crucial for the detection of brown dwarfs for dynamical mass mea-
surements. An M-Brown dwarf binary (Contrast ∼ 4.0-5.0 magnitudes, 80-100:1)
cannot be detected by direct imaging at a separation closer than about 3 λ/D; the
system would have a period of at least 9 years. Aperture Masking can detect these
binaries over a more expansive range, and with much shorter periods. Companions
detected by coronagraphy are rarely able to provide dynamical masses.
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Figure 1.3: Comparison of a resolved binary with direct imaging (left) and aperture
masking (right). Good wavefront correction by the adaptive optics system reveals
a sharp, Airy function point spread function, though the first Airy ring partially
obscures the presence of a 6:1 companion (at an angle of 25 degrees counterclock-
wise of horizontal). Even with good correction, speckles are visible, including one
pinned to the Airy ring at due south. The large aperture masking point spread
function contains many features; these are not speckles, but rather well-defined
structure which allows for the calibrated removal of wavefront noise. Although no
companion is identifiable by eye, processing of the aperture masking image clearly
reveals the presence of the companion, with much higher precision.
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ture NRM experiments aimed at planet detection. Among the scientific potential of

NRM exoplanet imaging is the mass measurement of exoplanets, the full character-

ization of imaged planetary systems (including upcoming coronagraphic surveys,

and e.g., Hinkley et al. (2011)), and exoplanets formed in situ by core accretion

(Kraus et al., 2009).

1.2 Brown Dwarfs as Massive Exoplanet Analogs

The exoplanet’s more massive cousins in the substellar regime – brown dwarfs –

still present many outstanding questions regarding their atmospheres, underlying

physical characteristics, and formation processes. It is, perhaps, ironic that the

first observational discoveries of these new objects were announced nearly simulta-

neously at the Cool Stars IX meeting in 1995: the first direct image of a confirmed

brown dwarf (Nakajima et al., 1995; Oppenheimer et al., 1995), GJ 229B; and the

first radial velocity discovery of an extrasolar Jupiter-mass planet (Mayor, 1995).

While brown dwarfs and exoplanets form in separate environments, they span

similar ranges of mass and composition; much of the fundamental core of our under-

standing of the evolution, structure, and atmospheres of giant Jupiter-mass planets

derives directly from extensions of brown dwarf models (Burrows et al., 2001). The

natural physical and observational similarities between dim, cool brown dwarfs

and much dimmer Jupiter-mass exoplanets provide brown dwarfs as an excellent

laboratory to understand the underlying physical development and observational

characteristics of Jupiter-class planets. This will remain true for the foreseeable

future even after direct imaging searches begin to reveal exoplanets in droves; most

of the physical insights drawn out of exoplanet images and low resolution spectra
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will be extracted from evolution and atmospheric models. One can perhaps view

the previous two decades of observational challenges to brown dwarf imaging as a

template for the era of directly imaged planets, while recognizing that successful,

concurrent observations of brown dwarfs directly add to our understanding of both

classes of objects.

The formation of a brown dwarf begins in the same protostellar dust regions

that produce stars, yet an unknown process curbs mass accretion before the brown

dwarf has enough mass to raise its core temperatures to the levels necessary to

ignite hydrogen fusion (Kumar, 1963; Hayashi & Nakano, 1963). Instead, brown

dwarfs support themselves against gravitational collapse by a combination of elec-

tron degeneracy and Coulomb pressure. With no fusion energy production, brown

dwarfs shine by converting their gravitational potential energy into luminosity, a

process which alters the temperature and structure of brown dwarfs as they age. In

this regard, brown dwarfs and Jupiter-mass planets share common mechanisms for

structural morphology and evolution. Theoretical models estimate the bifurcation

between stars and brown dwarfs to occur at about 0.072-0.075 solar masses (M�)

for solar composition, or 75-80 times the mass of Jupiter (MJ) 1. At formation, the

most massive brown dwarfs reach temperatures are high as about 3200 K, but cool

below 2000 K by one billion years. The temperature of a brown dwarfs depend on

its mass and age, but span about 500-2000 K at one billion years and cooling as

far as 300-1300 K by ten billion years.

Yet astronomy is a visual science: nearly everything we know about the uni-

verse has been deduced from the light which shines down upon our telescopes.

1No clear physical distinction can be made between brown dwarfs and planets, though the
monicker planet is generally reserved for objects which are presumed to have formed in the debris
disks of stars. Other authors chose a mass cutoff at 13MJ , for brown dwarfs above this mass
briefly ignite the fusion of primordial deuterium. The latter definition assures that planets never
engage in fusion. This work will chose for the former, formation-based definition.
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And connecting the photometric and spectral properties of those distant pinpoints

of light to physical parameters such as mass, radius, age, composition, and tem-

perature is the fundamental challenge of stellar and substellar astrophysics. The

development of astrophysical models of stars stands as one of the successes of the

twentieth century: knowing the mass and metallicity of a star reveals the entire

nature of that star including its spectral features, internal structural dynamics,

and ultimate evolutionary future. No complete, robust, and empirically tested

model exists for brown dwarfs or planets at this time.

It is more than the intrinsic faintness of brown dwarfs that makes them harder

to observe and model. It is that brown dwarfs cool and evolve with age (a notori-

ously difficult parameter to measure precisely), adding an extra dimension to the

development of models which connect observable features to fundamental physical

parameters (i.e., mass, age, and composition).

In the two decades since the detection of the first brown dwarf, hundreds of iso-

lated brown dwarfs have been imaged and spectra have been obtained by large scale

surveys (such as 2MASS, Dahn et al. (2002)). These spectra have permitted the

advancement of atmospheric models which relate the observed spectral features to

properties of the atmosphere: surface temperature, molecular chemistry, and dust

grain mechanics. These models convey a rich photochemistry of molecules and

metallic dust forming in the atmospheres of brown dwarfs. Thousands of molecu-

lar species can be formed, and these molecules undergo interactions with radiation

across a wide spectrum of infrared and mid-infrared wavelengths. Metallic dust

forms clouds in the atmospheres of warm brown dwarfs that deplete metals from

the atmosphere and drive chemical equilibria; at cooler temperatures, these dust

grains rain out of the atmosphere. Both factors complicate the detailed modeling
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of brown dwarf atmospheres in a way different than stars. Despite the numerous

successes, state-of-the-art models lack opacity characterization of numerous chem-

ical compounds at the pressures and temperatures of brown dwarfs and require

finely tuned parameters to seed rainout of dust grains as brown dwarfs cool. More

diverse empirical constraints are required to move these models forward.

But fundamental to the nature of brown dwarfs is their cooling through their

lifetime, and understanding the evolution of a brown dwarf with age is a formidable

task in its own right. Evolution models describe the internal structure, total lumi-

nosity output, radius, and temperature of a brown dwarf of a given mass and age

(and, to a lesser degree, composition). In concert with atmospheric models, one

has the basis for a complete model of brown dwarfs. The optical properties of the

atmosphere necessarily affect the evolution of the brown dwarfs by regulating the

bulk luminosity output, but evolution models are nonetheless relatively insensitive

to the specific details of atmosphere models. Independently testing brown dwarf

evolution models requires the measurement of masses, ages, and/or temperatures,

in addition to photometry.

Brown dwarf binary systems serve as an excellent laboratory for testing evo-

lution models. Tracking the system orbit provides measurement of (the sys-

tem) mass; combined with accurate photometry (and hence total luminosity, c.f.

Golimowski et al. (2004)) one has a critical data to empirically test evolution mod-

els (Liu et al., 2008). Observationally, detecting brown dwarf companions suitable

for dynamical masses requires imaging with high contrast and angular separations

close to the primary.

As discussed in the previous subsection, the technique of Non-Redundant Aper-

ture Masking Interferometry provides a powerful, well-established method for ob-
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taining high-contrast at very close angular separations. Binaries resolved with

NRM also obtain higher precision photometry and relative astrometry, and dy-

namical masses up to an order of magnitude more precise (Figure 1.3).

Developing the technique of NRM on current and upcoming instruments will

be invaluable for obtaining high precision mass measurements of brown dwarfs and

giant exoplanets to advance evolution models.

1.3 The Organization of This Manuscript

These considerations have motivated the research presented within this disser-

tation. Chapter 2 continues an overview of the current state of brown dwarf

atmosphere and evolution models, and describes the challenges confronting the

detection of brown dwarf binaries for dynamical mass measurements. Chapter 3

introduces Non-Redundancy Aperture Masking Interferometry (NRM), focusing

on the difference between its application with and without adaptive optics and

its relevance to resolving binaries. The chapter also includes a general purpose

Monte Carlo simulation for determining the statistical significance of NRM de-

tections. Chapter 5 presents previously published results of an NRM search using

Laser Guide Star Adaptive Optics to detect companions to very low mass stars and

brown dwarfs. The survey detected four candidate brown dwarf binaries at low to

moderate confidence with projected physical separations favorable for dynamical

mass measurements. Chapter 6 presents unpublished results of an experiment to

increase the high contrast capabilities of aperture masking by spatially filtering

the science wavefront. A detailed analytical description of the spatial structure

of closure phase redundancy noise is also presented. Chapter 7 synthesizes the
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results of this research and emphasizes their place in the ongoing developments of

this field. The impact of this work for future high-contrast infrared imaging and

for the study of brown dwarfs and exoplanets is discussed.

Dear Jamie, Ivan, Ira, Bruce, and Jeevak,

I am very happy to present to you the final draft of my dissertation. Upon

your approval, I will submit this to the graduate school.

I would like to thank all of you for your time and effort these last several

months, and for the guidance you have provided to me.

Sincerely, David Bernat
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CHAPTER 2

BROWN DWARFS

2.1 How does one identify a brown dwarf?

The early pursuits for brown dwarf were marked by spectroscopic searches for

objects which could bridge the gap between the lowest known mass stars either

just above or straddling the hydrogen burning mass limit (late-type M dwarfs,

Teff ∼2600K) and the spectrum of Jupiter, marked most notably by deep methane

bands in the infrared (Teff ∼200K). The dominant feature of the lowest mass stars

are strong VO and TiO bands in the optical red.

Kirkpatrick (1992) identified GD 165B as an object much redder than the

lowest mass stars and lacking VO and TiO, with unidentified absorption features

but no methane absorption. Despite the lack of methane, the unique appearance

of its spectrum and extreme red color suggested that GD 165B ought be classified

beyond the Morgan-Keenan OBAFGKM spectral classifications (Morgan et al.,

1943), and proposed as a candidate brown dwarf. Without adequate models to

interpret the unidentified absorption features, the temperature was estimated to be

∼2200 K from total luminosity. Later spectral analysis and atmospheric modeling

of GD 165B identified features of metallic hydrides, and confirmed a substellar

temperature of (Teff ∼ 1900K, Kirkpatrick et al. (1999)).

The successful confirmation of the first brown dwarf followed the detection of

Gl 229B (Nakajima, 1994; Oppenheimer et al., 1995). The spectral analysis showed

strong absorption of methane and water, similar to that of Jupiter. Moreso, almost

all of the carbon was found in the form of methane rather than CO, offering an
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independent estimation of its temperature based on purely chemical equilibrium

considerations (Tsuji, 1995)(Teff ∼900 K, Oppenheimer et al. (1998)).

The discovery of these objects provoked the establishment of two new spectral

types, L and T (Kirkpatrick et al., 1999), beyond the Morgan-Keenan OBAFGKM

spectral classification (Morgan et al., 1943), with GD 165B and Gl 229B as the

prototype members, respectively. Their discovery also led to quickly developing

advances in the brown dwarf atmospheric models.

Most notable of the early discoveries into the brown dwarf atmospheres is the

role metallic dust in the photosphere plays in shaping the spectra. Jones (1997)

demonstrated that dust grains (mostly iron and magnesium silicates) begin forming

in the atmospheres of the coolest stars, as well as GD 165B. Surprisingly, the

spectrum of Gl 229B is not consistent with a dusty atmosphere (Oppenheimer

et al., 1995).

For objects like GD 165B (L Dwarfs), dust grains drive the spectral features, in

particular the absence of TiO and VO as these oxides are absorbed into micron and

centamicron sized silicate grains (Kirkpatrick et al., 1999). This also allows the rise

in prominence of the metallic hydrides Tsuji (1995). The size of dust grains that

form is a function of temperature, pressure, and the particular chemical equilibrium

of each species under consideration (Grossman (1972), and described elsewhere in

Leggett et al. (1998); Allard et al. (2000)). These dust grains provide their own

opacity (Alexander & Ferguson, 1994), but the predominant overall effect of dusty

grains on opacity is by altering the composition of the photosphere gas (Lunine

et al., 1989).

The transition from CO to methane as the dominant carbon feature marks the
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boundary between L and T dwarfs, and occurs over a narrow range of temperatures:

one expected equal parts CO and methane at about 1400 K, a factor of ten less

at 1250 K, and virtually no CO at 900 K (Marley et al., 1996). Furthermore,

the spectra and photometric colors are not consistent with dusty atmospheres,

indicating that dust clouds grow thicker as temperatures cool through the L dwarf

class but condense and ”rain out” near the onset of the T dwarf class. This allows

for the onset of non-metal absorbers, such as methane and water, in the spectra of

T dwarf (Allard et al., 2003). The dominance of water opacity in the atmosphere

of cool brown dwarfs forces flux emission to increase between the classic telluric

bands which define the infrared bands; this results is dramatically enhanced J and

H band (1.2µm and 1.6µm) fluxes relative to blackbody. (A similar enhancement in

M band occurs for even cooler dwarfs. (Burrows et al., 1997)). This enhancement

occurs in Ks band (2.2 µm) as well, but less so due to absorption by H2 and

methane, driving infrared colors not redder but bluer with decreasing temperature

(Leggett et al., 1998) (Figure 2.1).

2.2 The Current State of Brown Dwarf Atmosphere and

Evolution Models

The discovery of GD 165B and Gl 229B and the classification of L and T dwarfs

has allowed the development of models describing brown dwarf atmospheres and

their evolution in tandem with empirically derived relations.

Spectra of hundreds of L dwarfs and more than sixty T dwarfs have been

classified spectroscopically and photometrically (Cruz et al., 2003; Knapp et al.,

2004; Golimowski et al., 2004). Both infrared and optical spectral features and
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Figure 2.1: Color-magnitude diagrams of substellar objects plotted against mod-
eled atmospheres and blackbody curves. (Left) Absolute J v. J-K color magnitude
diagram. Curves indicate theoretical isochrones for substellar objects at ages of
0.5, 1.0, and 5.0 Gyr through a range of masses using the brown dwarf models of
Burrows et al. (1997) and their blackbody counterpart. The difference between
blackbody colors and model colors is immediately apparent. The prototype T
dwarf, Gl 229B, and prototype L dwarf, GD 165B, are plotted for comparison.
Notice that the L dwarf does not show an indication of particularly bluer-than-
blackbody colors. (Right) Absolute J v. J-H color magnitude diagram. Figure
from Burrows et al. (1997)
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colors have been used to define subtypes from L1 through T9, all of which supply

consistent empirical tests of atmospheric models across the entire span of brown

dwarfs (Golimowski et al., 2004). These atmospheric models relate the photomet-

ric characteristics of a brown dwarf to its effective temperature (Teff ) and total

luminosity, as effective temperature is the primary driver of atmospheric chemistry,

with gravity and metallicity playing lesser roles (Burrows et al., 2006)

Empirical and semi-empirical relations have also been created which relate

total luminosity, effective temperature, spectral type, and infrared photometry.

Golimowski et al. (2004) has derived bolometric corrections for converting infrared

photometry to total luminosity, Lbol, using flux-calibrated optical and infrared

spectra from several dozen brown dwarfs. This spectral type-luminosity relation

has been show to provide more accurate estimations of total luminosity then fitting

atmospheric models to broad band photometry Konopacky et al. (2010) and is

purely empirical.

Total luminosity is also related to effective temperature:

Lbol = σ(4πR2)T 4
eff . (2.1)

By making model-dependent assumptions of radius (Burrows et al., 1997;

Chabrier et al., 2000), Golimowski et al. (2004) also derived effective temperature

as a function of spectral type. These indicate the temperature ranges of L dwarfs

(1400 K. Teff .2200 K), and T dwarfs (400K. Teff .1300K), also showing

plateau of temperature between L7 and T4.5 (the so-called L/T Transition). This

plateau of temperature is consistent with the chemical analysis by Marley et al.

(1996) for Gl 229B indicating the sensitivity to temperature of the CO to methane

transition. Additional analysis of changes in infrared colors across this transition

are consistent with the onset of methane occurring with little temperature change,
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but significant opacity changes in the near infrared, i.e., the condensation of dust

out of the photosphere.

Likewise, Cruz et al. (2003) derived empirical relations between J band (1.2

µm) photometry and spectral type. Knapp et al. (2004) derived empirical relations

between infrared photometry and spectral type using several dozen brown dwarf

spectra ranging down to T9.

Currently, two suites of brown dwarf atmosphere and evolution models are

widely used.

The set of models by Baraffe et al. (1998, 2003) and Chabrier et al. (2000)

(sometimes referred to collectively as the LYON models) treat L and T dwarfs

individually. The set of models appropriate for L dwarfs (the DUSTY model) as-

sumes dust grain clouds form (in chemical equilibrium) and affect opacity by the

scatter and absorption of flux, as well as by depleting the metallic and dust-forming

elements from the photospheric gas. The second set of models appropriate for T

dwarfs (the COND models) also assumes that dust grains forms, but that these

grains large enough to condense out and only affect opacity by their depletion of

metallic and dust forming elements. Neither of these models include any mech-

anism to drive grain growth and thus neither handle well brown dwarfs near the

L-T transition. Likewise, out of equilibrium chemical species are not included.

Chabrier et al. (2000) stressed that although the variations in the treatment

of dust could provoke large photometric and spectral changes, this had very little

effect on the overall cooling rate used by evolution models. In other words, one

need not derive evolution cooling curves for each set of atmospheric models (i.e.,

cooling curves are universal), and evolution models are fairly independent on the
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finer details of atmospheric models (to about 10% in Teff and 25% in Lbol at the

extremes).

An alternative set of models by (Burrows et al., 2001) calculates the size of

dust grains, their distribution, and cloud sizes as driven by vapor pressure levels

within the atmosphere, following the model of Lunine et al. (1989). As such, there

is no need to distinguish between dusty L dwarfs and depleted T dwarfs, as this

is handled innately by the model; these models are sometimes referred to as the

PHOENIX/TUCSON models.

Atmosphere Models

Linking the observed features of the brown dwarf spectra to the underlying physical

chemistry in the photosphere is the fundamental aim of atmospheric chemistry.

The importance of obtaining accurate photometry across multiple wavebands and

spectra of brown dwarfs were recognized early as the fundamental limitation to

advancing the theory of brown dwarf atmospheres Stevenson (1986), and remain

one of the most important considerations still (Konopacky et al., 2010; Dupuy

et al., 2010).

Most of the trends and characteristics are understood in terms of general chem-

istry (Burrows & Sharp, 1999) which have put a premium on the calculation and

inclusion of accurate molecular opacities. However, the most difficult challenge

for the advance of atmospheric models is the accurate incorporation of a natural

mechanism for the formation of dust grains (calcium aluminates, silicates, and

iron) (Burrows et al., 2005). While a robust mechanism for grain condensation has

not yet been formed, more recent models suggest that changes is surface gravity

and metallicity, in addition to temperature, play an important role for driving the
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Figure 2.2: Bolometric correction for K band photometry and Effective tempera-
ture as functions of spectral type from Golimowski et al. (2004) (Top) Bolometric
corrections can be used to obtain total luminosity, Lbol, from K band photometry.
(Bottom) By making certain assumptions about the brown dwarf radius, effective
temperature can be estimated from total luminosity. (See text.) Notice the plateau
of temperature marking the transition from L and T dwarf classes
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effect (Burrows et al., 2006).

Figure 2.3 shows the progression of infrared photometry through spectral type

for solar mass stars, low mass stars, and brown dwarfs. Solar mass infrared pho-

tometry use the empirical mass-luminosity relations of Henry & McCarthy (1993).

Low mass stars (M0 and later) and brown dwarfs use the photometry of Baraffe

et al. (2003) and the spectral type-MJ relation of Cruz et al. (2003). The infrared

photometry of a blackbody is drawn for comparison; the infrared flux brightening

of dusty stars (M6 and later) and brown dwarfs is readily apparent.

Evolution Models

As stated previously, brown dwarfs shine by converting their gravitational energy

into luminosity and slowly cool with age. In other words, the internal structure

(i.e., radius, convention zone, etc.), temperature, and luminosity, of a brown dwarf

of a particular mass evolves with time.

The evolution with age of total luminosity and effective temperature of very low

mass stars, brown dwarfs, and planets through the lower spectral types are shown

in Figures 2.4 and 2.5 using the evolution models of Burrows et al. (2001). Cooling

during evolution results from the bulk luminosity output of brown dwarfs, and

therefore is not particularly sensitive to the details of the atmospheric model used

to describe the specific wavelengths of radiation emitted. These evolution curves

can therefore be viewed as nearly universal and independent from atmospheric

models.

Brown dwarfs form quite warm and bright (Teff ∼ 2500-3200 K), and at tem-

peratures on par with low-mass main sequence stars. This highlights the fundamen-
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perature. Photometric colors are primarily a function of effective temperature
and predominantly dependent on the physical chemistry of the brown dwarf atmo-
spheres. In the absence of spectra, broadband photometric colors are a proxy for
spectral type and temperature. Low mass curves (M0 and later) use photometry
of Baraffe et al. (2003) and the spectral type-MJ relation of Cruz et al. (2003).
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brightening of dusty stars (M6 and later) and brown dwarfs is readily apparent.

23



tal problem of using spectral type (or effective temperature) alone as a predictor of

brown dwarf mass. That is, an object classified as a late-M dwarf may be either a

young brown dwarf or an old-main sequence star. To accurately access the brown

dwarf mass, luminosity and age are necessary. In general regarding total luminos-

ity, effective temperature, mass, and age, evolution models can be used with any

two quantities to calculate the remaining two.

From these figures, it is clear that the lowest-mass hydrogen burning stars are

in fact early L dwarfs, and brown dwarfs of all masses begin as M dwarfs for the

first hundred million years of their life. But as expected from earlier investigations,

brown dwarfs evolve predominantly through the L (1400 K. Teff .2200 K) and

T (400K. Teff .1300K) spectral types.

The minimum hydrogen-burning mass is a clear demarcation between brown

dwarfs and stars at 0.072-0.075 M�, below which hydrogen fusion is not ignited.

However, brown dwarfs between 13 and 80 MJ do undergo a brief period when

young in which they fuse primordial deuterium. This onset of deuterium fusion

can be seen in the brief shoulder of constant luminosity in tracks of Figure 2.4

before brown dwarfs reach an age of 50 million years. Because objects less massive

than 13 MJ never reach deuterium fusing temperatures, this is occasionally used

to distinguish between brown dwarfs and planets.

Brown dwarfs more massive than 65 MJ also undergo a brief period of primor-

dial lithium fusion at an age of about 10 million years. This provides one method

for placing an upper limit on the mass of an observed brown dwarf: the presence

of lithium in the brown dwarf spectrum places the mass at below 65 MJ (Rebolo

et al., 1992)
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Evolution models have limited effectiveness for brown dwarfs (and particularly

massive exoplanets) at ages of less than tens of millions of years, as the specific

characteristics of objects this young are still quite sensitive to the conditions of

formation (Marley, 2007; Fortney et al., 2008). Most strikingly, models predict the

total luminosity of young objects can span a factor of hundreds or thousands, de-

pending on the method by which brown dwarfs and exoplanets expel their entropy

during formation (i.e., ’hot start’ versus ’cold start’). The specific formation mech-

anism can affect the observable properties of these objects out to an age of one

billion years, depending on the mass of the object. Importantly, evolution models

are least well constrained empirically at young ages, and the majority of directly

imaged exoplanets will be youthful (because they are brighter). This speaks to

the immediate need for empirical constraints on brown dwarf evolution models at

young ages.

Because evolution models provide the mass-luminosity-age relation for brown

dwarfs, one only needs two of the three to calculate the third. In particular, a

measurement of the brown dwarf mass combined with luminosity (or photometry)

allows one to place a constraint on the brown dwarf age. Constraints on age are

more effective for young brown dwarfs, for which luminosity tracks are more widely

spaced (See Figure 2.4).

Using the evolution model of Baraffe et al. (2003), we can explore the mass-

temperature-age relation of very low mass stars and brown dwarfs. Figure 2.6

shows the relationship between mass and effective temperature for stellar and sub-

stellar objects for three isochrones (ages of 100 million years, 1 and 5 billion years).

As can be seen, young (∼ 100 million years old) brown dwarfs span temperatures

of 1500-2500 K, cooling by as much as 1500 K over their lifetime. The oldest,
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lowest mass brown dwarfs reach temperatures as low as 400 K. High mass curves

use the empirical mass-luminosity relations of Henry & McCarthy (1993).

Using the evolution and atmospheric models of Baraffe et al. (2003) we can

explore the mass-luminosity-age relation of very low mass stars and brown dwarfs.

Figure 2.7 shows the relationship between mass and infrared photometry for stellar

and substellar objects of the same isochrones are Figure 2.6. Despite the flux

enhancement in the infrared, brown dwarfs are still much fainter than more massive

objects in these wavebands. Eight magnitudes (1500:1 flux ratio) separate solar

mass stars and the most massive brown dwarfs at an age of 1 billion years. This

flux ratio improves at younger ages, but remains larger than 6 magnitudes (250:1)

for younger objects. The onset of the T dwarf spectral class can be inferred from

these curves by locating the point at which J band fluxes grows brighter than K

band, at a mass of about 0.030 M� at 1 billion years.

2.3 Using Mass Measurements to Test Evolution Models

Brown dwarf atmospheric models are capable of reproducing the photometry and

spectral features across the span of brown dwarf spectral types. As shown in Figure

2.2, these spectral types can be well characterized by their effective temperature

and total luminosity. Spectra of hundreds of isolated brown dwarfs have been

instrumental in advancing these models to their current state.

Brown dwarf evolution models relate the physical parameters of mass, age, and

radius, to total luminosity and effective temperature, which can then be used by

atmospheric models to determine photometry or spectra. Yet, the fundamental

difficulty of measuring the mass, age, and/or radius of a brown dwarf has limited
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Figure 2.4: Evolution of luminosity tracks for low mass stars (blue), brown dwarfs
(green), and planets (red) from Burrows et al. (1997). Object masses (in Msun) are
marked at the right-side end of the tracks. The top set of lines (0.08-0.20 Msun)
trace out the evolution of low mass stars; note the onset of fusion at 0.5-1.0 Gyr
and further stabilization of luminosity, while brown dwarfs continue to dim. The
shoulder of brief, but constant luminosity early in the evolution of stars and brown
dwarfs signals the brief fusion of primordial deuterium.
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Figure 2.5: Evolution of effective temperature for low mass stars (blue), brown
dwarfs (green), and planets (red) from Burrows et al. (2001). These sets of lines
are the same as in Figure 2.4. Horizontal lines mark the evolution from spectra
classes M to L and L to T. Note that the lowest mass hydrogen burning stars evolve
into L dwarfs, and that all brown dwarfs start as M dwarfs. Because brown dwarfs
evolve through to later spectral types for the entirety of their lifetime, unlike stars
which stabilize after ∼ 1 Gyr, spectral type without age is a poor indicator of
brown dwarf mass. The orange filled circles mark the 50% depletion of deuterium;
the magenta circles mark the 50% depletion of lithium. Since brown dwarfs less
massive than ∼ 0.060 Msun never deplete their primordial lithium, the presence of
lithium in L dwarf spectra is an indicator that the object is a brown dwarf.
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Effective Temperature of Low Mass Stars
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Figure 2.6: Effective Temperature as a function of mass for low mass stars and
brown dwarfs using the evolutionary models of Baraffe et al. (2003). Unlike stel-
lar objects, the temperatures of brown dwarfs cool significantly with age; for any
temperature derived from photometry, nearly every brown dwarf mass may be pas-
sible if age is not constrained. Conversely, while temperature changes rapidly early,
brown dwarfs cool more slowly after several billion years, and precisely measured
masses (∼10%) give little constraint to age. Low mass curves (M0 and later) use
photometry of Baraffe et al. (2003) and the spectral type-MJ relation of Cruz et al.
(2003). High mass curves use the mass-luminosity relations of Henry & McCarthy
(1993).
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Infrared Photometry of Low Mass Stars
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Figure 2.7: Infrared photometry of low mass stars and brown dwarfs (J band, blue;
K band, red) using the models of Baraffe et al. (2003). Eight magnitudes (1500:1
Flux Ratio) separate solar mass stars and the most massive brown dwarfs at an
age of 1 Gyr. Brown dwarfs dim with age, spanning roughly eight magnitudes
between 100 Myr and 5 Gyr. Low mass stars and L dwarfs are red in infrared
color, this changes rapidly at the onset of the T dwarf spectral class.
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the number of empirical constraints used to confirm and progress these models.

Model-independent measurements of brown dwarf masses provide the strongest

constraints on evolution models; i.e., ”mass benchmarks” to which evolution pre-

dictions can be compared Liu et al. (2008). Fundamental properties such as ef-

fective temperature are about five times better constrained with dynamical mass

measurements than with measurements of age.

Directly imaging a brown dwarf companion to another star and tracking its or-

bit provides the most readily available method for model-independent mass mea-

surements. With relative astrometry provided by direct imaging, one is able to

directly measure the total mass of the system. When combined with radial veloc-

ity, one obtains the masses of the individual components.

Companion detections through radial velocity alone give access to only to the

quantity M sin i, a combination of the companion mass and its orbital inclination,

and requires direct imaging of the pair to break this degeneracy. Detections by

transit give access to both the mass and radius of the brown dwarf (assuming the

mass and radius of the host star can be accurately determined by stellar models),

but are rare: only one brown dwarf is so far known by transit (Stassun et al.,

2006).

Binary measurements give three constraints on the suite of models: mass; pho-

tometry, which can be used to obtain total luminosity from empirical relations; and

the assumption that both objects are the same age, even if that age is unknown

(co-evolution). As mentioned in the previous subsection, these three constraints

allows one to calculate the system age using evolution models. For a given system

age, one can directly calculate the mass and photometry (or luminosity) of each
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component until the optimal age is found (Liu et al., 2008)

Likewise, effective temperature can be derived for the brown dwarfs because

evolution models also provide the radius (c.f. Equation 2.1). These quantities have

all been calculated using only evolution models and empirical relations.

Several approaches towards testing the evolution models can be used.

(1) On almost purely empirical bases, the evolution-derived effective tempera-

ture can be compared to temperatures for L and T dwarfs derived by Golimowski

et al. (2004), by using the relations of Knapp et al. (2004) to obtain the spectral

types of the binary components from their photometry. This comparison is rea-

sonably accurate and limited only by model-dependent radii used by Golimowski

et al. (2004), but these are predicted to vary by less than 30%.

(2) The atmospheric models can be used to fit photometric or spectral data to

obtain an alternative measure of effective temperature. In this circumstance, it is

not possible to discern whether the discrepancy arises from evolution or atmosphere

models, although atmosphere models are quite uncertain in their determination of

effective temperature (Liu et al., 2008).

(3) Measurements of the component masses can be compared directly to those

predicted by atmosphere and evolution models. Using Golimowski et al. (2004)

derived luminosities and atmospheric fits to photometry for effective temperature,

evolution models can be used to make an estimate of the masses and age of the

binary components. This approach is perhaps the most natural comparison for

the purposes outlined in the introduction and has been used by Konopacky et al.

(2010).
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To date, mass measurements of ”meaningful” precision (. 30%) have been

made of only nine systems which contain brown dwarfs; several other systems have

been measured with much less precision (& 60%) (Konopacky et al., 2010; Dupuy

et al., 2011). All but one of these brown dwarfs are M or L dwarfs.

Still, even this small subset shows systematic discrepancies when compared to

models. Konopacky et al. (2010) and Liu et al. (2008) both show that temperatures

derived with atmosphere models are generally inconsistent with those derived from

evolutionary models. In particular, atmosphere models predict temperatures lower

than evolution models by about 200-300 K for L dwarfs, although this systematic

trend appears to reverse for the single T dwarf with measured masses. Alterna-

tively, if atmosphere and evolution models are used to predict the brown dwarf

masses from photometry, this method incorrectly yields masses too low by 50-70%

for L dwarfs (and too high for the T dwarf).

Thus, one must exhibit caution when using these models to predict the masses

of substellar objects. In particular, this indicates that imaged exoplanets, such as

the planetary companions to HR 8799 (masses of 7, 10, and 10 MJ), are likely to

also be systematically in error (Marois et al., 2008).

One must recognize that a large subset of much more precisely measured masses

spanning the entire range of brown dwarf masses are necessary to begin challenging

evolution models. This is particularly evident when one keeps in mind that inherent

in the atmospheric models are assumptions of opacities, metallicities, cloud models,

etc., all of which operate in tandem with evolution models to predict the mass or

age of a binary system. Radius, for instance, may span a wide range (perhaps

25%) for a given mass and age for hot, evolving brown dwarfs depending on cloud

formation and elemental composition (Burrows et al., 2011). To truly carve into
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our understanding of brown dwarfs requires many additional benchmarks against

which these models can be tested.

2.4 The Challenge of Resolving Brown Dwarf Binaries

A confluence of natural and technical challenges has prevented the brown dwarf

community from amassing a larger database of precisely measured brown dwarf

masses. Resolving brown dwarfs as companions to stellar and sub-stellar objects

and the subsequent tracking of their orbits requires overcoming several challenges.

Four criteria must be satisfied to detect brown dwarf companions and acquire

measurements of their dynamical masses:

1. The orbital period must be short enough to track the nearly full or full orbit

in a reasonable length of time; this, equivalently, requires binaries with small

primary-secondary separations.

2. Technology and/or techniques can be obtained that can achieve high enough

levels of angular resolution to resolve the individual components of the binary,

given the distortions introduced by the atmosphere.

3. Given the level of image contrast that technique is able to achieve (usually

as a function of separation), the faint brown dwarf can be identified above

photon noise, background noise, detector noise, or more usually, the glare of

the primary star and/or systematic errors which distort image quality.

4. That such a potential system exist at a location in the sky which allows the

above three constraints to be satisfied.
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In other words, given the technical challenges at telescopes and the natural

distribution of stars, what brown dwarf systems can we observe?

2.4.1 Angular Resolution for Brown Dwarf Dynamical

Masses

To obtain precisely measured brown dwarf masses, one necessitates high-contrast

and high-angular resolution capabilities.

The period, T , of a binary scales with Kepler’s Third Law:

T 2 = (2π)2a3/GMtotal(
T

1 yr

)2

=
( a

1 AU

)3
(

1 M�
Mtotal

)
(2.2)

where a is the semi-major axis of the orbit and Mtotal is the combined mass of the

binary. Obtaining dynamical mass requires tracking a full or nearly full orbit; to

track the orbit in reasonable amount of time (a few years) requires resolving very

closely-separated (. a few AU) binaries.

This is shown quantitatively in Figure 2.8. The figure shows the period of a

0.070 M� brown dwarf in orbit around primaries of various spectral types and a

range of semi-major axes. Orbital period clearly rises quickly with semi-major

axis; to find a binary with periods shorter than 5 years requires the detection of

brown dwarf companions at separations closer than about 3 AU.

Nearby field stars in the solar neighborhood span distances of & 10-100 parsecs.

For binary systems at a given distance, the semi-major axis corresponds to an
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angular separation of:

θbd = 100 mas×
( a

1 AU

)(dsystem
10 pc

)
. (2.3)

From this we conclude that dynamical mass measurements require a capability to

resolve brown dwarf companions at separations closer than 300 mas (∼ 5.× 10−4

degrees).

2.4.2 Primary-Secondary Contrasts for Brown Dwarf

Companions

Late-Type Primaries are Favorable

Despite the ’flux enhancement’ in the infrared of brown dwarfs due to their opacity

sources, the contrast between a solar type star and the most massive brown dwarfs

at an age of 1 billion years is roughly eight magnitudes (1500:1 flux ratio). This

contrast drops to six magnitude (200:1 flux ratio) when the primary is an M0 dwarf

(Figures 2.7 and 2.9). Assuming that equal imaging performance can be achieved

for both primaries, there is a large benefit to surveying late-type stars (M and K

dwarfs).

Youthful Systems are Favorable

Unlike stars, which retain their brightness throughout their lives, brown dwarfs

dim by a factor of ∼10 while aging from 100 million to 1 billion years, and another

factor of∼10 by 5 billion years. Indeed, this signals another strategy for companion

searches: young systems. These systems also yield insight into the early stages
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Figure 2.8: Orbital period for a 0.070 M� brown dwarf companion as a function
of semi-major axis and primary spectral type. Wide-separated binaries orbit too
slowly to track their orbits (and obtain dynamical masses) in a practical length of
time. In order to obtain the system mass measurements in less than five years of
observing, binaries with physical separations less than 3 AU need to be targeted.
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of brown dwarf evolution and formation by exploring, for instance, the structure

evolution of young brown dwarfs or their migration mechanism (Kraus et al., 2008,

2009).

Unfortunately, age is a difficult parameter to measure for individual stars and

the distribution of stellar ages in the solar neighborhood is roughly flat. Corre-

lations between age and activity have been successfully used to identify clusters

of similarly youthful stars in the solar neighborhood. Several of these young as-

sociations and moving groups have been identified in the northern hemisphere

(Zuckerman, 2004; Torres et al., 2006). To date, the youngest clusters are rela-

tively far away (e.g., Upper Sco: roughly 5 million years and 140 parsecs). At

such great distances, even higher resolution is needed for dynamical masses (e.g.,

diffraction limited H band observations correspond to physical separations of 1.1

AU at 140 parsecs). Alternatively, clusters of nearby, moderate age collections

offer a potent compromise between youth and proximity (ages 10-150 million years

at distances of 10-50 parsecs), while also providing insights into the evolution of

brown dwarf systems with age. Several moving groups are known in the northern

hemisphere and many more in the southern hemisphere. Moving group identifi-

cation is an observationally intensive project and cataloging the late-type (M and

K dwarf) members of these groups has only recently begun (Schlieder & Lepine,

2010). Both of these surveys will provide fertile grounds for upcoming brown dwarf

and exoplanet imaging surveys and for the studies of young brown dwarfs.

Mid-Infrared Bands are Favorable

Finally, one can consider the advantages of observing at the longer wavelengths of

the mid-infrared (2-10µm). Like the near infrared, brown dwarfs are flux enhanced
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at mid-infrared wavelengths and the nominal blackbody contrasts are also more

favorable at longer wavelengths. The impact of atmospheric turbulence is greatly

reduced at longer wavelengths, in fact, 5-meter class telescopes are nearly diffrac-

tion limited at 10µm, and turbulence evolves more slowly, allowing for slower run

wavefront sensors and fainter natural guide stars. While direct imaging in the

mid-infrared will certainly play a role in future exoplanet surveys, adaptive optics

technologies have just recently begun to come online at these wavelengths (e.g.,

MMT Telescope, Wildi et al. (2003)).

2.4.3 Adaptive Optics: Resolution

Measuring the mass of brown dwarfs by orbit tracking in a few years requires

resolution reaching approximately 300 mas or better. Resolving brown dwarfs

requires contrasts of 102-103:1 in order to detect brown dwarf companions to solar

type stars in the infrared. A far easier aim is to resolve companions in orbit around

brown dwarf primaries. In this section, we explore the technical feasibility of these

observations using current technology in the infrared.

An optically perfect telescope, observing a point source through a still and

homogeneous atmosphere will image a spot of angular size 1.22 λ/D, where D is

the diameter of the telescope aperture and λ is the wavefront of the observation.

As a point of reference, the 200” Hale Telescope at Palomar Observatory (5.08 m)

observing in the infrared H band (1.6 µm) images a spot size ∼65 milliarcseconds

in radius.

Distinguishing two closely separated objects is the primary challenges of direct

imaging for high angular resolution. The finite size of a point source provides
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Contrast Ratios of Binaries of Various Spectral Types
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Figure 2.9: Primary-Secondary Contrast Ratio of Binary Systems. Clearly, late-
type stars offer more favorable contrast ratios than solar type stars. Particularly
noteworthy is the rapid drop in brightness (a factor of 100) moving from L0 dwarfs
(massive brown dwarfs) to T5 dwarfs (lighter brown dwarfs). Probing the entire
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cases.

40



T
ab

le
2.

1:
T

ec
h
n
iq

u
es

F
or

R
es

ol
v
in

g
C

lo
se

ly
S
ep

ar
at

ed
B

ro
w

n
D

w
ar

f
C

om
p
an

io
n
s

T
ec

h
n
iq

u
e

C
on

tr
as

t
S
ep

ar
at

io
n
s

O
rb

it
al

P
er

io
d
s

D
ir

ec
t

Im
ag

in
g

30
:1

20
0

m
as

5+
ye

ar
s

C
or

on
ag

ra
p
h
y

10
00

0:
1

10
00

m
as

10
0+

ye
ar

s
A

p
er

tu
re

M
as

k
in

g
20

0:
1

50
m

as
1+

ye
ar

T
ab

le
2.

2:
P

ro
s

an
d

C
on

s
of

P
ri

m
ar

y
T

y
p

e
B

in
ar

y
T

y
p

e
C

on
tr

as
t

P
ro

s
C

on
s

S
ol

ar
-B

D
B

in
ar

y
10

0-
10

00
:1

G
re

at
A

O
C

or
re

ct
io

n
H

ig
h

C
on

tr
as

t;
R

ar
e

B
D

-B
D

B
in

ar
y

10
-1

00
:1

L
ow

C
on

tr
as

t
R

eq
u
ir

es
L

G
S
A

O
or

H
ie

ra
rc

h
ic

al
T

ri
p
le

T
ab

le
2.

3:
S
u
rv

ey
T

y
p

es
F

or
B

ro
w

n
D

w
ar

f
C

om
p
an

io
n

S
ea

rc
h
es

S
u
rv

ey
S
am

p
le

P
ro

s
C

on
s

F
ie

ld
S
ta

rs
N

ea
rb

y
an

d
C

at
al

og
ed

M
an

y
O

ld
S
y
st

em
s

M
id

-I
R

C
on

tr
as

t
B

et
te

r
b
y

10
x

F
ew

m
id

-I
R

A
O

sy
st

em
s,

H
ig

h
er

d
iff

ra
ct

io
n

L
im

it
s

Y
ou

n
g

S
ta

rs
C

on
tr

as
t

B
et

te
r

b
y

10
-1

00
x

Y
ou

n
g

C
lu

st
er

s
T

o
o

F
ar

T
o

P
ro

b
e

C
lo

se
M

ov
in

g
G

ro
u
p

C
lu

st
er

s
M

o
d
er

at
e

A
ge

an
d

D
is

ta
n
ce

M
em

b
er

sh
ip

U
n
k
n
ow

n

41



an estimate for the smallest angle by which separate objects can be resolved, the

so-called diffraction limited resolution:

θmin =
1.22λ

D
. (2.4)

The criterion is only a rule-of-thumb; one can certainly imagine an experiment

taking images so precisely that the overlap of two such spots could be distinguished

by, for instance, the elongation of the spot in one direction.

However, the atmosphere is a turbulent, inhomogeneous window through which

the stars are observed. Variations in the temperature and index of refraction

deform the phase and amplitude of the incoming wavefront. These spatial and

temporal variations of the wavefront distort the image and degrade image quality.

Typically, these seeing effects blur out point sources in long exposures and prevent

one from reaching angular resolution finer than about one arcsecond (1000 mas).

To minimize the effects of atmospheric turbulence, major efforts within the

field aim to develop real-time optical components able to measure and counteract

wavefront errors; these systems are generally referred to as adaptive optics or AO. A

typical system consists of a feedback loop a system for measure real-time wavefront

shape across the telescope pupil at a speed of about a thousand measurements

per second and system between a deformable mirror without about a thousand

actuators. Good adaptive optics systems can remove so much of the atmospheric

turbulence that the resulting image approaches that of the diffraction limit. With

deconvolution algorithms, one is often able to obtain diffraction limited resolution;

although ones chances of seeing a particularly faint companion at these separations

is not particularly high.

A diffraction-limited adaptive optics-corrected infrared image is shown in Fig-

ure 2.10. The image is a typical long exposure H band (1.6µm) image taken by
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Figure 2.10: Contrast and Resolution of Direct AO Imaging is inhibited by speckle
noise, a diffraction effect of wavefront errors, and not photon noise. (Left) Total
of 150 one second exposures of HIP 52942 in H band on April 12, 2009 (Strehl
∼ 20%). The first and second Airy ring can be clearly seen, as well as a diffuse
halo peppered with speckles. A black circle is drawn at 1.22λ/2ra using the AO
actuator spacing for ra. This approximates the extent of the halo. (Right) The
variance of each pixel is calculated as a function of distance from the primary
and averaged azimuthally. The measured variance is compared to the calculated
photon noise for the point spread function. As seen, speckle noise is a factor of
∼30x higher than photon noise. NRM/Aperture masking leads to an increase in
contrast precisely because closure phases are able to calibrate out the effect of these
speckle-producing wavefront errors. This figure is an empirical analog to Racine
et al. (1999), Fig. 2.
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the PHARO infrared imaging instrument (Hayward et al., 2001) on the 200” Hale

Telescope. The complex structure of an adaptively corrected image is immediately

apparent:

1. Diffraction Core: At this level of correction, the bright diffraction core is

evident at the center of the image, surrounded by the first two Airy rings.

The strong presence of the diffraction core allows the extraction of diffrac-

tion limited resolution. The central location of the first two Airy rings are

1.64λ/D and 2.78λ/D, respectively.

2. Halo: A diffuse halo of flux encircles the diffraction core. This light is dis-

placed from the core by the effect of small-scale inhomogeneities of the wave-

front, perturbations which are on scales smaller than the adaptive optics

actuator size and can’t be measured or corrected. The surface intensity (the

flux level) of this halo depends critically on the level of correction. However,

if adaptive optics correction is consistent, deconvolution algorithms can re-

move some of the halo. The faintest object that can be detected within this

halo depends on the success of these measures.

3. AO Control Radius: The finite spacing of the adaptive optics actuators pre-

vents correction of the small-scale wavefront errors which develop the image

far away from the diffraction core. The extent to which the AO system can

impact image quality is about 1.22λ/2ra; this is the approximate extend

of the halo. Beyond this region, the image quality is no different than an

uncorrected image.

4. Speckles: Near the first Airy ring and within the halo, one can observe a fine

granular structure to the flux distribution. These grains are speckles, formed

by large-scale wavefront errors not corrected by the adaptive optics system.
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The last decade of high contrast imaging has shown that speckles set the

ultimate limits for the contrast one can achieve with an imaging system.

The typical metric for measuring the quality of AO correction is the Strehl

ratio, S, the ratio of the peak flux of the corrected point spread function to the

ideal diffraction limited point spread function. Good correction in the infrared for

current systems can achieve Strehl ratios of 10-30%. The percentage of the total

flux contained within the diffraction core is also ∼ S; the percentage of flux within

the halo is ∼ 1− S.

The level of correction is a sensitive function of the observing wavelength and

brightness of the target. Shorter wavelengths experience more wavefront error

and variance on shorter timescales, and are thusly more challenging to correct.

Most importantly, the target must be bright enough to adequately illuminate the

wavefront sensor (in the waveband in it uses to sense). The wavelength and the

quality and timescale of atmospheric seeing set roughly the rate at which the AO

system must run to effectively reduce the effects of turbulence.

The adaptive optics wavefront sensor requires a sufficiently bright ’guide’ star

to provide a reference; this can be the science target itself or a nearby object

(usually less than 1 arcminute). The Palomar AO system achieves diffraction

limited observing in the infrared (Strehl ∼50% in Ks) using guide stars brighter

than V∼10 in typical seeing, with functionality down to V∼12. The celestial

distribution of stars bright enough to drive adaptive optics covers less than about

1% of the total sky area. The brightness limit of adaptive optics system eliminates

the prospect of observing confirmed, isolated brown dwarfs and other visually faint

targets with adaptive optics.
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Figure 2.11 shows the absolute visual magnitude of solar-mass and low mass

stars. Given the technical requirements of natural guide star adaptive optics, we

conclude that companion searches for brown dwarfs aiming to make mass measure-

ments must survey nearby stars of type earlier than about M3. As a rule-of-thumb,

the resolution of brown dwarf companions to M3 dwarfs requires infrared contrasts

of at least 100:1 or higher at separations closer than 300 mas.

One exception which enables the exploration of even lower mass primaries for

companions is the case in which this binary orbits another star which acts as a

natural guide stars, i.e., a hierarchical triple system. This has allowed detailed

study of two nearby brown dwarf-brown dwarf binaries using the triplet primaries

as natural guide stars: GJ 802b (Pravdo et al., 2005; Lloyd et al., 2006; Ireland

et al., 2008) and GJ 569B (Lane et al., 2001; Osorio et al., 2004).

Laser Guide Star Adaptive Optics

Another exception for exploring very low mass stars for companions with high

resolution relies on the continued development of new Laser Guide Star Adaptive

Optics systems (Palomar, Roberts et al. (2008); Keck, Wizinowich (2006)). These

systems use a 589nm sodium laser to excite a patch of the sodium layer in the

upper atmosphere. This excited path acts as the guide star to drive high order

wavefront correction. This system still requires a bright star close to the science

target for low order corrections, but with greatly relaxed constraints (as much as

60 arcminutes without loss of correction, down to visible magnitudes of 17.5).

Laser guide star adaptive optics systems allow diffraction limited imaging of

faint targets, including companion searches using brown dwarfs as primaries. This

greatly alleviates the difficulties of contrast ratios and enables mass measurements
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Absolute Visual Magnitude of Stellar Objects
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Figure 2.11: Absolute visual magnitude as a function of spectral type. Late type
stars and brown dwarfs grow quickly faint in the visible and are too faint to drive
adaptive optics systems. For this reason, companion searches which aim image
with high angular-resolution (e.g. for dynamical mass measurements) must use
primaries earlier (and brighter) than about M3 if natural guide stars are to be
used.
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of systems ensured to contain brown dwarfs.

The LGSAO system on Keck has been a boon for dynamical mass measurements

of brown dwarfs. In fact, all but three of the dynamically measured brown dwarf

masses have come from LGSAO programs (Konopacky et al., 2010; Dupuy et al.,

2010): the two previously mentioned brown dwarf hierarchical systems and one

system detected in transit (Stassun et al., 2006).

2.4.4 Adaptive Optics: Contrast

The faintest companion one can detect (the image contrast) is most basically a

simpler question: How faint can a companion source be before the observer can no

longer distinguish the flux of the companion source from noise sources?

The obtainable contrast one achieves is a function of separation from the

primary. As discussed in the previous section, close to the primary and within

the halo, residual wavefront phase errors uncorrected by the AO system produce

diffraction effects which litter the image with bright speckles. Speckles are not

placed randomly throughout the halo, but are preferentially pinned to the first

and second Airy rings (Bloemhof et al., 2000, 2001; Sivaramakrishnan et al., 2003).

The precise location of the speckles shift on timescales of tens of seconds to tens of

minutes (Figure 2.12). Speckles pinned to the first Airy ring introduced variations

of as much as 10% the peak flux over ten minutes (2-5% on the second Airy ring)

and changed locations irregularly. Because of the slowly varying nature of these

speckles, they are referred to as quasi-static speckles.

As mentioned in the Perspective of this manuscript, the impact of wavefront

errors arising from imperfect optics have been extensively explored in recent years,

48



mostly in the pursuit of high-contrast coronagraph observations (Lafrenière et al.,

2007). Optical components of the telescope located after the wavefront sensor

cannot be corrected by adaptive optics and produce non-common path wavefront

errors. These wavefront errors evolve due to temperature or pressure changes,

mechanical flexures, guiding errors, changing illumination of the primary mirror,

or other phenomena (Marois et al., 2005, 2006).

Quasi-static speckles dominate long exposures within separations of 5-10 arc-

seconds at the Keck and Palomar Hale Telescopes. They evolve too slowly to

effectively average out over even hour long exposures (Hinkley et al., 2007; Macin-

tosh et al., 2005; Metchev et al., 2003). With no mechanism to distinguish speckles

from true companions, longer exposures will not yield any higher contrasts; it is

not the stochastic variation of quasi-static speckles which cause them to hinder

high contrast imaging. Thus, contrast limits are not set by the variation of the

quasi-static speckles over a set of images, but by their mean brightness. Unequiv-

ocally, quasi-static speckles set the ultimate noise floor of high contrast imaging,

generating a slowly varying distribution of flux that can be mistaken for faint com-

panions.

Figure 2.13 shows typical 3-sigma contrast limits one can reach with direct

imaging in H band using the Palomar AO system and PHARO camera. As evident,

high contrast imaging is quite limited at close separations, and significantly less

than what would be required to resolve brown dwarfs in orbit around even the

lowest mass stars (100:1 or better).

Non-Redunant Aperture Masking Interferometry, through its use of closure

phases, enables higher detection contrasts at close separations because closure

phases are not affected by the wavefront errors which produce quasi-static speck-
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AO Direct Image (T= 18.6s)
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AO Direct Image (T= 37.2s)
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AO Direct Image (T= 80.6s)
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AO Direct Image (T= 86.8s)
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AO Direct Image (T=136.4s)
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AO Direct Image (T=285.2s)
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AO Direct Image (T=669.6s)
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AO Direct Image (T=700.6s)
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AO Direct Image (T=762.6s)
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Figure 2.12: Close-up of the diffraction core and first and second Airy rings of 6
second exposures of HIP 52942, taken with the Palomar AO system and PHARO
instrument. The field of view is 300 mas in radius, roughly that necessary to resolve
binaries with periods short enough to measure brown dwarf masses. Contours are
peak intensity divided by 1.05, 1.18, 1.33, 2., 2.5, 3.33, 5., 10., 20., and 50. Each row
contains three images taken roughly ten seconds apart. The middle and bottom
rows have sets of images taken 1 and 10 minutes after the first row, respectively.
The tendency of speckles to pin to the Airy rings is readily apparent, as well as
a three-fold and four-fold symmetry of the speckle locations on the first Airy ring
which evolves on minute timescales. (Between, for instance, the first and second
image of the first row.) These produce flux variations as much as 10% of the peak
(seventh contour). Variations on the second Airy ring of as much as 2-5% are also
observed. These quasi-static speckles limit the image contrast.
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Figure 2.13: Primary-Secondary Contrast Ratio Detectable with Direct AO Imag-
ing. The fundamental challenge of high contrast direct imaging at high angular
resolution is to distinguish quasi-static speckles from true companions. Because
quasi-static speckles vary too slowly to average out, it is their mean brightness that
sets the companion detection limit. These speckles can be up to 10% peak bright-
ness at the location of the first Airy ring. Above is the detection contrast limit
imposed by quasi-static speckles for 10 minutes of direct imaging of HIP 52942 in
H band. NRM achieves higher contrasts not by distinguishing companions from
speckles, but by generating an observable that is not affected by the wavefront
errors which produce the speckles (i.e, closure phases)
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Figure 2.14: Comparison of imaging techniques in infrared H Band (Strehl ∼
20%) at Palomar Hale 200” Telescope. Aperture Masking (red) routinely achieves
∆H∼5.5 magnitudes (150:1) at the diffraction limit, much better than direct imag-
ing alone (black). Coronagraphy (blue), although capable of providing very high
contrast is obscured at close separations by its Lyot stop. High contrast at close
separations is crucial for the detection of brown dwarfs for dynamical mass mea-
surements. An M-Brown dwarf binary (Contrast ∼ 4.0-5.0 magnitudes, 80-100:1)
cannot be detected by direct imaging at a separation closer than about 3 λ/D; the
system would have a period of at least 9 years. Aperture Masking can detect these
binaries over a more expansive range, and with much shorter periods. Companions
detected by coronagraphy are rarely able to provide dynamical masses.
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les. NRM when combined with AO does not remove quasi-static speckles, per se.

Instead, NRM closure phases are a dataset that are invariant to many pupil-plane

phase errors. In effect, closure phases can mitigate the quasi-static problem in a

single image.

Aperture masking with adaptive optics is well-established for resolving stellar

companions at and within the formal diffraction limit (down to 0.5λ/D) and at

high contrasts (200:1 at λ/D)(Tuthill et al., 2000; Lloyd et al., 2006; Ireland et al.,

2008; Martinache et al., 2007). This range of high-resolution and high-contrast

make aperture ideal for close companion searches and dynamical mass measure-

ments (Figure 2.14). Companions detected with aperture masking also have a

similarly higher precision photometry and astrometry, providing much higher pre-

cision dynamical masses up to an order of magnitude higher.

The use of NRM with adaptive optics enables the detection of brown dwarf

companions to K and M dwarfs for Strehls of 30% for typical field stars (i.e., ages

of a few billion years). This level of adaptive optics correction is routinely achieved

by most natural guide star adaptive optics systems.

When combined with laser guide star adaptive optics system (e.g., Keck, Wiz-

inowich (2006)) at similar performance levels, NRM offers a method for measuring

brown dwarf masses to much higher precision (less than 10%) than those currently

available in the literature. If NRM with LGSAO is able to reach 200:1 contrasts

using brown dwarf primaries, the technique may potentially be able to resolve

companions through the entire mass range of brown dwarfs. This could provide

much needed mass measurements of cool brown dwarfs and even young, massive

exoplanets.
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The development of a laser guide star adaptive optics program at Palomar

(Roberts et al., 2008) motivated my high-angular resolution companion search to

nearby brown dwarfs using NRM: Bernat et al. (2010), c.f. Chapter 5: A Close

Companion Search Around L Dwarfs Using Aperture Masking Interferometry and

Palomar Laser Guide Star Adaptive Optics.
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CHAPTER 3

NON-REDUNDANT APERTURE MASKING INTERFEROMETRY

WITH ADAPTIVE OPTICS

A substantial literature exists to detail the long heritage of seeing-limited aper-

ture masking (?Baldwin et al., 1986; Haniff et al., 1987; Roddier, 1986; Readhead

et al., 1988; Cornwell, 1989; Tuthill et al., 2000), which itself draws on speckle

interferometry (?). Noll (1976) showed that 87% of the spectral power of atmo-

spheric (Kolmogorov) turbulence produces tip and tilt wavefront errors which only

serve to move the image around the detector but not degrade its structure. Over

long exposures (i.e., over several iterations of the atmosphere, roughly tens of mil-

liseconds in the infrared), this movement smears the image, producing the blurry

seeing-limited point spread function. Exposures short enough that the atmosphere

can be treated as static offer an opportunity to retrieve images which are essentially

unaffected by 7/8th of the atmospheric wavefront errors.

Positioning a non-redundant aperture mask in the pupil plane of the telescope

or instrument transforms the full aperture into a sparsely populated set of sub-

apertures (Figure 3.1). Provided the telescope instrument gives access to the pupil

plane, such as the location of the Lyot stop within a coronagraph, then this is

a convenient location to place the mask. Alternatively, the mask can be placed

directly on the primary or secondary mirrors (e.g., Tuthill et al. (2000)). The

resulting image produced is a set of over-lapping fringes called the interferogram.

The amplitude and phase of each fringe corresponds to the measurement of one

particular component of the target complex visibility, i.e., the Fourier Transform

of the target brightness distribution. Multiplying the complex visibility of specific

baseline triplets creates bispectra (Lohmann et al., 1983), the argument of which
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is the closure phase (Jennison, 1958; Cornwell, 1989). Closure phases are robust

against many forms of pupil-plane phase errors, and enables diffraction-limited

imaging in seeing-limited conditions, provided that exposures are short. Closure

phase errors arise only from atmospheric phase errors on scales smaller than a sub-

aperture. In other words, closure phases rejects even more of the total spectral

power of atmospheric turbulence. In its relation to direct imaging, closure phases

are robust against precisely the wavefront phase errors that produce speckles close

to the core, resulting in much improved image contrast close to the core. Provided

that imaging is speckle or wavefront phase limited (Readhead et al., 1988; Racine

et al., 1999), aperture masking provides higher fidelity imaging than direct imaging

despite blocking a large percentage of the flux.

Adaptive optics systems, by design, aim to sharply reduce the spatial and

temporal variation of the wavefront. Current systems on 5-10 meter class telescopes

for infrared imaging provide stable and partially coherent wavefronts across the

entire sub-aperture. As discussed in the Chapter 1, current adaptive optics systems

can obtain near diffraction-limited resolution, but image contrast close to the core

(within a few λ/D) is hindered by quasi-static speckles arising from slowly varying

instrumental phase errors. When combined with AO, NRM provides increased

contrast at close separations (0.5-4.0λ/D) by reducing the impact of AO residual

phase errors (which produce the halo) and ultimately reaches deeper contrasts

(102-103:1) by mitigating the instrumental phase errors that produce quasi-static

speckles (Lloyd et al., 2006; Kraus et al., 2008; Hinkley et al., 2010).

This Chapter and Chapter 5 aim to provide a technical underpinning for NRM

with AO and to contribute to the growing body of investigation into limitations of

the technique and its improvement. Reviews of seeing-limited NRM are available
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elsewhere (e.g., Monnier (2000, 2003)) and this work does not wish to retrace their

steps. Instead, this chapter revisits the basic premise of NRM to distinguish the

seeing-limited and adaptive optics context. This chapter also discusses how one

uses closure phases to resolve companions. To find a more detailed discussion of

direct imaging, atmospheric turbulence, and adaptive optics the reader is invited

to view the Appendix.

3.1 Non-Redundant Aperture Masking Interferometry

Two Sub-Aperture Mask: Imaging with an Interferometric Baseline

A simple mask that blocks the entire pupil except for two circular sub-apertures

of size dsub separated by a distance, ~b is shown in Figure 3.2. Such an aperture is

familiarly recognized as an interferometer, akin to the Young’s double slit experi-

ment. In the absence of wavefront errors, such a mask produces a intensity pattern

on the detector that is a sinusoidal fringe with maximum-minimum spacing of λ/|~b|

oriented in the direction of the hole separation, under an Airy pattern envelope of

characteristic size λ/dsub. The point spread function is:

M(~x) = Π[~x/dsub] ? [δ(~x−~b/2) + δ(~x+~b/2)] (3.1)

τ(~θ) = Airy[π~θ · dsub] cos2[2π~θ ·~b/λ] (3.2)

T (~f) = AΠ[~x/dsub] ? [δ(~x− b) + 2δ(~x) + δ(~x+ b)] (3.3)

Here, AΠ is the autocorrelation of a single sub-aperture: AΠ[~f ] =
∫

Π[~r]Π∗[~r +

~f ]d~r. (See the Appendix, including Equation A.4 for a review.)

The mask, point spread function, and two-dimensional power spectrum are

shown in Figure 3.2. The spot in the center of the power spectrum is the DC
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Palomar 9-Hole Mask
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Figure 3.1: The sparse, non-redundant aperture mask used for observations at
the Hale 200” Telescope at Palomar Observatory. Each pair of sub-apertures acts
as an interferometer of a unique baseline length and orientation. Overdrawn is
one such baseline. The 9-hole mask produces thirty-six baselines total; the point
spread function of the mask is a set of thirty-six overlapping fringes underneath a
large Airy envelope.
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Fourier component, proportional to the square of the total flux in the image. We

refer to the spots to the left or right of center as splodges; they show that the single

baseline interferometer allows the transmission and measurement of two islands of

spatial frequencies, centered at ~u = ±~b/λ. Because the source is a real valued

function, the power spectrum is point symmetric and these two splodges contain

the same information. Generally, we concern ourselves with the spatial frequency

at the center of each splodge only, and only these must be non-redundant.

The van Cittert-Zernike theorem connects this measurement to a single Fourier

component of the source brightness distribution, i.e., the complex visibility. More

generally, the phase and amplitude of the fringe produced by an interferometer of

baseline ~b are equal to the amplitude and phase of complex visibility at spatial

frequency ~u = ~b/λ. In this way, imaging through an interferometry or aperture

mask probes specific spatial frequencies of the image brightness.

Pupil-Plane Wavefront Phase Errors Produce Visibility Phase Errors

Consider an observation through a perturbed but static two-dimensional phase

screen, φ(~x). By design, the phase variance across each sub-aperture is generally

small enough so that the sub-aperture wavefront can be considered partially co-

herent. The baseline extends up to the full diameter of the telescope and so the

difference between the mean phase of each of the two sub-apertures may be quite

large.

Pupil-plane phase errors cause the fringes to shift laterally in the image. A

lateral shift, in turn, means that the phase of the fringe as measured relative

to some reference point has shifted. The phase shift of the fringe matches the

difference between the mean phases of each of the sub-apertures (Figure 3.3). This
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Figure 3.2: An example of a two and three hole aperture mask. For each, the
mask, point spread function, and power spectrum are shown. (Left Middle) The

pair of sub-apertures interfere to produce a fringe with spacing (λ/~b1) underneath
an Airy envelope of characteristic size λ/dsub. Notice the fringes are oriented in the
direction of the baseline. (Left Bottom) The power spectrum shows that such a

mask allows the transmission of only two spatial frequencies (±~b1/λ) which contain
the same information; such a mask allows one to measure this Fourier component
of the source brightness distribution. (Right Top) A three hole aperture mask.
(Right Middle) Each pair of sub-apertures interfere to produce a fringe, three in
total. This is reflected in the power spectrum, which shows the transmission of six
frequencies (three unique). Additionally, closure phases can be used for a mask
with three or more baselines to significantly reduce the effect of wavefront errors
(see text).
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also follows if directly apply Fourier Optics to calculate the complex visibility after

the wavefront has propagated through a phase screen (See Equation A.10). The

measured complex visibility after propagation through the phase screen, V’(~b),

given the true complex visibility of the source, V(~b), is:

V ′(~b) = V (~b)

∫
sub−

aperture 1

d~x ei[φ(~x+~b)−φ(~x)]. (3.4)

The integral is carried out in the two-dimensional pupil plane. Taylor expanding

the exponential in this equation yields:

V ′(~b) = V (~b)

∫
d~x

[
1 + i[φ(~x+~b)− φ(~x)]− 1

2
[φ(~x+~b)− φ(~x)]2 +O(iφ3)

]
.

(3.5)

where all integrals are assumed to be over sub-aperture one. The first order terms

shift the phase of the complex visibility; performing the integral simply averages

the phases above each of the sub-apertures. The measured visibility phase, Φ′~b is:

Φ′~b = Φ~b + φ2 − φ1 to first order in φ, (3.6)

where that φ1 and φ2 are the average wavefront phase error above sub-apertures 1

and 2, respectively.

The second order terms reduce the visibility amplitude by a factor which de-

pends on the variance of the phase difference between all points separated by a

baseline length, ~b: σ2
φ =< [φ(~x +~b) − φ(~x)]2 >. This is an interferometric analog

to the Strehl ratio and the Marechal approximation (Born & Wolf, 1993), and a

more detailed calculation reveals:

|Ṽ (~b)| ∼ e−σ
2
φ/2 ∼ 1− 1

2
σ2
φ. (3.7)

For the seeing-limited case, the wavefront phase errors arise from Kolmogorov

turbulence. The quantity φ(~x+~b)−φ(~x) is a Gaussian random variable with mean
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zero and variance of Dφ(|b|) = 6.88(b/r0)5/3. In particular, note that for baselines

longer than b & r0 the phase of V (~b) now contains a noise term with a variance

much larger than 2π radians. These baselines correspond to the high-angular

resolution content of the complex visibility.

One is unable to extract complex phase for such baselines. Consider the sig-

nal to noise one obtains from successive averaging of many measurements of the

complex visibility quantity exp(Φ′~b) = exp(Φ~b) exp(iφ1 − iφ2). This expression

is the averaging of a phasor exp(ix) where x is mean zero Gaussian distributed

with some large variance (σ & π radians). Successive averaging of phasors with

large variances never decreases measurement error and does not allow extraction

of any useful information of the underlying signal (Figure 3.4). In other words,

phase information is lost for all baselines longer than r0 in the seeing-limited case.

This highlights the need for more sophisticated methods of extracting the visibility

phase for long baselines. The reward for this diligence is higher resolution imaging.

Adaptive optics systems provide a mechanism for maintaining coherence across

the full aperture, so that the variance Dφ(|b|) asymptotes for long baselines.

Diffraction-limited correction corresponds, roughly, to maintaining this asymptotic

value below π radians. (See Section A.3.)

For both the seeing-limited and adaptive optics cases, using visibility ampli-

tudes requires calibration against changes in wavefront phase variance. Note the

difference between amplitude and phase. An increase in phase variance is reflected

in larger measurement error of visibility phase but changes the measurement mean

of visibility amplitude. Discerning this drop in visibility amplitude to either the

intrinsic brightness distribution or the wavefront variance requires an observation

of a known target under the same wavefront conditions. The level of seeing and
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AO correction fluctuates on timescales of minutes, making precise calibration of

amplitudes a challenge.

Turbulence Shifts Phase
l/b

Object

Mask

Image
Profile

Phase Encodes Position Companions Shift Phase

Figure 3.3: Factors which alter the baseline phase. (Left) Wavefront errors atop
a sub-aperture will shift the baseline phase. The shift in the baseline phase will
equal the wavefront phase error. This is the primary way in which turbulence
and optical errors impact baseline (and closure) phase measurements. (Middle)
The location of the target is encoded in the baseline phase. Determination of the
position of a target on the sky has been transformed into a challenge to accurately
measuring the baseline phase. (Right) Each object in a binary system produces a
sinusoidal intensity pattern on the detector which add (in intensities) to produce
a composite sinusoidal pattern with a different amplitude and phase; the resulting
amplitude and phase will depend on the binary characteristics. The resolution of a
companion has been transformed into a challenge to accurately measuring phase.
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Averaging Does Not Decrease Large Phase Errors
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Figure 3.4: Monte Carlo simulation showing that all signal is virtually unrecov-
erable if phase noise is larger than about 150 degrees. Successive averaging of
a Gaussian variable usually reduces its measurement error by N−1/2; this is not
the case for successive averaging of phasors when phase variance is large. Each
data point shows the measurement uncertainty of the phase of

∑
N exp(ix), if x

is a mean-zero Gaussian variable with standard deviations ranging from 3 to 180
degrees. If the phase error of x is small, successive averaging leads to an N−1/2

improvement of error after N measurements. As the phase error approaches about
150 degrees, averaging is unable to recover that the mean phase is zero after any
number of measurements by this approach.
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Three Sub-Apertures: Extracting Closure Phases

Consider the addition of a third sub-aperture in the aperture mask of Figure 3.2.

Each pair of sub-aperture interferes, producing a set of three overlapping fringes

underneath an Airy envelope. By design, the three baselines have been chosen to

be unique vectors, so that each fringe is produced uniquely by the interference of

a pair of sub-apertures; this is the constraint of non-redundancy. This allows the

straightforward application of closure phases, and the extraction of higher fidelity

phase information from the image.

One can imagine a cell of turbulence resting above the sub-aperture ’a’ in Figure

3.2. Such a cell introduces a phase delay into the wavefront which passes through

that sub-aperture, and introduces a shift in the fringe formed by baseline ~b1. The

same cell introduces an equal but opposite shift in the fringe formed by baseline

~b3, opposite because of the orientation of the baseline vectors. The sum of the the

two baseline phases is invariant to the wavefront phase errors (to first order). The

closure phase is a generalization of this same idea, constructed by summing the

fringe phase of three baselines which form a triangle (Baldwin et al., 1986; Haniff

et al., 1987; Readhead et al., 1988; Cornwell, 1989). The closure phase is invariant

to mean phase errors atop each sub-apertures:

Φ′~b1 = Φ~b1 + φ1 − φ2

Φ′~b2 = Φ~b2 + φ2 − φ3

Φ′~b3 = Φ~b3 + φ3 − φ1

Φ′~b1 + Φ′~b2 + Φ′~b3 = Φ~b1 + Φ~b2 + Φ~b3 to first order in φ. (3.8)

Another method for arriving at the closure phase is through the construction

of the bispectrum or triple product (Weigelt, 1977), which is the product of three
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complex visibilities:

B̂123 = V̂ (~b1)V̂ (~b2)V̂ (~b3) = |V~b1 ||V~b2||V~b3|e
i(Φ~b1

+Φ~b2
+Φ~b3

)
(3.9)

The argument of the bispectrum is the closure phase (Roddier, 1986).

Regardless of the size of the sub-aperture, closure phases remove the first order

term of wavefront noise; the error in closure phases is third order in wavefront

error. This calculation is conducted in more depth and recast by decomposing the

sub-aperture wavefronts into Zernike modes in Section 5.10. Its conclusion is that

mean wavefront phase differences between sub-apertures have no impact on closure

phases. Instead, only wavefront variation within a sub-aperture leads to closure

phase errors. This is the key utility of closure phases. Last section discussed

that phase variations grow for longer separations, and the phase variation across

a baseline will always be larger than the phase variation within a sub-aperture.

In the seeing-limited case, closure phases allow extraction of phase information.

The variance of closure phases (the argument of the bispectrum) is much smaller

than the variance of visibility phases, and so successive measurement of the bis-

pectrum allows meaningful extraction of the closure phase (c.f. Figure 3.4). With

adaptive optics, closure phases still rejects a substantial portion of phase errors,

and will be more precisely measured.

Closure phases have important consequences for calibration and quasi-static

wavefront phase errors. The direct imaging point spread function changes shape

significantly as seeing or adaptive optics performance changes and quasi-static

speckle locations are sensitive to quasi-static wavefront errors across the entire

pupil. By comparison, the transfer function for the closure phase does not depend

on seeing or adaptive optics performance (except in the sense that they introduce

phase errors), and so it is not necessary to calibration closure phases to seeing
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effects (Weigelt, 1977). Closure phases also only lead to miscalibration if the

quasi-static wavefront within each sub-aperture changes. The magnitude of quasi-

static changes on sub-aperture scales is smaller and slower, and so closure phases

are more robust to quasi-static errors as well.

Hence, closure phases are a powerful method for obtaining higher precision mea-

surements of the Fourier content of the source brightness, particularly for the long

baselines which are most important for high angular resolution. As an example,

Figure 3.5, shows that the variation of closure phases from exposure to exposure

is often an order of magnitude lower than the variance of each individual baseline

phase, even when adaptive optics are providing diffraction-limited correction.

An array of N sub-apertures contains N(N-1)/2 possible baselines. If the base-

lines are non-redundant, each probes the complex visibility at a different spatial

frequency. Closure triangles can be constructed from any three sub-apertures, i.e.,

by drawing the triangle which connects them, of which there are N(N-1)(N-2)/3!

possible triangles. However, the set of triangles is not linearly independent. (This

must be so. Because the closure phases are derived from baseline phases, one

cannot arrive at more independent information after constructing closure phases.)

There are (N-1)(N-2)/2 linearly independent closure phases (or bispectrum) (Read-

head et al., 1988).

Because there are fewer closure phases than baselines, it is not possible to

reverse this procedure. One cannot uniquely determine the baseline phases from

the closure phases. The closure phase information cannot be uniquely inverted

to an image (by conversion to baseline phases and inverse Fourier transform).

Further assumptions are necessary, for instance, that the image is positive valued

and of finite extent. (See, for example, the CLEAN algorithm (Högbom, 1974)
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Figure 3.5: Closure phases increases the precision with which long-baseline Fourier
content can be measured. The x-axis is the set of eighty-four closure phases that
can be extracted from a single image of the Palomar 9-hole mask. Each closure
phase is constructed from sets of three baselines. Here we compare the variation
of these baseline phases to the variation of the closure phase. Plotted in black are
the closure phases obtained from twenty aperture masking images; for each closure
phase, the individual baseline phases are overplotted (red, blue, green). As can be
seen, the the closure phases (black) vary by about ∼ 3.3 degrees across the twenty
separated exposures. Compare this to the individual baseline phases (red, blue,
green), which vary by 30-35 degrees. This is a tenfold increase in fidelity by using
closure phases.
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and the Maximum Entropy Method (Gull & Skilling, 1984)). Alternatively, by

parameterizing the image structure - such as describing a binary target only by

separation, orientation, and contrast - one can make tractable inferences of the

source distribution without producing an image.

Baseline and Sub-Aperture Redundancy

A critical requirement of the non-redundant aperture masking design is that each

pair of sub-aperture creates a unique interferometric baseline (Haniff et al., 1987;

Roddier, 1986). Readhead et al. (1988) provides an extensive treatment of the

impact of redundant baselines for seeing-limited aperture masking. When two or

more baselines contribute to the same spatial frequency, the power adds partially

incoherently depending on the phase difference of each contributing baselines. A

random phase component will be introduced into the resulting spatial frequency

phase which cannot be removed by closure phases; this component is termed re-

dundancy noise. In completely analogous fashion, temporal variations of the non-

redundant baseline phase during a single exposure create temporal redundancy

which also give rise to closure phases errors.

The mask cannot be entirely non-redundant. The finite sub-aperture size means

that baselines are redundant at least within a sub-aperture. The terminology of

Readhead et al. (1988) defines redundant baselines slightly more critically, referring

specifically to any two pairs sub-apertures (i.e., any two baselines) which differ in

phase by more than one radian r.m.s., in other words, any two baselines which are

totally incoherent. Given the properties of Kolmogorov turbulence, atmospheric

phase screens decorrelate on length scales larger than the Fried parameter and

timescales longer than the atmospheric coherence time. With uncorrected ob-
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serving, forbidding incoherent baseline redundancy restricts sub-aperture sizes to

smaller than the Fried parameter and exposure times shorter than the atmospheric

coherence time.

Adaptive optics removes both constraints since good correction supplies a sta-

ble, mostly coherent wavefront across the full aperture. Since each baseline is

redundant within the sub-aperture, closure phase errors still arise due to the re-

maining spatial incoherence within the sub-aperture. This lends itself to a defi-

nition of redundant baselines which includes any partially coherent baselines, not

just those which are fully incoherent. In short, with sub-aperture scale correc-

tion provided by the AO system, sub-aperture redundancy noise is largely, but

not entirely, removed (Tuthill et al., 2006). The interplay between quasi-static

wavefront errors and sub-aperture redundancy almost certainly sets the ultimate

limits one can achieve with current NRM experiments. In particular, a study of

sub-aperture redundancy noise necessitates a mathematical treatment more exact

than the useful models of Readhead et al. (1988). Such models are provided, as well

as a detailed treatment of sub-aperture redundancy noise for NRM with adaptive

optics in Section 5.10 of Chapter 5.

3.2 Observing Binaries with an Aperture Mask

3.2.1 Closure Phase Signal

Aperture masking observations sample Fourier components of the source bright-

ness. Closure phases are constructed because they permit higher fidelity measure-

ments of this Fourier information. While various techniques exist to revert closure
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phases back into an image, it is advantageous to use the inherent structure of the

binary to build a parameterized model that can be fit directly to the closure phase

data.

Consider two different source distributions: a single, unresolved star and a re-

solvable binary of two unresolved stars. The binary can be described by three

parameters: separation, |~ρ| (typically measured in milli-arcseconds); position an-

gle, θ, the azimuthal angle measured from celestial north; and contrast ratio, r(λ),

the wavelength dependent ratio of secondary brightness to primary brightness with

r < 1. We may also include the (off-axis) position of the target on the sky, ~α, mea-

sured in the same angular units as the binary separation. Closure phase (and

visibility amplitude) are invariant to absolute target position, but baseline phases

are not. Given the known brightness distribution of each source, we can calculate

the complex visibility directly:

Isingle(~r) = δ(~r − ~α)

Ṽsingle(~b) = eπi
~b·~α/λ

|Ṽsingle| = 1.0

φv = π~b · ~α/λ

Ibinary(~r) = δ(~r + ~ρ/2− ~α) + r δ(~r − ~ρ/2− ~α)

Ṽbinary(~b) = eπi
~b·~α/λ e

πi~b·~ρ/λ + r e−πi
~b·~ρ/λ

1 + r

|Ṽbinary| =
1 + r2 + 2r cos(2π~b · ~ρ/λ)

1 + r

φv = π~b · ~α/λ+ arctan

[
r sin(2π~b · ~ρ/λ)

1 + r cos(2π~b · ~ρ/λ)

]

Closure phases are constructed using baseline triplets which form closed trian-

gles. This constrains the three baselines such that ~b1 +~b2 +~b3 = 0. Equivalently,

each closure triangle can be specified by two baselines, with ~b3 = −~b1 −~b2. Using

this constraint, we can derive an analytic expression for the closure phases of single
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and binary systems:

Φ(~b1,~b2) = φv(~b1) + φv(~b2) + φv(−~b1 −~b2)

Φsingle(~b1,~b2) = 0

Φbinary(~b1,~b2) = arctan

[
r sin(2π~b1 · ~ρ/λ)

1 + r cos(2π~b1 · ~ρ/λ)

]
+ arctan

[
r sin(2π~b2 · ~ρ/λ)

1 + r cos(2π~b2 · ~ρ/λ)

]

− arctan

[
r sin(2π(~b1 +~b2) · ~ρ/λ)

1 + r cos(2π(~b1 +~b2) · ~ρ/λ)

]
(3.10)

From Equation 3.10 it is clear that by measuring the deviations of the closure

phases from zero one can infer the presence of a companion. Thus, instead of in-

verting the closure phases to form an image, we can similarly complete a parameter

search to find the modeled binary that best fits the measured closure phases. This

approach of forward-modeling can be extended for any target whose brightness

distribution can be modeled by a small number of parameters (e.g., imaging of

debris disks or multiple systems).

By the dot product in Equation 3.10, ~b · ~ρ, we see that baselines are insensitive

to binaries oriented perpendicular to the baseline. For this reason, aperture masks

must be constructed to sample many spatial frequencies spanning all orientations

and a wide range of separations.

Figure 3.6 illustrates the phases one would measure as a function of baseline

for the detection of a 2:1 contrast binary separated by 150 mas using the Palomar

9-hole aperture mask. The middle rows show the target phase as a function of

baseline, overplotted by the thirty-six spatial frequencies sampled by the Palomar

mask. The uniform coverage of the Palomar mask at a full range of orientations and

separations ensures sensitivity to companions at all separations and orientations.

The bottom row shows the baseline-phase relation collapsed to one dimension. The

companion induces a phase offset of up to 30 degrees; with typical measurement
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Figure 3.6: Illustration of the phases as a function of baseline induced by a 2:1
contrast binary separated by 150 mas using the Palomar 9-hole aperture mask.
The phase signal of an unresolved single star is shown for comparison. (Middle)
Showing the target phase as a function of baseline, overplotted by the thirty-six
spatial frequencies sampled by the Palomar mask. The uniform spatial frequency
(or uv-coverage) coverage of the Palomar mask ensures sensitivity to companions
at all separations and orientations. (Bottom) Showing the baseline-phase relation
collapsed to one dimension. The companion induces a phase offset of up to 30
degrees for many baselines; with typical measurement precisions of a few degrees
per closure phase, this companion is readily detected at very high confidence.
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precisions of a few degrees per closure phase, this companion is readily detected at

very high confidence.

3.2.2 Robust Measurement of Binary Parameters and

Confidence Intervals

Unlike the detection of a companion by traditional direct imaging, in which the

companion can be resolved by visual inspection of the image, the detection of a faint

or close companion by aperture masking rests purely on achieving a statistically

significant fit of a model to data. In many of the most interesting cases, this

detection cannot be corroborated by other methods.

In this chapter we present the basic method for calibrating and fitting clo-

sure phase data, which motivates the creation of a new Monte Carlo method for

determining the strength of these fits.

For concreteness, we will consider data obtained with the Palomar 9-hole mask,

although the method can easily be generalized. As described previously, each im-

age produced by the Palomar 9-hole mask consists of thirty-six overlapping fringes

which, when Fourier transformed yields the amplitude and phase of each trans-

mitted spatial frequency. The amplitudes are usually discarded because they are

highly variable due to seeing variations between target and calibrator observations.

Eighty-four closure phases (or bispectrum) can be constructed from each image,

which are then averaged over the set of images and standard deviations are cal-

culated. Finally, these averaged are compared to model closure phases of various

binary configurations to determine the likelihood that the target is binary.
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Determination of Best Fit

Each closure phase measured from each image is the composite of three sources:

the intrinsic signal of the target, which is zero for a single star and non-zero for a

binary; a non-stochastic systematic error component, which may vary from target

to target (e.g. quasi-static wavefront errors ,flexure of the primary mirror after

slewing, etc.), but not during the observation of a single target; and stochastic

noise from various sources such as time-varying wavefront errors, read noise, etc.

We denote the intrinsic signal by Φbinary, the systematic component by βsystem(t),

and the stochastic noise by ξnoise(t,i). The closure phase, k, extracted from a single

image, i, during a single set of images, t, Φ̂k,t,i, is:

Φ̂k,t,i = Φk,binary + βk,system(t) + ξk,noise(i,t). (3.11)

Averaging over the set of images yields

µΦk,t = Φk,binary + βk,system(t), (3.12)

σ2
Φk,t

= < ξ2
k,noise(i) > . (3.13)

In other words, the systematic contribute introduces an offset from the true value,

and the stochastic noise describes the measurement variance. The systematic com-

ponent βk,system(t) may change from one acquisition to another but is assumed

constant during the observation of a single target.

Typically, one uses the measurement of calibrator (single) stars, with zero in-

trinsic signal (i.e., Φk,binary = 0), to estimate the underlying distribution of sys-

tematic noise. The typical observing mode is to obtain several observations of the

science target, interspersed with observations of calibrator stars. Although the

systematic component cannot be determined exactly because it is itself a random
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variable, we can compile a composite distribution of βk,system from the several sets

of calibrator observations:

µβk,system = < βk,system(c) > (3.14)

σ2
βk,system

= < β2
k,system(c) > −µ2

βk,system
(3.15)

Here the averages are over the sets of calibrator observations; σ2
βk,system

reflects

the variation of the systematic effects as the telescope is moved from one star to

another, etc. For instance, the evolution of quasi-static wavefront errors will cause

the systematic component to vary from one calibrator to the next.

Subtracting the systematic component from the measured closure phases leaves

remaining the intrinsic signal of the target, Φk,binary:

Φk,binary = µΦk,t − µβk,system (3.16)

σ2
Φk,t

= < ξ2
k,noise(i) > +σ2

βk,system
(3.17)

In short, the calibrator closure phases are subtracted from the science target closure

phases, and their errors are added in quadrature. This calibration step is important

for obtaining high contrasts during high signal to noise observations, when the

contribution from systematic noise is on the order of the stochastic noise.

We wish find the three-parameter model binary (separation ρ, orientation θ,

and contrast ratio r) which best fits the calibrated signal, Φk,binary. This is most

readily approached as a χ2 minimization problem by finding the set of noiseless,

modeled binary closure phases Φm(ρ, θ, r) which minimize the quantity:

χ2 =
∑
k

(Φk,binary − Φk,m(ρ, θ, r))2

σ2
Φk,t

(3.18)

There are many alternatives to this approach. For instance, one could use boot-

strapping methods to calculate measurement errors (or measurement likelihood
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curves) that don’t assume Gaussianity. There could easily be incorporated into a

Monte Carlo algorithm to determine the distribution of best fits. For simplicity,

we will consider the problem as a χ2 minimization problem.

The best-fitting model is that which minimizes the χ2, which we determine by

a combination of gradient search and visual inspection. The parameter errors are

calculated from the curvature of the χ2 surface at the minimum. Calculating the

confidence of this fit, i.e. that this model represents the true target configuration,

is detailed in the next subsection.

Experience has shown that the reduced-χ2 of best fits to even benchmark (i.e.,

known) binaries are typically larger than unity by a factor of one to a few. We take

this as an indication of an unknown systematic error that is not properly accounted

for by our estimate of the systematic component from calibrator measurements, nor

the measurement scatter across the set of images. In these cases, it is typical for us

to artificially scale the closure phase until the reduced χ2 of the best fitting binary

is unity. Further development of the closure phase extraction pipeline may also

indicate a bias towards underestimated errors, but this has not yet been explored.

Binary Detection Confidence

Our null hypothesis, which we wish to test against the binary fit, is that the ob-

served target is a single star, with intrinsic binary phase zero. Following Equation

3.18, the probability of the null model is

χ2
null =

∑
k

Φk,m(ρ, θ, r)2

σ2
Φk,t

. (3.19)

A natural goodness-of-test statistic is to compare the ratio of the data and null

χ2. This is particularly useful for our aperture masking data because its value will
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not change if errors are scaled (see previous section). This ratio is similar to an

’F-statistic,’ which is the ratio of two reduced χ2 variables and we adopt the same

name:

F = χ2/χ2
null (3.20)

The F statistic ranges from 0 to 1; a low F value signifies a strong fit.

Systematic and stochastic noise may at times conspire to mimic a binary signal,

as expressed by a well fitting a binary model, even though the target is a single

star. This is a false alarm event. We, therefore, classify the target fit as statistically

significant only if its F-value small compared to a distribution of F-values obtained

by fitting single stars.

To obtain this probability of false alarm we simulate ten thousand measure-

ments of single stars with identical (u,v)-coverage and noise properties of the can-

didate binary target data. The intrinsic phase of a single star, Φbinary, is zero. For

one measurement, the contribution due to statistical noise is drawn from the mea-

sured distribution of ξk,noise, which typically can be approximated by a Gaussian

distribution with mean zero and its measured standard deviation (σ2
Φk,t

). The sys-

tematic contribution, if included, is drawn from a distribution βk,system, compiled

from observations of calibrator (single) stars. An alternative to this method is to

employ bootstrapping for generating simulated datasets using the original data.

Without justification to assume noises are Gaussian, bootstrapping is less biased,

and will automatically preserve all correlations between the data (which are known

to be large for closure phase data).

We then fit the simulated single star data with a three-parameter binary model,

record its ∆χ2 or F statistic, and build a distribution of these variables. The

probability of false alarm, then, is the probability that the goodness-of-fit of a
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single star is higher than the target data’s goodness-of-fit. The percentage of

single star fits which yield a better fit than the data yields the probability of false

alarm, that claim our data reveals a phantom binary:

pfalse alarm(Φm) = p(Fbest fit to data > Ffits to single stars ) (3.21)

and

detection confidence = 1− pfalse alarm. (3.22)

We consider the target data to reveal a definitive 3-sigma binary detection if the

best-fitting model produces a detection confidence greater than 99.7% (false alarm

probability less than 0.3%). Note that this empirical method is more conservative

than comparing the measured ∆χ2 statistic to an analytical distribution with three

degrees of freedom (Fig. 3.7).

3.2.3 Calculation of Contrast Limits

Whether or not the target is identified as a single star or binary, we are also able to

quantitatively state the highest contrast (dimmest) companion that our technique

would have been capable of identifying with high confidence (99.7%) as a function

of separation. This is, in essence, a statement on the noise characteristics of the

data and the uv-coverage of our mask.

This amounts to asking the following question: Given simulated binary obser-

vations (separation ρ, orientation θ, and contrast ratio r), at what contrast does

our detection confidence drop below 99.7% (or false alarm probability rise above

0.3%)?
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Figure 3.7: Determination of fit confidence with Monte Carlo is more conservative.
Data is drawn from NRM observations of L-dwarf binary 2M 0036+1806 (Bernat
et al., 2010). The goodness-of-fit statistic here is ∆χ2=6.55 and is compared to a
distribution generated from fits to simulated single stars, resulting in a fit confi-
dence of 96% (Monte Carlo). Notice that comparing this value to a χ2 distribution
with three degrees of freedom (Analytic) results in a much higher confidence of fit.

Simulated binary data is the composite of the same noise contributions to single

star data plus an intrinsic signal due to the presence of a companion. That is, the

nth simulated binary data is:

Φn
k,binary = Φn

k,single + Φk,model(ρ, θ, r) (3.23)

For a binary model of a given separation, orientation, and contrast ratio, we

can generate ten thousand mock binary signals of each by adding the intrinsic

binary signal to the mock noise simulations described in the previous subsection.

We fit each, record the fit confidence, and determine the average confidence that

that binary can be detected. This yields the false alarm probability for detecting

this particular binary.

We construct a grid of false alarm probabilities across a range of separations,
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orientations, and contrast ratios. For each separation we average over the orien-

tations, and determine the highest contrast ratio i.e., dimmest companion) that

would be detected with 99.7% confidence.

Ideally, we would determine the confidence of each mock binary by searching for

its best fit, recording its F or ∆χ2, and comparing it to the false alarm distribution

of the previous subsection. In practice, using a fitting routine to fit each of these

simulated binaries is computationally slow.

Instead we approximate this process by modifying the false alarm distribution.

We make the assumption that the inserted binary model yields the best fit. Because

we effectively restrict the fitting search to the range of separation, orientations, and

contrast ratios used to generate the mock binaries, we apply the same restriction

to the fitting search that generates the false alarm distribution. We then use

this modified false alarm distribution to determine the confidence of the mock

binary fits. In practice, this approximation produces contrast limits slightly more

conservative than full fitting by about 5-10%.
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CHAPTER 4

A CLOSE COMPANION SEARCH AROUND L DWARFS USING

APERTURE MASKING INTERFEROMETRY AND PALOMAR

LASER GUIDE STAR ADAPTIVE OPTICS1

4.1 Abstract

We present a close companion search around sixteen known early-L dwarfs using

aperture masking interferometry with Palomar laser guide star adaptive optics.

The use of aperture masking allows the detection of close binaries, corresponding

to projected physical separations of 0.6-10.0 AU for the targets of our survey. This

survey achieved median contrast limits of ∆K ∼ 2.3 for separations between 1.2 -

4 λ/D, and ∆K ∼ 1.4 at 2
3
λ/D.

We present four candidate binaries detected with moderate to high confidence

(90-98%). Two have projected physical separations less than 1.5 AU. This may

indicate that tight-separation binaries contribute more significantly to the binary

fraction than currently assumed, consistent with spectroscopic and photometric

overluminosity studies.

Ten targets of this survey have previously been observed with the Hubble Space

Telescope as part of companion searches. We use the increased resolution of aper-

ture masking to search for close or dim companions that would be obscured by full

aperture imaging, finding two candidate binaries.

This survey is the first application of aperture masking with laser guide star

adaptive optics at Palomar. Several new techniques for the analysis of aperture

1Previously published as Bernat et al. (2010)
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masking data in the low signal to noise regime are explored.

4.2 Introduction

The mass determinations of stars through binary studies have provided numerous

mass-luminosity benchmarks for the testing and calibration of stellar models. Such

studies have only recently begun for the regime of brown dwarfs.

The empirical calibration of brown dwarf models is generally made more dif-

ficult by the added dependency on age in the mass-luminosity relationship. For

example, an object spectroscopically classified as a late-M dwarf may be a young

brown dwarf or an old star just above the hydrogen burning limit. This broadens

the range of potential physical properties (mass, age, composition) that generate

the same observable spectrum. Conversely, photometry can only very generally re-

veal the objects’ physical properties. Measurements of brown dwarf masses through

the tracking of binary orbits provide the strongest constraints on stellar models,

”mass benchmarks” that reduce the degeneracy of photometric studies even for

targets with unknown ages (Liu et al., 2008). Mass measurements of brown dwarfs

by Konopacky et al. (2010) show systematic discrepancies between models and

measurements; late-M through mid-L systems tended to be more massive than

models predict, while one T dwarf system was less massive than its model predic-

tion. This collection of mass benchmarks grows even more important as brown

dwarf models are extended to infer the masses of directly imaged planets, such

system HR 8799 (Marois et al., 2008).

Binary surveys have also begun to turn up interesting statistical results that

may suggest the brown dwarf binary formation mechanism is different than that for
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solar type binaries (see Burgasser et al. (2007) for a summary of results from low

mass surveys, including many results presented in this section). Few surveys, how-

ever, have produced results for very low mass binaries, especially those with very

tight separations (. 3.0 AU). This regime of short period binaries is particularly

challenging to achieve with ground-based direct imaging.

While the companion fraction of brown dwarfs is proposed to be low (≈ 15%)

and peaked within a narrow separation range, 3-10 AU (Burgasser et al., 2008),

little conclusive results are known for separations less than 3 AU despite prelimi-

nary evidence that many additional companions are likely to reside at very close

distances (Jeffries & Maxted (2005); Pinfield et al. (2003); Chappelle et al. (2005)).

Over 90% of known very low mass binaries have less than 20 AU (Burgasser

et al., 2007). Competing theories of stellar formation aim to explain the observed

companion statistics of brown dwarfs. As a general trend, stars appear to have

a binary fraction that decreases with mass. This can partly be explained by the

decreased binding energy of lower mass primaries, and thus a maximum binary

separation that decreases as a function of total mass (Reid et al. (2001); Close et al.

(2003)). For very low mass stars, the companion fraction peaks near 3-10 AU, and

exhibits a significant (and statistically significant) drop at separations beyond 20

AU separation. Slightly more than half of known very low mass binaries lay within

this narrow separation range (Burgasser et al., 2007). On the near side of this peak,

the data collected is very likely incomplete, where the necessary resolution (300

mas) stretches the limitations of HST/NICMOS and ground-telescopes with AO

alone. What data has been collected suggests direct imaging may have missed

companions at very close separations.

Spectroscopic, spectral morphology, and Laser Guide Star AO surveys suggest
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that very tight binaries within 3 AU may be as plentiful as binaries of moderate

separation. Burgasser et al. (2007) has used spectral features of unresolved sources

to indicate composite spectra, implying multiplicity. This technique has suggested

numerous early/mid-L dwarfs with potential mid-T dwarf secondaries and systems

of equal-mass L/T transition objects. Jeffries & Maxted (2005) used sparse radial

velocity data-sets of very low mass systems to predict an additional 17-30% binaries

at separations less than 2.6 AU. Photometric overluminosity studies by Pinfield

et al. (2003) and Chappelle et al. (2005) have also hinted at surprisingly larger

binary fractions (up to 50%) in the Pleiades and Praesepe, though concerns over

membership contamination and the influence of variability limit the conclusiveness

of the results. In each study, with the exception of the Burgasser mid-L/mid-T

systems, very low mass binaries tend towards equal mass pairs (q ∼ 1) at close

separations, just as is the case at moderate separation.

These preliminary results contrast those of previous, observationally complete

surveys that focused on moderate and wide separation binaries. Those surveys

predict that fewer than 3% of very low mass companions sit at separations closer

than 3 AU (Allen, 2007). This discrepancy speaks to the importance of additional,

observationally complete surveys searching for binaries at close separations.

Non-Redundant Aperture Masking (NRM) on 5-10m class telescopes, combined

with LGS AO, allows sub-diffraction limit resolution observations at contrasts high

enough to search for most binaries in this potentially fertile, unresolved region.

The detection of close brown dwarf binaries, with a typical period of 1-2 years,

also allows mass measurements of late-L or T dwarfs, providing particularly valu-

able empirical benchmarks for the study of low mass stellar models. To put into

perspective the dearth of benchmarks, the mass measurements of fifteen very low
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mass systems (including six with L or T dwarf components) using LGS AO alone

by Konopacky et al. (2010) has tripled the number of very low mass systems with

mass measurements.

In Section 4.3 we describe the sixteen field L-dwarf targets imaged at Palomar

using aperture masking with laser guide star adaptive optics and outline the data

analysis techniques used to determine the binarity of the targets. In Section 4.4, we

present the results of our survey, which operated in the range of 60-320 mas (1.1-8.4

AU @ 18.4 pc, the median distance of our targets). We identify four new candidate

L dwarf-brown dwarf binaries at moderate or high (90-98%) confidence. This

survey achieved median contrast limits of ∆K∼2.3 between 1.2 λ/D and 4 λ/D,

ruling out companions down to approximately .06 M�for old (5 Gyr) systems and

.03 M�for young (1 Gyr) systems. In Section 5.8, we discuss the aperture masking

techniques employed in this paper and present recommendations for future faint

target observations. In Section 4.6, we summarize the results of this survey and

discuss its implications for future companion searches around brown dwarfs.

4.3 Observations and Data Analysis

4.3.1 Observations

We observed our target sample of sixteen field L dwarfs in September and October

2008 with the Palomar Hale 200” telescope (refer to Table 4.1).

Ten of the sixteen targets in this survey have been observed previously as

part of various companion searches using the Hubble Space Telescope (Reid et al.,
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2006; Bouy et al., 2003). These previous observations were capable of resolving

low contrast or distant (beyond about 300 mas) companions. Aperture masking

complements these previous surveys, extending the detection limits around these

targets to dimmer and closer companions.

Aperture masking observations were obtained using the PHARO instrument

(Hayward et al., 2001), with a 9-hole aperture mask installed in the pupil plane of

the Lyot-stop wheel (Figure 4.1). The longest and shortest baselines, which set the

approximate inner and outer working angle, are 3.94m and 0.71m respectively (58

and 320 mas in K band). We operate to minimize atmospheric and AO variation

during a single image, using PHARO in 256 x 256 sub-array mode with a total of

16 reads (sub-frames) per array reset and 431 ms exposures. Every read was saved

to disk. In post-processing, we discard the first three sub-frames of each exposure

(usually corrupted by detector reset), and combine the remaining sub-frames by

a Fowler sampling algorithm in which later sub-frames are weighed more heavily.

Approximately 300 images (each with 16 sub-reads) were taken in Ks for each

target, for a total integration time of roughly 60-70 minutes per target.

The Palomar laser guide star adaptive optics system (Roberts et al., 2008) pro-

vided the wavefront reference for high order AO correction, while nearby (a few

arc-minutes) field stars were observed contemporaneous to provide tip-tilt correc-

tion.

Aperture masking operates most effectively when exposure times are as short

as possible, but long enough to observe fringes over read noise. The optimal

exposure time depends on the brightness of the targets and the level of correction

provided by the AO system. Poor correction favors shorter exposure times, where

variation of the incoming wavefront quickly degrades the average transmission of
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long baseline frequencies. For targets brighter than about tenth magnitude, the

read out limited exposure time of the PHARO detector, 431 ms for the 256 x

256 array, is sufficient to observe long baseline fringes. The targets of this survey

are approximately twelfth magnitude, and initial experimentation showed that

short exposures did not consistently provide long baseline fringes. Longer exposure

times (1 minute) faired poorly because variations in correction over the exposure

degraded the average transmission of long baselines below background levels. We

opted to use short exposures and to weigh more heavily in post-analysis those

observations in which long baseline fringes could be seen (see additional discussion

later in this section).

Background subtraction is necessary for targets as faint as L Dwarfs and back-

ground levels were often comparable to the signal levels. In many instances our ob-

servations were background limited. To remove the background in post-processing,

each target was dithered on the 256 x 256 sub-array.

A requirement for obtaining good contrast limits around bright targets is the

contemporaneous observation of calibrator sources: single stars which are nearby

in the sky and similar in near-infrared magnitudes and colors. This calibration

is necessary to remove non-stochastic phase errors introduced by primary mirror

imperfections and other non-equal path length errors. This error can be on the

order of one to a few degrees, comparable to the measurement scatter of the closure

phases for bright targets. For brighter targets, the typical observing mode is to

obtain several observations of the science target, interspersed with observations

of calibrator stars. However, the lengthy time of acquisition for the laser guide

star AO system made this method inefficient for this survey. Furthermore, the

measurement scatter for the faint targets of this survey were much larger than the
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expected systematic error. Therefore, we did not use calibrator stars. We note

that calibrator stars have also not been used for similar reasons in Dupuy et al.

(2009).

4.3.2 Aperture Masking Analysis and Detection Limits

Extracting Closure Phases from Raw Images

The core aperture masking pipeline implemented in this paper is similar to that

discussed in previous work (Lloyd et al., 2006; Pravdo et al., 2006; Kraus et al.,

2008), with additions to handle low signal to noise data and calculate confidence

intervals and contrast limits.

Raw images are first dark subtracted and flat-fielded, bad pixels are removed,

and the data is windowed by a super-Gaussian (a function of the form exp(−kx4)).

This window limits sensitivity to read noise and acts as a spatial filter. A per-

pixel sky background map is then constructed from the set of target data and

subtracted. The background map is generated by masking out the target from

each image within a set, then, for each pixel, using the median value of the pixel

flux from those images that were not masked.

The point spread function of the nine hole mask consists of thirty-six interfering

fringes, called the interferogram. Because the mask is non-redundant, each fringe

is produced uniquely by the pairing of two holes; the amplitude and phase of

this fringe translates directly to the complex visibility of the corresponding spatial

frequency.

Fourier-transforming each image reveals seventy-two patches of transmitted
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power we call splodges (thirty-six frequencies transmitted, positive and nega-

tive)(Figure 4.2). The complex visibilities are extracted by weighted averaging

of the central nine pixels of each splodge. Optical telescope aberrations, AO resid-

uals, and detector read-noise contribute noise to the complex visibilities. Under

the best conditions, visibility amplitudes suffer large (> 100%) calibration errors

and are not used for the analysis in this survey.

Visibility phase suffers less from these variations, but the use of the com-

plex triple product and closure phase (Lohmann et al., 1983) yields an observable

that reduces the effect of wavefront-degradations from baseline-length independent

sources such as low-order AO residuals. For an interferometric array (or aperture

mask), closure phases are built by adding the visibility phases of ’closure trian-

gles’: sets of three baseline vectors that form a closed triangle (see Figure 4.2).

The set of closure phases have lower noise than visibility phases, allowing precise

photometric measurements despite the loss of photons imposed by the mask.

Thirty-six baselines are present with the 9-hole mask, from which 84 closure

phases can be constructed. However, these closure phases are not all linearly

independent, and the 36 baseline phases cannot be uniquely determined. The

phase information cannot be uniquely inverted (by inverse Fourier transform) into

an image without further assumptions (see, for example, the CLEAN algorithm

(Högbom, 1974) and the Maximum Entropy Method (Gull & Skilling, 1984)).

As our survey is a search for binaries, the closure phase signal of such a target

can be modeled easily. Thus, instead of inverting the closure phases to form an

image, we search for the modeled binary configuration that best fits the measured

closure phases.

90



Figure 4.1: The aperture mask inserted at the Lyot Stop in the PHARO detector.
Insertion of the mask at this location is equivalent to masking the primary mirror.

Figure 4.2: Interferogram and power spectrum generated by the aperture mask.
(Left) The interferogram image is comprised of thirty-six overlapping fringes, one
from each pair of holes in the aperture mask. (Right) The Fourier transform
of the image shows the thirty-six (positive and negative) transmitted frequencies.
(Right, inset and overlay) Closure phases are built by adding the phases of ’closure
triangles’: sets of three baseline vectors that form a closed triangle.
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Typical Results on Bright Targets

Aperture masking with natural guide star adaptive optics has been employed dur-

ing numerous near infrared surveys on the Palomar and Keck telescopes. (For

mass determinations made through orbit tracking see Lloyd et al. (2006); Ireland

et al. (2008); Martinache et al. (2007, 2009) and Dupuy et al. (2009), and Kraus

et al. (2008) for an extensive survey of Upper Scorpius.) Aperture masking has

also recently begun usage in conjunction with Keck laser guide star adaptive optics

(Dupuy et al., 2009)).

The observation of bright targets (Ks . 9), such as nearby early-M dwarfs,

with an aperture mask enables the detection of companions of contrast up to 150:1

(∆Ks ∼ 5.5) at the formal diffraction limit and 20:1 (∆Ks ∼ 3.3) at 2
3
λ/D in at

Palomar.

In this regime, non-stochastic phase errors introduced by the optical pipeline

dominate closure phase errors, as well as background flux, wavefront residuals of

the adaptive optics system, and achromatic smearing of the fringes. Typically,

these sources contribute errors on the order of one degree after calibration.

Noise Properties of Dim Targets

For each star image, of which we have approximately 300 for each star, we extract

closure phases.

Because our targets are faint and exposure times are short, detector read-outs

contribute significant noise in the phase and amplitude of the complex visibilities

and bispectrum. Amplitudes are particularly susceptible to calibration errors.
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Even during high signal to noise conditions, amplitudes have been seen to fluctuate

by up to 100%, and are not directly used for fitting to model binaries. However,

closure phase data show a clear improvement in per-measurement signal to noise

for increasing amplitude. That is, bispectrum with the largest amplitude tend to

have the highest fidelity closure phases. In order to pare off bad data and weigh

higher signal to noise measurements more heavily, we empirically estimate the

relationship between amplitude and closure phase fidelity (Figure 4.3).

This relationship is estimated by binning the set of closure phase data by am-

plitude and calculating the standard deviation of each bin. As already described,

as the average amplitude within a bin increased, the standard deviation within

the bin decreased. To first approximation, this estimates the relationship between

amplitude and closure phase fidelity.

The noisiest bins often show closure phase errors approaching 180◦. Because

the closure phase is inherently a measurement of the bispectrum phasor, there

is a 360◦ ambiguity in the measurement of closure phase. Furthermore, even if

the underlying noise source is Gaussian distributed, the distribution of measured

closure phases approaches a uniform distribution when the standard deviation

of the noise source is larger than about 180◦. Direct calculation of the root mean

squared deviation under represents the variance of the underlying noise source; the

calculation of the mean depends on the choice of angle zero-point. The variation

within one bin was at times large enough to motivate alternative methods for

averaging bispectrum data.

We adopt a maximum likelihood method to calculate the standard deviations

of bins and overall closure phase mean. We presume the closure phases in each bin

are drawn from a wrapped normal distribution1. The standard deviation is varied
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to maximize the likelihood of the data in the bin. The same mean is used for every

bin, and the mean which maximizes the likelihood of the entire data set is data

set’s overall mean. This allows bins to take arbitrarily large standard deviations;

a wrapped normal distribution with large standard deviation converges towards a

uniform distribution. For bins dominated by read-noise or very low signal to noise,

this method accurately estimates very large standard deviations and translate that

into very low weighting for the bin. The overall errors of closure phase sets ranged

between 6-15 degrees. In addition, this method of paring off bad data typically

reduced errors by a factor of two over other methods.

Even after employing this data paring, some sets of closure phase data contained

so much noise that no reliable signal could be discerned. In this case, the closure

phase was removed from the set of eighty-four closure phases further analyzed.

For some targets, up to half of the closure phases triangles were removed. In these

circumstances, the uv-coverage of the data drop allowed the possibility of model

aliasing: i.e., that multiple binary configurations yield similar closure phase sets

and each fit the data equally well. When previous observations of the target were

available, we used this information to rule out unlikely fits. When not, we list all

fits to the data.

Finally, non-stochastic errors are typically on the order of one to a few degrees.

This contribution is much smaller than the statistical error, and as such overall

best fits of our data changed very little whether or not we attempted to calibrate

out this component.

1The wrapped normal distribution is the probability distribution function of the wrapped
variable θ ≡ x mod 2π, given by pw(θ) =

∑
p(θ + 2πk), where p is the unwrapped probability

of the unwrapped variable x. The sum is over integer values of k from −∞ to ∞. The wrapped
normal distribution, denoted by WN is, WN(θ) ≡ 1√

2πσ2

∑
exp[−(θ−µ−2πk)2

2σ2 ], with the same
summation limits.
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Modeling the Binary Fit, and the Calculation of Confidence and Con-

trast Limits

For each target, we attempted to fit the observed closure phases with a three-

parameter binary model (separation ρ, orientation θ, and contrast ratio r > 1).

The best fitting model is the one which maximized the overall likelihood of the data.

Errors in the parameters are calculated from the curvature of the log-likelihood

surface at its maximum.

The strength of our fits were determined by comparing the increase in log-

likelihood, ∆ logL, between a single star fit and a binary star fit for our real data

set as compared to many simulated data sets of single stars. If the real data set

has a much higher value of ∆ logL than the simulated data sets, we regard the

real data set to be indicative of a binary star. (For purely Gaussian noise, ∆ logL

is equivalent to ∆χ2.)

We simulate measurements of single stars with identical noise properties and

uv-coverage of the candidate binary target. The measured closure phases of a single

star is the sum of three sources: the intrinsic signal of the target, which is zero

for a single star; noise fluctuations from various sources which are described by

the standard deviations measured on the target; and a non-stochastic systematic

error component, which we assume is negligible compared to the stochastic noise of

these targets. (As a check, we also estimated the typical systematic contribution

from the measured signal of eight survey targets whose best fits indicated high

likelihood for being single stars. Including this component to simulate single stars

had little effect on the overall confidence measurements.)

From this information, we generate ten thousand mock measurements of single
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stars. To each, we fit the three-parameter binary model, record the ∆ logL, and

build a distribution of ∆ logL that result from single star observations.

Comparing the value of ∆ logL of the data’s fit to the simulated distribution

yields the probability of false alarm: the probability that our apparent binary fit

is an observation of a single star co-mingled with noise. The confidence that our

target is binary is one minus this false alarm probability.

To calculate our contrast limits, we first add model binary signals to the sim-

ulated single star data. These mock binary signals span a range of separations,

orientations, and contrast ratios. We fit each, determine the fit confidence, and

determine, for a given separation, the highest contrast ratio (i.e. dimmest com-

panion) that would be detected with 99.5% confidence (false alarm probability of

.005). These calculations are discussed in more detail in the Section ?? of the

previous Chapter.

Calculation of Bayes’ Factors

As an alternative to confidence measure presented in the previous subsection, our

group also applied bayesian methods to calculate the Bayes’ Factor of each fit, i.e,

the odds by which our data favors binary models.

Using Bayesian comparison, the binary hypothesis is tested by contrasting two

probabilities: that the data set would arise from a binary target observation, and

that the set would arise from a single star observation. Expressed mathematically,

this is:
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Pr( binary | data )

Pr( single | data )
=

Pr( star is binary )

Pr( star is single )

Pr( data | binary )

Pr( data | single )
. (4.1)

The first term on the right hand side is an attribute of the survey population

– it is the ratio of the companion fraction to one minus the companion fraction –

and is independent on the data.

The second term is the Bayes’ Factor, representing the odds by which the data

favors one hypothesis over the other. These probabilities are marginalized (and

integrated) over the binary parameters. Whereas the maximum likelihood method

searches out the set of parameters that maximizes the likelihood of the data, the

Bayesian approach averages over the parameters.

Bayes′ Factor =
Pr( binary | data )

Pr( single | data )
(4.2)

=

∫
Pr(ρ| bin.)Pr(θ| bin.)Pr(r| bin.)L(data|ρ, θ, r)

L(data | single)
(4.3)

The quantities Pr(ρ|binary), Pr(θ|binary), Pr(r|binary) refer to distributions

of the companion separation, orientation, and contrast ratio as they are presumed

known prior to our observation. These distributions for very low mass primaries

are themselves ongoing topics of debate and limited by observational incomplete-

ness, particularly in the separation regime of our survey. (For a current review

of separation and mass ratio distributions derived through observational studies,

the reader is invited to view Burgasser et al. (2007).) Allen (2007) quantifies the

underlying companion distributions from the currently available data. We ulti-

mately chose to use blind prior distributions (known as Jeffreys’ priors). These
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distributions are uniform for separation and log-uniform for contrast ratio. We

compare this choice to the Allen priors and discuss its implications.

Our survey focuses on close binaries; our observations probe between roughly

1 and 8 AU for seventy five percent of our L dwarf targets. Allen (2007) concludes

that the (physical) separation of companions can be characterized by a log-normal

distribution which peaks at 7.2+1.1
−1.7 AU with a 1σ width of roughly 11+∼2

−∼3 AU. This

uncertainty in the peak and width contributes noticible variability of the resulting

distribution at the separations we consider (see Figure 4.4). One characteristic

unifying the span of distributions, however, is that companions closer than ∼ 2

AU are less likely by up to an order of magnitude. The is due in part to describing

the distribution as a log-normal functional. This choice is motivated by the sharp

drop in companion fraction observed outward of about 10 AU, and by assuming a

similar drop shortward of a few AU, where observational data is incomplete. As

Allen states, this result is derived without well-defined searches for companions

at close separations, and the preliminary results of the Jeffries & Maxted (2005)

and Basri & Reiners (2006) surveys potentially indicate the presence of a larger

number of close binaries. We use a uniform prior to avoid the bias of the Allen

priors, keeping in mind that companions with high Bayes’ factor at less than 2 AU

could indicate observational evidence of close companions yet may also be biased

towards undue significance.

Observational surveys of very low mass systems show a tendency towards equal

mass binaries (q ∼ 1) (Burgasser et al., 2007; Reid et al., 2006; Allen, 2007).

The distribution of mass ratios has been roughly characterized by a power law,

p(q) ∝ qγ, with γ ∼ 2 − 4 depending on the survey. The large exponent of this

distribution indicates that low mass ratio (low q) systems are highly unlikely (and
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rare). Transforming this to a distribution of broad-band contrast ratios (r, with

r > 1) requires assumptions about target age distributions, bolometric luminosity

corrections, and mass-luminosity models (see Allen et al. (2005, 2003) for these

assumptions applied to field stars). We wish our prior distribution not depend so

highly on these assumptions and rather rely on a few basic assumptions.

The rapid drop of the L dwarf mass-luminosity relation (i.e., halve the mass of

the star and its luminosity drops by much more) implies that ratios of contrast are

larger than ratios of mass, and that contrast ratios still favor unity (i.e., p(r) ∝

(1/r)γ with 0 < γ . 2 − 4). The blind prior for a scale independent quantity

like contrast ratios is p(r) ∝ 1/r which, conveniently, has the desired properties.

It is worth noting that Allen (2007, Fig. 14) carries out the transformation from

mass ratio to contrast ratio, finding a distribution that follows roughly p(r) ∝

1/(r log r) for contrasts down to below 100:1.

Finally, the same methods can be applied to calculate posterior distributions for

ρ, θ, and r for each data set. For a data set with a single best fit, this distribution

yields a p.d.f. describing the best fitting parameters. The parameter values and

errors quoted in this paper are those derived from maximum fit likelihood, as

discussed in the previous subsection, and are not drawn from Bayesian posteriors.

However, we calculate the posterior distributions to assure both methods give

comparable results.
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4.4 Sixteen Brown Dwarf Targets - Four Candidate Bina-

ries

Aperture masking is most sensitive to companions between λ/2D and 4λ/D, cor-

responding to angular separations of 60-450 mas in Ks at Palomar and physical

projected separations ranging from 0.6-10 AU for the targets in our survey.

Our achieved detection limits for all sixteen targets are summarized in Table

4.3. Our limits remain relatively flat at separations beyond λ/D, plateauing near

∆K∼2.3 for more than half our targets, and decline to roughly 1.4 magnitude

shortward of λ/D (See figure 4.5).

We infer the (companion) stellar properties and mass ratios to the correspond-

ing magnitude limits using the DUSTY models for target ages of 5 Gyr and 1 Gyr

(Table 4.1). At the formal diffraction limit (about 110 mas in Ks), companions

with mass ratios of .83 for 5 Gyr systems and .55 for 1 Gyr systems would be

resolved for 50% of our targets at a 99.5% confidence of detection (Fig. 4.6).

Our survey found four candidate binary systems with detections at 90-99% con-

fidence and Bayes’ Factors favoring the binary model (Table 4.5). We summarize

and discuss these detections below.

For some targets in our survey, closure phase measurements constructed from

the longest baselines had too much noise to extract a useable signal. The resulting

drop in uv-coverage can give rise to aliasing of the model fits: i.e., multiple binary

configurations fit the data equally well. When possible, we used previous observa-

tions of the target to rule out certain aliased fits; when not possible, all model fits

are listed.
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2M 0036+1821: A companion at separation 89.5 mas and 13.1:1 contrast

was detected with 96% confidence and a Bayes’ Factor of 7.8:1. The data also fits

an alternative (alias) binary configuration (ρ ∼ 243 mas and 25:1 contrast) with

96% confidence that we rule out by a previous observations. Reid et al. (2006)

observed this target in November 2005 with the NICMOS imager on the Hubble

Space Telescope in the F170M and F110W bands. At or near this separation, this

alternative configuration would have likely been detectable in the F110W bands.

2M 0355+1133: A companion at separation 82.5 mas and 2.1:1 contrast was

detected with 90% confidence and a Bayes’ Factor of 6.3:1. Reid et al. (2006) also

observed this target in the F110W band and found no companion. As a proxy for

the F110W bandpass, we estimate a J band contrast of 2.5:1 using the J-K color-

magnitude relations of Dahn et al. (2002). Their program achieved a contrast limit

of 2.5:1 beyond approximately 100 mas in F110W, suggesting that this candidate

binary sat at the edge of their detection limits.

2M 2238+4353: Thirty-five percent of the closure phase triangles showed

very high noise and were removed from analysis. As a result, aliasing of the signal

was particularly problematic. Three distinct binary configurations were detected

at 95-97% confidence. These range in separations between 100 and 400 mas and

contrasts between 17:1 and 28:1.

2M 0345+2540: Like 2M 2238+4353, a large percentage of the closure phases

were removed from analysis. Two distinct configurations, both with contrasts

∼28:1 (∆K ∼ 3.5) were determined with high confidence. Bouy et al. (2003)

observed this target with the Wide Field Planetary Camera 2 (WFPC2) on the

Hubble Space Telescope in March 2001, but we estimate these companions to

be below their detection limits. Their survey reached background limitations at
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contrasts between ∆M ∼3-5 in the F814W band. Using the I band as a proxy for

F814W, we estimate the companion of 2M 0345+2540 to have a contrast of ∆I &5

and to have been undetectable in the Bouy survey.

2M0213+4444: We observed target 2M0213+4444 three times over two

nights in September 2008 (two sets in Ks, one in H) and once one month later

(in Ks). Two data sets from September were of poor quality and were not used

for analysis. The remaining set from September found one binary fit (ρ ∼ 81 mas,

θ ∼ 290◦, 5.2:1 contrast in Ks) at 89% confidence. The target was observed again

in Ks in October under poor seeing and much of the data was unusable. This data

set could not be fit well by the September results, and implied a different config-

uration with 90% confidence (ρ ∼ 234 mas, θ ∼ 135◦, 11:1 contrast in Ks). Given

the low confidences of fits and the unreproducibility of these results, we conclude

that this target is unlikely to be binary.

4.5 Discussion: Aperture Masking of Faint Targets

The use of non-redundant masking removes many types of spatial perturbations to

the incoming wavefront. During high signal to noise observations, when read and

background noise are minimal, the largest contributor to measurement noise is the

temporal and spatial atmospheric fluctuations of the wavefront, even after adaptive

optics correction. Short exposure times, roughly less than the coherence time of

atmosphere, freezes the tip-tilt and low-order perturbations to the wavefront, which

can be removed by combining fringe phases into closure phases. This advantage

is lost when exposures extend over multiple coherence times. For this reason,

aperture masking flourishes with short exposures.
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Behind laser guide star adaptive optics systems, although the structure of the

corrected wavefront may be different, the functionality of aperture masking is the

same. However, targets requiring laser guide star AO tend to be fainter, and thus

require either longer exposure times (permitting sufficient correction) or techniques

for dealing directly with noise from read outs and background flux.

This survey opted for maintaining short exposure times. The signal to noise of

fringe amplitudes decline rapidly for longer baselines, as the transmission function

for these baselines is lower and turbulence variations are larger. Just as, for in-

stance, Stehl ratio depends on the variance of the incoming wavefront, so does the

fringe amplitude, also dropping as exp(−σ2
baseline). For faint targets, long baselines

fringes often linger undetectable below the background and read noise, making

difficult measurements of long baseline phases.

The capture of a large number of short exposure images allows us to select out

the best fringe measurements, during the serenditous moments of very good correc-

tion or still atmospheres, and discard those dwarfed by read noise. This technique,

analogous to lucky imaging, effectively selects high signal to noise measurements of

closure phase. In most cases, these lucky closure phases were sufficient to obtain

measurements of the target closure phase, even at long baselines. We contrast this

method to two measurements of targets observed with long (1 minute) exposures.

These exposures did often have long baseline fringes detectable at or just above

background. But this method resulted in poor measurements of the target closure

phase, even at shorter baselines. The multiple-coherence time exposures means

that low order perturbations are not effectively removed by closure phases, result-

ing in large phase errors, and the fewer overall number of data points removes the

statistical advantage. The measured closure phase is not a good measurement of
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the true target phase.

Long exposures, with adequate correction, do allow longer baseline fringes to

grow in amplitude above the read noise or background limit. Exposures for aper-

ture masking should be limited to the effective coherence time of the adaptive

optics system – the interval over which the phase variance of the longest baselines

reaches about one radian.

The quality of measurements from both sets of exposure data suggests a slight

modification of technique for the next application of aperture masking with laser

guide star adaptive optics. The higher noise content of the one-minute exposures

suggests that these exposures are too long for the level of correction obtained in

this survey. The short exposure method fared much better, but a large percentage

of images failed to observe fringe amplitudes above read noise. This suggests that

slightly longer exposures would have benefited the observations. It is worthwhile

to note that the low transmission of the long baselines, even at Strehl ratios of

15% typically reached in this survey, indicates that direct imaging would not have

been able to obtain λ/D resolution.

4.6 Conclusion

We present the results of a close companion search around nearby L dwarfs using

aperture masking interferometry and Palomar laser guide star adaptive optics. The

combination of these techniques yielded typical detection limits of ∆Ks = 1.5-2.5

between 1-4λ/D and limits of ∆Ks = 1.0-1.7 at 0.6 λ/D. Our survey revealed

four candidate binaries with moderate to high confidence (90-99%) and favorable

Bayes’ Factors.
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Ten of the targets have previously been observed with the Hubble Space Tele-

scope as part of companion searches. As such, we did not expect to find bright or

distant companions around these targets which would have been identified in the

previous surveys. But as demonstrated in this paper, the detection profile of aper-

ture masking is capable of revealing close or dim companions which are obscured

by the point spread function of full aperture imaging. Aperture masking demon-

strates an increase in formal resolution and detectable contrast at close separations

over laser guide star adaptive optics alone.

Our survey indicated two previously observed targets as candidate binaries.

Our survey indicated one companion around 2M 0355+1133 within the formal

diffraction limit of the HST and one companion around 2M 0345+2540 below the

background detection threshold of the previous survey. Two other targets, 2M

0345+2540 and 2M 2238+4354, also indicated the presence of companions, both

with contrast ratios greater than 15:1.

Aperture masking is most sensitive to companions between λ/2D and 4λ/D,

corresponding to angular separations of 60-450 mas in Ks at Palomar and physical

projected separations ranging from 0.6-10 AU for the targets in our survey. Two

candidate binaries presented in this paper have projected separations less than

1.5 AU. The results suggest a favorable target set for future companion searches.

Their candidacy is consistent with the conjecture that tight binaries are underrep-

resented in the current tally of low mass binaries. Spectroscopic surveys, which

focus on separations within 3 AU, are necessary to conclusively answer this ques-

tion. Extending the use of aperture masking with laser guide star AO is a re-

warding approach for detecting companions within this range, and facilitating the

measurements of their masses.
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(a) Closure Phase 50 (b) Closure Phase 84 (c) Closure Phase 43

Figure 4.3: Estimating per-measurement weights for three closure phase data sets
for target 2M 2238+4353. The data sets have comparatively high- (left), moderate-
(center) and very low- (right) signal to noises. (Top) Plot of bispectrum (closure)
phase vs. bispectrum amplitude. Note that larger amplitude data have smaller
phase spreads, and a clear asymptotic mean can be identified in the high and mod-
erate signal to noise cases. (Closure phase 43 contains no discernible signal, and
would be removed from further analysis.) Low amplitude bispectra are swamped
by read noise, introducing phase errors which are nearly uniformaly distributed.
The solid line estimates the relationship between per-measurement standard devi-
ation and bispectrum amplitude. (Middle) Closure phase vs. approximate weight-
ing. Note that the higher weighted points have lower per-measurement standard
deviation. (Bottom) Resulting p.d.f. of the closure phase.
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Figure 4.4: Proposed log-normal distribution of companion separation around L
dwarf primaries from Allen (2007). The peak and width of the distribution have
been constrained by previous surveys. The most likely distribution (solid line)
and one sigma distributions (dashed lines) are shown. Despite the constraints, the
distribution is noticeably uncertain in the region of separations searched by our
survey. We opt to use a uniform prior for our Bayesian analysis, noting that such
a prior may over signify companions closer than roughly 2 AU as compared to the
Allen prior. Similarly, a confirmed detection of a close companion could indicated
this distribution has been incorrectly described as log-normal (see text).

Figure 4.5: Contrast limits at 99.5% detection as a function of primary-companion
separation: (left) The primary-secondary magnitude difference in Ks detectable
at 99.5% confidence. (right) The same detection limits in terms of the absolute
magnitude of the companion.
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Figure 4.6: Companion mass and mass ratio limits at 99.5% detection as a func-
tion of primary-companion separation: (top left) The primary-companion mass
ratio detectable at 99.5% confidence. Dashed lines are for systems aged 5 Gyr;
Dot-dashed lines are systems ages 1 Gyr. (top right) The same data in terms of
companion mass. (middle/bottom left) As a function of separation and compan-
ion mass, this plot reveals the percentage of 5 Gyr (middle) and 1 Gyr (bottom)
companions detectable at 99.5% given the data quality of the survey. Binaries in
the white area would have been detected for 100% of the survey targets, followed
by contour bands of 95%, 90%, 75%, 50%, 25%, and 10%. At the diffraction limit
(110 mas), companions of mass 0.65 M�would be resolved for 50% of our targets.
(middle/bottom right) The same plot in terms of mass ratio. Diffraction limit sen-
sitivity: 5 Gyr companions of mass 0.65 M�(.038 M�for 1 Gyr) would be resolved
for 50% of our targets. Equivalently, our survey reached mass ratios of .83 (5 Gyr)
and .55 (1 Gyr) for 50% of our targets at the diffraction limit.
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CHAPTER 5

THE USE OF SPATIAL FILTERING WITH APERTURE MASKING

INTERFEROMETRY AND ADAPTIVE OPTICS1

5.1 Abstract

Non-redundant aperture masking interferometry with adaptive optics is a powerful

technique for high contrast at the diffraction limit with high-precision astrometry

and photometry. A limitation to the achievable contrast can be attributed to

spatial fluctuations of the wavefront - those within a sub-aperture and across sub-

apertures - and temporal fluctuations within a single-exposure. Spatial filtering

addresses spatial fluctuations within a sub-aperture. An optimized pinhole in the

focal place preceding the aperture mask is one approach for reducing the variation

of the wavefront within a sub-aperture. Similarly, a weak spatial filtering effect is

shown to be provided by post-processing the images with an apodized window func-

tion, typically used to minimize detector read noise and contamination from wide-

separated sources. We explore the effects of spatial filtering through calculation,

simulation, and observational tests conducted with a pinhole and aperture mask in

the PHARO instrument at the Hale 200” Telescope at Palomar Observatory. We

find that a pinhole decreases stochastic closure phase errors and calibration errors,

but that tight restrictions are placed onto the alignment of binary targets within

the pinhole. We propose an observation strategy to relax these restrictions. If im-

plemented the pinhole could potentially yield an increase in achievable contrast by

up to 10-25% in H and Ks bands, and more at very high Strehl (&80%). We also

conclude that correcting low-order wavefront modes within the sub-apertures will

1This work has been under review for publication by the The Astrophysical Journal as of
August 1, 2011.
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be key for reaching high contrasts with extreme-AO systems such as the Gemini

Planet Imager and PALM3K to search for planets.

5.2 Introduction

Current planetary searches using a coronagraph (e.g., Hinkley et al. (2011)), excel

at obtaining very high contrast (105:1) but are unable to probe at close separations

(.300-500 mas) where the field of view is blocked by the occulting spot. This sep-

aration rules out the observation at physical separations . 10 AU for many host

stars. The detection of planetary companions with techniques providing both high-

contrast and high-resolution will play a key role in identifying the full distribution

of Jupiter-class planets and for investigating the mechanisms of planetary forma-

tion (Kraus et al., 2009), migration, and stability (Veras et al. (2009); Raymond

et al. (2009) and e.g. HR 8799, Fabrycky & Murray-Clay (2010)).

Non-Redundant Aperture Masking Interferometry (NRM or aperture masking),

in conjunction with adaptive optics (AO) is well established for yielding much more

precise astrometry and photometry than adaptive optics alone at close separations

(e.g., Kraus et al. (2008, 2011)) and for the detection of high contrast companions

(Lloyd et al., 2006). The application of aperture masking with AO on 5-10 meter

class telescopes achieves contrasts of 102-103:1 at and outward of λ/D and nicely

complements companion searches with a coronagraph. The increased contrast

and resolution of NRM has been used with great effect for stellar multiplicity

studies (Kraus et al., 2008, 2011), the detection of short period brown dwarfs for

dynamical mass measurements (Lloyd et al., 2006; Bernat et al., 2010), and a

high-contrast search for inner planetary companions to HR 8799 (Hinkley et al.,
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2011). With the Gemini Planet Imager (Macintosh et al., 2008) and Project 1640

IFS (Hinkley et al., 2009) equipped with non-redundant masks, aperture masking

interferometry from the ground will play a key role in the detection of exoplanets

at close separations.

NRM observations use a mask to transform the full telescope aperture into a

sparsely populated set of sub-apertures, constructed so that no two pairs of sub-

apertures share the same baseline direction and length (i.e., are non-redundant).

The strength of this technique draws on its measurement of the closure phase

quantity (e.g., Jennison (1958); Readhead et al. (1988); Cornwell (1989)), an ob-

servable which naturally mitigates the effect of wavefront errors on scales larger

than a sub-aperture. These same wavefront errors produce the speckles of direct

imaging, which dominate the image noise by orders of magnitude whether arising

from atmospheric variation (Racine et al., 1999) or quasi-static instrumental effects

(Hinkley et al., 2007). Their mitigation by closure phases enables higher contrast

despite the blocking of 90-95% of the flux by the aperture mask.

The achievable contrast of the technique is limited by its own calibration chal-

lenges, one of which arises from quasi-static spatial variation of the wavefront

within the sub-aperture. Such wavefront errors erode the effectiveness of using

closure phases (resulting in redundancy noise in the language of Readhead et al.

(1988) and others). Similarly, decreasing the wavefront variation within the sub-

aperture can increase the contrast of NRM observations further.

Optical and infrared long-baseline interferometers have implemented single-

mode fibers and pinholes which spatially filter (i.e., smooth) aperture wavefront

errors to improve measurements of complex visibility (Shaklan & Roddier, 1987;

du Foresto et al., 1997). Poyneer & Macintosh (2004) have studied the use of a
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pinhole to develop an AO wavefront sensor which more accurately measures of

the wavefront above a sub-aperture. Likewise, spatially filtering the wavefront

errors with a pinhole placed in the image (focal) plane before the aperture mask

may provide a means for substantially increasing the achievable contrast of NRM

observations.

This paper provides a comprehensive analysis of NRM with pinhole spatial

filtering. To establish its theoretical foundation, we present an analytic description

of the combined technique (Section 2). Using an accurate simulation of an aperture

masking equipped telescope, we derive the optimal pinhole size and estimate its

expected performance, limitations, and restrictions. We also derive several results

applicable to general aperture masking observations. (Sections 3 and 4). We have

also installed a pinhole in the PHARO instrument of the Hale 200” Telescope at

Palomar Observatory. To study how spatial filtering improves the sensitivity of

NRM observations and influences the astrometric and photometric characterization

of discovered binary systems, we observed twenty-six single stars and four known

binaries with and without the pinhole (Section 5). This paper further develops

the understanding of NRM as a technique for detecting high-contrast companions

and provides several new findings to guide the design of NRM experiments for

next generation adaptive optics systems and instruments dedicated to exoplanet

detection.
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5.3 Aperture Masking with Spatial Filtering

5.3.1 Aperture Masking: Current Technique

An aperture mask is positioned in the pupil plane behind the adaptive optics sys-

tem and transforms the full aperture into a sparsely populated set of sub-apertures

(Fig. 5.1(a)). The resulting image of the target is a set of over-lapping fringes

called the interferogram. The amplitude and phase of each fringe corresponds to

the measurement of one particular component of the complex visibility with spatial

frequency ~b/λ, where ~b is the baseline vector and λ is the observing wavelength.

Multiplying the complex visibility of specific baseline triplets formed by three sub-

apertures creates bispectra (Lohmann et al., 1983), the argument of which is the

closure phase (Jennison, 1958; Cornwell, 1989). Closure phases are robust against

pupil-plane phase errors, which are a source of direct imaging PSF calibration

errors and speckle noise, and provide the mechanism for obtaining more precise

astrometry and photometry with the aperture masking technique.

Typical observations (including those in this paper) are conducted by taking

one or more sets of target images interspersed with sets of one or more calibra-

tors (unresolved stars near in the sky and of similar magnitude and color.) After

the basic processing the raw images (see, for example, Lloyd et al. (2006); Mar-

tinache et al. (2007); Bernat et al. (2010)), the phase and log-amplitude of each

fringe is extracted from the images and used to construct bispectra and closure

phases. Mean values are obtained by averaging the quantities over a single set,

and error estimates are derived from the scatter. Multiple sets are combined by

weighted average. Calibration is performed by subtracting the closure phase and

log-amplitude of the reference stars. Amplitudes are generally not used in com-
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panion searches because calibration is subject to stable atmospheric seeing and

often is measurable to only 10-50% (Tuthill et al., 2006). A binary model is fit to

the closure phase data to minimize χ2; a positive detection results in measurement

of the binary parameters (separation, orientation, and wavelength-dependent con-

trast ratio). Errors in binary parameters are often taken from the curvature of the

χ2 space at minimum. Many examples of this implementation for the detection of

stellar companions can be found in the literature (Kraus et al., 2008; Bernat et al.,

2010; Kraus et al., 2011).

For targets in which the adaptive optics system provides stable and mostly

coherent (σ2
rms . 0.1 rad2) correction of the wavefront on sub-aperture scales,

this observing mode typically measured closure phases with an error scatter of 1-2

degrees in H band (1.6µm) after a few minutes on a bright target, equivalent to

a contrast of detection of about 100-200:1 at λ/D. This technique is calibration

limited by a systematic closure phase component of one to several degrees which

likely arises from quasi-static instrumental wavefront errors. Additional calibrators

usually decrease, but do not fully eliminate, this component. To account for this,

an addition error term is added in quadrature to the closure phase errors until the

best fitting model yields a χ2 of unity.

5.3.2 Aperture Masking: Why Spatial Filter? Calibration

Errors.

A critical requirement of the aperture masking design is that each pair of sub-

aperture creates a unique interferometric baseline. The lack of baseline redundancy

ensures that any spatial frequency measured can be traced back to the interfer-
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ence of a unique pair of sub-apertures (Haniff et al., 1987; Roddier, 1986). Closure

phases constructed by non-redundant baselines will be less affected by pupil-plane

phase which would otherwise distort measurements of the spatial frequency phase.

When two or more baselines contribute to the same spatial frequency, the power

adds partially incoherently depending on the phase difference of each contribut-

ing baselines (e.g., Figure 5.1(b)). A random component will be introduced into

the resulting spatial frequency phase which cannot be removed by closure phases

(yielding a so-called non-zero closure phase). This component, termed redundancy

noise, is largest when the redundant baselines are incoherent and zero when the

they are coherent. Readhead et al. (1988) provides an extensive treatment of

redundancy noise for seeing-limited imaging.

The mask cannot be entirely non-redundant. The finite sub-aperture size means

that baselines are redundant at least within a sub-aperture (Figure 5.1(c)). With

sub-aperture scale correction provided by the AO system, this sub-aperture redun-

dancy noise is largely removed (Tuthill et al., 2006), as compared to the uncorrected

case, but still gives rise to closure phase measurement errors due to the remain-

ing spatial incoherence within the sub-aperture. In completely analogous fashion,

temporal variations to the baseline phase during a single exposure create temporal

redundancy which also give rise to closure phases errors (again, see Readhead et al.

(1988)).

It may be illuminating to contrast the uncorrected and corrected cases. With

uncorrected observing, redundancy restricts sub-aperture sizes to smaller than the

characteristic size of atmospheric turbulence and exposure times shorter than the

atmospheric coherence time. Adaptive optics removes both constraints since good

correction supplies a stable, mostly coherent wavefront across the full aperture.
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Current NRM masks are designed with sub-apertures on the order of the AO

actuator spacing; this need not be the case and will likely not be so in upcom-

ing extreme-AO aperture masking experiments. Atmospheric and adaptive optics

residuals decorrelate on timescales much shorter than the exposure length and

thus likely only contribute to the stochastic variation of closure phases from one

image to the next. Changes in seeing between target and calibrator observations

change the magnitude of the stochastic variability of closure phases (the signal

to noise of the measurement), but do not introduce calibration offsets (Roddier,

1986), and can thus be minimized by additional exposures. This is precisely why

closure phases provide a robust measurable unlike visibility amplitudes, which are

poorly calibrated if seeing changes (Tuthill et al., 2006).

Quasi-static instrumental wavefront errors contribute to all spatial scales and

vary on timescales of tens of minutes (e.g., Bloemhof et al. (2001); Hinkley et al.

(2007)), or with movement of the telescope (Marois et al., 2005). As long as these

errors remain static over a single exposure, large-scale wavefront changes (those

larger than a sub-aperture) are removed by closure phases. One of the great

advantages of using non-redundant masking to mitigate the quasi-static imaging

problem is that closure phases require only a single image (they ’self-calibrate’,

Cornwell (1989)). Instrumental errors change between observations of the target

and calibrator, but only those smaller scale than a sub-aperture contribute to

aperture masking calibration errors.

We propose that spatial filtering the wavefront before its propagation through

the aperture mask can be used to reduce the inhomogeneity of the wavefront

phase within the sub-aperture and, by virtue of being more coherent, reduce sub-

aperture redundancy noise. Figure 5.2 illustrates the effect of an optimized pinhole
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spatial filter (discussed in the next subsection) to smooth the phase of a simulated

adaptive optics corrected wavefront (Strehl ratio ∼ 50% in Ks). The portion of

the wavefront sampled by each sub-aperture is much more uniform after spatial

filtering.

We anticipate that spatial filtering can lead to several measurable improve-

ments of the closure phases, including decreases in systematic calibration error

and stochastic variation from one image to the next. Measured visibility ampli-

tudes, by virtue of their dependence on sub-aperture inhomogeneity, can show less

degradation and be more robust to changes in seeing.

5.3.3 Pinhole Filtering

One possible implementation of the pinhole spatial filter, reminiscent of the four

planes of a coronagraph (see Ferrari (2007) for a review), is shown in Figure 5.3.

The pinhole, positioned at the center of the field and in what is usually referred to

as the coronagraphic plane, blocks light beyond its inner transmission region. This

acts to spatially filter the wavefront before entering the non-redundant aperture

mask, located in a re-imaged pupil plane. (The mask location is equivalent to the

Lyot-plane of coronagraphy).

The transmission profile of the pinhole is a top-hat function, with diameter

dspf which will be expressed for convenience in units of λ/D, with D the diameter

of the telescope. At the location of the aperture mask, this is equivalent to the

wavefront convolved by a Jinc function (c.f. Footnote 1) of characteristic diameter

λ/dspf .

0The Jinc function is defined as Jinc(x) ≡ J1(x)
x . It is the two-dimensional Fourier Transform

of a circular aperture, and is related to the Airy function by Airy(x) = 4 Jinc(x)2.
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Efficient spatial filtering aims to make the wavefront uniform within one sub-

aperture of the non-redundant mask, and so one wants the characteristic diameter

to be matched to the diameter of a sub-aperture, suggesting

dspf ≈
D

dsub
(in units of λ/D). (5.1)

A larger pinhole decreases the impact of the spatial filtering; a smaller pinhole

restricts the field of view and begins to impinge on the signal we wish to measure.

This technique differs from the form of spatial filtering implemented in optical

and infrared long baseline interferometers, where the signal from each telescope is

injected into a single mode fiber or pinhole before beam combination and extraction

of the interferometric signals (du Foresto et al., 1997). The use of single mode

fibers on long baseline interferometers has shown increases in phase estimations by

a factor of two, or more in bad seeing, despite the loss of flux (Tatulli et al., 2010).

The implementation of this approach with non-redundant aperture masking would

require the injection of light from each sub-aperture into a single mode fiber or

pinhole before recording the interferogram. Given the simplification of the single

pinhole implementation, it offers, a priori, an appealing alternative (Keen et al.,

2001).

Aperture Masking Through a Pinhole

Given that the aperture mask is located in a pupil plane, the point spread function

(PSF) of masking interferometry is invariant to target position over a wide field

of view (several arc seconds). With the pinhole filter in place (in an image plane),

the PSF and system response varies with target position relative to the pinhole, a
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smaller effective field of view.

Section 5.9 shows that the use of the pinhole filter alters the measured complex

visibility of a point source:

Vspf (~b) = T (~b)

∫
d~θ Π[~θ/dspf ]× e2πi~θ·~b/D × PSF [θ − ~α], (5.2)

where ~α is the location of the point source on the sky (measured in angular units of

λ/D), and ~α = 0 corresponds to perfect alignment of the source in the pinhole. The

baseline being measured is ~b, corresponding to a spatial frequency ~u = ~b/λ. The

complex visibility is usually expressed as a function of the spatial frequency; here

we present it as a function of baseline and wavelength for clarity. The telescope

transfer function, T (~b), gives the spatial frequency response of the aperture or

aperture mask in terms of the baseline. It is defined explicitly in Section 5.9. The

top-hat function, Π[ |
~θ|

dspf
], is equal to one for |~θ|

dspf
< 1

2
and zero otherwise.

From three baselines vectors, ~b1, ~b2, and −~b1 −~b2, a closure phase is the argu-

ment the product of the complex visibilities:

φcp = arg
[
V (~b1)V (~b2)V (−~b1 −~b2)

]
(5.3)

The observed visibility amplitudes and closure phase change by an amount

which depends on the position of the target with respect to the pinhole (its align-

ment) and the point spread function. (e.g., Figure 5.4). The transmission of the

pinhole blocks high spatial frequency content of the wavefront, even in the absence

of wavefront errors. In this way, removal of the higher spatial frequencies can

alias into changes in lower, baseline frequencies, similar to the effect observed by

Poyneer & Macintosh (2004). Those on sub-aperture scales compete with closure

phase measurements.
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As the point spread function varies, so too will the aliased phase errors. This

introduces a stochastic component to the closure phase errors which appears to

undercut the effectiveness of the pinhole. A portion of the phase errors will also

remain fixed and be strictly a function of the asymmetrical truncation of the target

and its mean point spread function. The latter we term misalignment error, to

distinguish it from other calibration components. Generally speaking, both will

increase as the target is positioned further from the pinhole center.

Qualitatively, we can illustrate that the asymmetrical truncation of the target

shifts the visibility and closure phase. Consider Figure 5.4c. The visibility phase

is influenced by the position of the target on the sky; the asymmetrical truncation

of the target shifts its center of light, and so too the visibility phase. While closure

phases are normally invariant to the position of the target normally, the pinhole

breaks this invariance. The overall isotropy of the point spread function and cir-

cular pinhole shape suggests that the misalignment error is symmetric about the

origin. That is, just as aligning the target at two diametrically opposed positions

will induce equal and opposite shifts in the center of light, the overall symmetry

suggests equal and opposite phase errors as well.

The aliased phase errors are small as long as the majority of the flux resides

within the pinhole and only competes with the closure phase measurements if the

power aliases back into sub-aperture scale wavefront deviations. For this reason

shorter wavelength observations will be preferentially advantaged with this ap-

proach. More generally this suggests, that to minimize aliasing, the pinhole could

be optimized to filter only frequencies that are not corrected by the AO system;

in that case the pinhole size would be matched the the AO actuator size instead

of the masking sub-aperture size.
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Each target of a binary will be truncated differently. The misalignment error

can be calculated directly by replacing the single star point spread function in

Equation 5.2 or Figure 5.4 with the binary image. This will be approximately the

same as the error of each component individually. In other words, the misalignment

error of the primary added to the misalignment error of the secondary multiplied

by the secondary-primary contrast ratio. Assuming that the misalignment error

is point symmetric about the origin, aligning the binary center of light near the

pinhole center appears to be a viable strategy for minimizing the misalignment

error.

If the misalignment component is large enough as to become the limiting com-

ponent in closure phase noise, there are three approaches which can be employed

for removing the component from science data. Empirically, the component can be

calibrated by observing a single star aligned at the same location as the primary

under similar AO performance. In practice, this may be limited by the accuracy

with which one can repeatedly (visually) align a target within the pinhole, and the

component arising from the (unknown) companion remains. Computationally, if

the location of the primary is known along with an estimate of the point spread

function, then the misalignment component can be included in the mathematical

closure phase model which is fit to data. This approach requires a direct image

of the primary within the pinhole to determine its location and estimate its point

spread function. Both may detract from the overall efficiency of observing. Finally,

a third option is to take several sets of aperture masking data with the target (cen-

ter of light) at various alignments. Specifically, if diametrically opposed alignments

have misalignment errors opposite in sign, then the component could be averaged

out.
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5.3.4 Post-Processing with a Window Function

In this course of our investigation of the pinhole filter, we also characterize the use

of a tapered window function on masking images to reduce the impact of various

noise sources and small-scale wavefront errors on closure phases. For example,

we use a super-Gaussian function, exp(−kx4), with our experiments for its flat-

top and quickly tapering Fourier Transform. For concreteness, we will use this

same function as an illustrative example here (Figure 5.5). The window function

is described by the size of its half width at half max measured in pixels on the

detector or in units of λ/D.

Multiplying the images by a window function that retains the intensity of

the interferogram core but tapers at its edges greatly reduces the contamination

of detector read noise and dark current, or scattered light from nearby targets

not of scientific interest. Per-pixel Gaussian-distributed read noise, when Fourier

Transformed, results in a per-baseline Gaussian-distributed uncertainty. The per-

baseline noise has a magnitude that is directly related to the total transmission

of the window function. Therefore, a tighter window function removes more read

noise.

However, complex visibilities are extracted from the Fourier Transform of the

image, so the application of a window function is identical to the convolution

of the complex visibilities with the Fourier Transform of the window function.

This mixes the complex visibilities of the baselines and, ultimately, restricts the

minimum window function size.

The aperture mask is designed to be non-redundant for baselines extending

between the centers of sub-apertures; the finite size of the sub-apertures give rise
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to islands of transmitted power in the power spectrum, which we call splodges (see

Figure 5.5, Bottom Left). The splodges of a completely non-redundant mask do

not overlap, and hence the separation between neighboring splodge peaks is about

2 dsub. (In practice, some overlap at the splodge edges may be exchanged for

better coverage or larger sub-apertures.) Furthermore, neighboring splodges may

arise from completely separate pairs of sub-apertures (i.e., separate baselines), and

one would not assume any coherence between the baseline phases. For this reason,

window functions narrower than about λ/2dsub, or those without quickly tapered

Fourier Transforms, will mix the incoherent baselines of neighboring splodges and

rapidly increase the error of closure phases, similar to redundancy noise.

The optimally sized window function will balance the reduction of read noise

with the increase of redundancy noise.

Post processing with a window function also reduces the impact of small-scale

wavefront errors. This is most readily recognized by noting that the outer rings

of the point spread function encapsulate the high spatial frequency content of the

wavefront; removing this flux also removes the high spatial frequency content of

the wavefront.

5.4 Simulated Observations

We have developed an accurate simulation of the Palomar aperture masking in-

terferometry experiment in order to explore the effect of spatial filtering on wide

band data and to optimize the pinhole for implementation on the telescope.

The Palomar 9-hole aperture mask has been described previously in Lloyd
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et al. (2006) and is shown in Figure 5.1(a). Placed in the pupil plane, the mask

has baselines ranging from 0.71m to 3.94m and sub-apertures that are 0.42m in

diameter.

As discussed in Pravdo et al. (2006) and Bernat et al. (2010), aperture masking

and the implementation of closure phases works most effectively using the short

exposure times, when large scale wavefront errors (be they atmospheric or instru-

mental) can be regarded as approximately static. The typical aperture masking

operation at Palomar uses exposure lengths of 431 ms. Over this time scale, the

evolution of the atmosphere produces a highly dynamic wavefront on sub-aperture

scales.

5.4.1 Characterization and Simulation of Palomar’s Atmo-

sphere

Studies by Ziad et al. (2004) and Linfield et al. (2001) conducted with the Palo-

mar Testbed Interferometer (PTI) and Hale 200” Telescope confirm that the at-

mospheric turbulence power spectrum is approximately Kolmogorov with an outer

scale most often within the range 10 - 50 meters. The median-seeing Fried param-

eter (r0) has been measured to be 9.0 cm at 550 nm, dropping to 3.8 cm during

bad, but regularly observed seeing (Dekany et al., 2007).

Advection (wind) speeds drive the evolution of atmospheric structure within

the sub-aperture on intervals between 0.1 and 1.0 seconds. Using measurements

of the Palomar atmospheric temporal structure function over four nights, Linfield

et al. (2001) derive wind speeds typically less than 4 m/s. For shorter time scales,

the temporal structure function decays exponentially. The characteristic decay
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time, which scales with λ6/5, has been measured in two surveys to vary between

15-80 ms (Ziad et al., 2004) and 60-150 msec (Linfield et al., 2001) in Ks.

Our simulations assume an outer scale of 50 meters and Fried parameter value

9.0 cm, which corresponds to 48 cm in Ks and 32 cm in H. We use wind speeds of

5 m/s and temporal decay time of 60 ms.

5.4.2 Numerical Simulation

We generate time-evolved Kolmogorov phase screens following the procedures of

Lane et al. (1992) and Glindemann et al. (1993). These phase screens are char-

acterized by three parameters: the Fried parameter of an instantaneous phase

screen; the wind velocity which blows the static phase screen across the aperture;

and an additional parameter driving the decorrelation of high spatial frequencies

between time steps. From this last parameter emerges the exponentially decreasing

temporal structure function for short time scales.

A single 431 ms exposure image is constructed by adding 24 sub-images, each

of which is an instantaneous snapshot separated in time by 18 ms. We chose this

time step to sufficiently sample the atmospheric evolution over relevant time scales:

the wind sub-aperture crossing time is 84 ms; the coherence decay time is 60 ms.

The generated images are 512 x 512 pixels, designed to preserve the pixel

scale of the PHARO detector. In frequency space, the 5.08-meter aperture spans

slightly less than 256 x 256 pixels in Ks band. Phase screens of this size are

generated; this corresponds to an inner scale of approximately 2 cm, and sub-

apertures approximately 450 pixels in area. We repeated several simulations with

four times as many pixels and arrived at similar results; from these results we
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conclude our simulation is well-sampled.

The simulation generates one sub-image for each phase screen using an incoming

monochromatic wavefront perturbed by the screen. After passing through the

telescope aperture, the wavefront is corrected by adaptive optics, then propagates

through the spatial filter, the aperture mask, and, finally, forms an image on the

detector. We ignore read noise and photon noise. This simulation is similar to

that used by Sivaramakrishnan et al. (2001).

We model the adaptive optics system as an instantaneous high-pass filter of the

form A(k) = 1/(1 + (kc/k)2), with a cutoff imposed by the Nyquist frequency of

the actuator spacing, kc = Nact/2D (about 1.4 cycles/m at Palomar). This filter is

applied to the Fourier Transform of the phase screens and accurately reproduces

the wavefront residuals observed under optimal operation at Palomar (Dekany

et al., 2007). This overestimates the typical AO performance on faint targets,

particularly the performance of tip-tilt suppression. To account for this, we apply

the following modified AO filter function, which degrades the low spatial frequency

AO response:

A(k) = min

[
1

1 + (kc/k)2
, 0.05

]
, (5.4)

kc = Nact/2D.

To include the polychromatic effects, each wide band transmission filter is di-

vided into a number of subintervals (generally 4). A monochromatic image is gen-

erated for each sub-interval (taking into account wavelength dependent effects),

and these images are added to form the a single polychromatic sub-image. The

sub-images are co-added to create a single 431 ms exposure.
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This produces direct imaging Strehl ratios of 40-50% in H band and 60-70% in

Ks.

5.5 The Palomar Pinhole Experiment

5.5.1 Pinhole Implementation on PHARO

The PHARO instrument (Hayward et al., 2001) is especially suited to a pinhole im-

plementation. PHARO has been designed with coronagraphic capabilities, giving

access to both a focal plane and a pupil plane before the final focal plane (Figure

5.3).

The pinhole is placed in the focal plane before the aperture mask. Based on

our simulations from the next subsection, a pinhole of angular diameter 0.779 arc-

second was installed at the Lyot Stop in PHARO in June 2008. This pinhole was

chosen for optimal use at 1.6µm (H band), corresponding to an angular size of 12

λ/D. The pinhole is of size 8.7 λ/D at 2.2µm (Ks band).

5.5.2 Pinhole Size Optimization

With sub-aperture sizes of 0.42 m, the estimate from Section 5.3.3 suggests the

optimal pinhole size to be D/dsub ≈ 12λ/D. Using the simulation of the Palomar

aperture masking experiment described in Section 5.4.2, we can determine the

optimal pinhole size under typical observing conditions.

For various pinhole sizes, we simulated one hundred H band images of a 10:1
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binary with companion separation 150 mas under typical Palomar observing con-

ditions, without read noise, and with the primary aligned at the center of the

pinhole. Images of a single star were simulated to be used as a calibrator. We an-

alyzed these images both with and without a window function, and calculated the

R.M.S. residuals of the simulated closure phases fit to a model binary. Figure 5.6

shows these results for each pinhole size (with window function, solid line; without

window function, dashed line). For reference, the RMS obtained with no pinhole

in place is included as a horizontal line.

The spatial filter performance can be broken into three classes:

- A small pinhole (. 10 λ/D) impinges on the field of view, rejecting enough

of the light coming from the off-axis companion that the closure phases will

not match the model. (See also Section 5.3.3.)

- A very large pinhole (& 20 λ/D) provides very little filtering and the data is

statistically similar to the unfiltered case.

- The operational pinhole range (10-20 λ/D) reduces the image to image vari-

ation of closure phases and produces data that better fits its model. The

range 11-14 λ/D is most effective, reducing the fit residuals by roughly 25%.

These results agree with the estimate at the top of this sub-section.

Finally, we note that because the window function itself provides some spatial

filtering, the inclusion of the pinhole provides slightly less improvement if compared

to the case in which no window function is used.
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5.5.3 How Important Is Target Placement?

In Section 5.3.3, we showed that the asymmetrical truncation of the target by the

pinhole alters the measured closure phases, even in the absence of wavefront errors,

an effect we called misalignment error.

Equation 5.2 can be directly integrated to determine the misalignment error

when a target is observed through the pinhole. Alternatively, we chose to simulate

the effect to more accurately reflect the details of our analysis pipeline. For clarity,

we present the R.M.S. closure phase deviation between the pinhole and non-pinhole

values with the Palomar 9-hole mask (averaged over the set of 84 closure phases)

in Figure 5.7.

By inspection, we see that in H band and at high levels of correction (Strehl

&40%), the pinhole introduces less than 0.3◦ R.M.S. closure phase error at nearly

any alignment within the 440 mas diameter pinhole. At a diameter of 12λ/D, less

than 2% of the total flux resides outside the pinhole and very little aliases back

into the baseline frequencies. The misalignment deviation is also insensitive to

the orientation of the misalignment; the aperture mask is three-fold symmetric in

physical space, but provides a uniform coverage of spatial frequencies. At mod-

erate Strehl ratios, the misalignment deviation increases, but observationally, this

increase is balanced by a larger benefit of spatial filtering.

The alignment requirements are tighter in Ks. Because the pinhole is designed

for H band, its size is only 8.9λ/D in Ks. Good positioning is even more important

given that AO residuals and closure phase errors are usually smaller. Alignment

can introduce up to 1.0◦ of closure phase errors if misaligned by 200-300 mas, or

roughly 2-3λ/D.
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The presence of a companion adds an additional misalignment error, although

this error will be attenuated by the secondary-primary contrast ratio. Therefore,

particularly for high contrast binaries, the misalignment errors provided here give

good rule-of-thumb indications of how well a target must be positioned within the

pinhole. Given that aperture masking observations at Palomar typically yield 1-2

degrees of closure phase, targets must be positioned close to the pinhole center

during Ks band observations.

Finally, we note that the percentage of blocked flux is a weak function of the

target alignment, and a strong function of the AO performance and size of the

direct imaging halo (Figure 5.2, right panel). In the observations of Section 5.6

which compare pinhole and non-pinhole observations, the percent loss of flux is a

measurable quantity. From the results of this plot, it is clear that large flux drops

can be attributed to momentary drops in AO performance or very large shifts

in alignment. Astrometric jitter on the scale of hundreds of mas is never seen.

Practically, if a series of images contains one or a few with large flux drops, and

the target was initially well aligned, then identifying large flux drops is a useful

proxy for excluding frames taken with poor AO performance.

5.5.4 Window Function: Optimal Size and the Palomar

9-Hole Mask

For our experiment, we use a super-Gaussian function, exp(−kx4), for its flat-top

and quickly tapering Fourier Transform. We describe the window function by the

size of its half width at half max, wpix, measured in pixels on the detector.

The optimal window function size finds the balance between eliminating read
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noise and increasing redundancy noise. We present a measure of the effectiveness

of various window function sizes in the presence of various levels of read noise in

Figure 5.8.

We simulated one hundred images (256 x 256 in size) of a 10:1 binary with

companion separation 150 mas and of a calibrator in the same fashion as described

in Section 5.5.2 but without a pinhole in place. To each set of images we added

gaussian read noise with a per-pixel noise level ranging from 0.2% to 5.0% of

the peak intensity. (This corresponds to targets of 7th to 10th magnitude when

taking 6 second exposures on the PHARO detector.) The images were processed

with window functions of various sizes and we calculated the root mean squared

(RMS) residuals of fits to a model binary. In Figure 5.8 we plot the ratio of the

measured RMS with a window function to the same set of images without the

window function. For all levels of read noise an optimally sized window function

improves the model fits. We caution that, because the effect of read noise on closure

phases scales with image size, and the choice of default image size is arbitrary, the

results can only be evaluated qualitatively.

Several features are apparent.

First, the optimal window function is approximately λ/dsub, or ∼ 12λ/D for

the Palomar aperture mask, with tighter windows for the high noise cases; one

expects the optimal window size to be a function of the aperture mask. This

makes qualitative sense: The interferogram image is a set of interference fringes

under an Airy function envelope of characteristic size λ/dsub. One would expect

the optimal window function to crop out those pixels with signal to noise less than

one. Beyond λ/dsub, the intensity of the interferogram drops below a few percent

of its peak value, comparable to the read noise.
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Second, too small a window function quickly adds redundancy noise into the

measurements. This turning point is near 0.5 λ/dsub.

Third, even in the absence of read noise, a window function decreases closure

phase noise (solid curve). This demonstrates the capacity of the window function

to spatial filter the wavefront phase noise, even though the improvement is only

about 3-4%.

To emphasize the utility of the window function as a spatial filter of wavefront

errors we simulated another set of images in which the wavefront is static over

the exposure. With only spatial variation of the wavefront, the window function

reduces closure phase errors by nearly 20% (Figure 5.9).

Misaligning the peaks of the window function and interferogram introduces a

tiny amount of closure phase error. Even an unrealistic misplacement of 10λ/D

(about 26 pixels on PHARO at 1.6µm) with a tight window of size 0.7 λ/dsub

produces an error below 0.06◦. This will likely on be relevant for observations

taken by space telescopes.

5.6 Observations

Between June 2008 and September 2009, we observed twenty-six single star targets

and four known binaries spanning infrared magnitudes between 6.0 and 9.0 using

the PHARO instrument on the Hale 200” Telescope at Palomar Observatory.

Each aperture masking observation was conducted with and without the pinhole

in place to compare the effectiveness and practicality of using the pinhole filter

during ground observing. An observing sequence consisted of sets of twenty images
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(six second exposures) with the Palomar 9-hole aperture mask in several standard

infrared bands. Typically images were taken in a particular band with the pinhole

in place, then again with the pinhole removed, until the sequence of bands had

been taken. Similar observations of a calibrator were then taken. This was done to

minimize changes in seeing between comparison observations and to minimize the

effect of instrumental wavefront changes from slewing the telescope on calibration.

Care was taken to use identical detector configurations (position, etc) and to align

the target center of light at the center of the pinhole. This alignment procedure

added approximately two to five minutes additional overhead to each observation

set.

The aperture mask, data taking procedure, and custom IDL pipeline to analyze

aperture masking images have been previously described by Lloyd et al. (2006),

Kraus et al. (2008), and Bernat et al. (2010). The mean and variance of the closure

phases and amplitudes were calculated (across the set of images) and calibrated.

The calibrated closure phases were found by subtracting the calibrator closure

phases from those of the target; their errors were estimated by adding in quadrature

the errors of the targets and calibrator. The closure phase signal of a single star is

zero; deviations from zero may indicate the presence of a companion or result from

wavefront errors. The log-amplitudes are calibrated identically and are included

to determine if spatial filtering improves measurement of the amplitudes, but are

not used for the analysis of the binary candidates. Companions are located by

fitting the closure phase data set with a three parameter binary closure phase

model (separation distance, position angle, and contrast ratio) to minimize χ2.

The targets are bright enough that the per-pixel read noise is at or below a few

percent For the analysis that follows, we use the results of Section 5.5.4 and use a
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window function with half-width at half-max of 1.0 λ/dsub (30.9 pixels in H band,

41.5 in Ks band).

5.6.1 Pinhole Stability and Target Alignment

Images of the pinhole were taken at several periods throughout the run, from

which its location on the detector can be measured. The location of the pinhole

remained accurate to less than two pixels for the entire run, with the exception

of two instances in which the Slit wheel appeared to lodge the pinhole at an

alternative location. This was easily repaired by putting the Slit wheel into its

’HOME’ position.

Explicit (direct) images of the target within the pinhole were taken only rarely.

However, the locations of the interferogram centers provided an accurate location

of the binary targets on the detector. Drift of the target was typically less than

one-half pixel during a set of twenty images (about two minutes). Comparison of

the target and pinhole locations indicate that our alignment was accurate to within

four pixels of the measured pinhole center. We conclude that the largest potential

source of misalignment error arises from the initial pointing accuracy within the

pinhole, and not jitter of the target or pinhole during data taking.

The effect of the pinhole was seen to alter several observables. Most directly,

when observing reference stars, the pinhole induced a drop of target flux by roughly

35% in H and 15% in Ks. The pinhole is located after the adaptive optics system

in the focal plane, hence these values reflect the percentage of the direct imag-

ing point spread function which falls outside the pinhole. These percentages are

consistent with the pinhole size and the level of AO performance (Strehl ratios of
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approximately 10% in H and 30% in Ks). Binary targets show a similar drop in

flux despite their larger size, which we can take as an indication that their center

of light is well aligned.

Simulations and calculations using a sample of direct images show that the

percentage of blocked flux is a weak function of the target alignment, and so large

flux variations do not indicate a high level of astrometric jitter. Instead, this

percentage is a strong function of the AO performance (and size of direct imaging

halo). Low transmission (below 40%) well identified individual images blurred by

temporary drops in AO correction. High flux transmission well predicted good fits

to models (e.g. Figure 5.10).

5.6.2 Calibrators: Pinhole Filtering Produces Lower Clo-

sure Phase Variance and Higher Amplitudes

The use of the pinhole generally reduced the variance of closure phases and in-

creased the amplitudes for the observed single stars. These results are compared

to a set of simulated observations in Figure 5.11.

The closure phase standard deviation is reduced by 10 and 19 percent in H band

(1.6µm) and Ks band (2.2µm), respectively. A larger reduction is expected at the

longer wavelength, as the pinhole is relatively smaller and provides more aggressive

spatial filtering. Although not displayed, the root mean squared residuals of the

data fit to their model values also reduced by 10-20% indicating better calibrated

data. The pinhole filtering increases the visibility log-amplitude by 14 and 18

percent on the longest baselines at H band and Ks band, respectively. Each of

these confirm the spatial filter is reducing closure phase noise from sub-aperture
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redundancy.

In both cases the simulation predicts a larger reduction in variance, although

the results across wavelengths are consistent. The simulation does not include

the time-variation of AO residuals during a single exposure, particularly slow tip-

tilt correction of the PALAO system (Bloemhof et al., 2001). This can produce

several interferograms in a dataset with large closure phase errors which cannot be

improved by spatial filtering.

5.6.3 Binaries: Lower Closure Phase Variance

We observed four previously characterized binaries with well defined orbits with

and without the pinhole in several bandpasses: GJ 164 (Martinache et al., 2009);

G 78-28 (Pravdo et al., 2006); GJ 623 (Martinache et al., 2007); and GJ 802B

(Ireland et al., 2008). The characterized orbits were used to predict the location of

each companion on the observing date using a Monte Carlo simulation to account

for the uncertainty of the orbital parameters. Each target was observed to obtain

twenty images (six second exposures) in several bandpasses in September 2009.

Three of the four known binaries were successfully resolved (Table 5.1). The high

contrast companion to GJ 802B could not be resolved at the correct separation

and contrast ratio.

GJ 164 was imaged for three sets near dawn with the pinhole and one set

without. All but the first sets of data suffered poor AO correction, were visibly

less sharp, and had flux levels drop by nearly 75%. The binary could be well

resolved in all three sets with the pinhole, but the later sets yield much worse fits

and larger systematic errors and are not used in the analysis. The fit parameters
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to GJ 164 share a degeneracy with a spurious set of parameters (∆H = 0.030, at

nearly the same location), and limit the quality of parameter errors which can be

derived from the fit. Instead, the magnitude contrast was held fixed to the values

determined by Martinache et al. (2007). The observations of reference stars to

calibrate GJ 623 varied in AO correction and quality between pinhole and non-

pinhole measurements, and so this target is presented without calibration in order

to compare the two performances.

The median closure phase scatter (stochastic errors) decreased for each obser-

vation by roughly 20-25%, which indicates that the pinhole operated effectively to

minimize closure phase errors from AO residuals. However, the data fits to binary

models showed no decrease in R.M.S. residuals, whereas the fits to single star data

decreased by 10-20%. Of the eight total measurements, four showed an increase in

R.M.S., although only two Ks band observations increased by more than 10%. The

observations which increased in R.M.S. are those in which either the companions

was aligned far from the pinhole center, or the companion is comparatively bright.

We prefer to discuss this measurement in terms of the amount of unattributed

systematic error that needs to be added in quadrature to the stochastic errors to

yield the R.M.S. values, i.e., (R.M.S)2 =< σ2
φ + σ2

sys >. This is listed in the next

to last column of Table 5.1. A systematic component of 1.0◦ specific to binary

targets would account for the discrepancy of performance.

Misalignment of the target within the pinhole contributes to the increased

residuals. Because each binary system could be resolved by direct imaging, the

targets were aligned with their center of light as close to the pinhole center as

could be accurately judged by eye. This necessarily placed each star off-center of

the pinhole. The astrometric alignment of each component can be inferred from
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the center of the interferograms and is listed in Table 5.3. As discussed earlier,

the alignment of the components is determined by the original placement of the

observer and moves comparatively little during a set of images.

We simulated each binary with and within the pinhole displaced by the amounts

in Table 5.3. The atmospheric seeing was tuned to fit Strehl ratio estimates from

direct images taken throughout the night: 40% in Ks and Brγ bands, 15% in H and

CH4s bands, and 10% in J band. The astrometric jitter of the simulated images

was consistent to those observed (and less than 20 mas per twenty images for most

targets). Each simulation produced enough images until all errors reached a steady

state; the estimates of the misalignment error are included in the last column of

Table 5.1. Additional contributions from misaligned calibrators are not included.

Our calculation of the misalignment error requires knowledge of the absolute

positions of the pinhole and target components, and an accurate measure of the

point spread function. Given the small jitter of targets, our calculation is limited

by imperfect knowledge of the point spread function. Even still, the quality of

correction can fluctuate in timescales of minutes, as can be observed by viewing

successive direct images or other observables such as pinhole transmission (Figure

5.10). Given these assumptions, misalignment contributes systematic components

of 0.4-0.8◦ to the H and Ks band binary observations. We also note that simulations

demonstrate large & 1.0◦ alignment errors for slightly lower Strehl ratios (.10%

in H and .20% in Ks). These challenges instead warrant the development of an

observing strategy to calibrate alignment errors empirically.

The binary parameters measured with and without the pinhole, and those

predicted by the system orbits, are in good agreement. In each case, the spatial

filter data fit to slightly higher contrasts ratios (≈5%). This may indicate that the
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Palomar 9-Hole Mask
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Figure 5.1: Aperture masks are designed to be non-redundant, but some redun-
dancy persists because of the finite sub-aperture size. (Left) The Palomar 9-hole
Mask. Each pair of sub-apertures acts as an interferometer. (Center) A redundant
mask. Two pairs of sub-apertures transmit the same baseline. As a result, the
baseline carries redundancy noise into its closure phase. (Right) Because of the fi-
nite hole size, every baseline is redundant on sub-aperture scales. Spatially filtering
the wavefront smoothes the wavefront phase, reducing noise from the sub-aperture
redundancy.

Table 5.2: Astrometry and Alignment of Targets within Pinhole

Distance From Center (mas) Est’d
Binary Band Primary Secondary σalign

GJ 164 H 90 ± 50 (60) 140 ± 50 (60) 0.61
Ks 50 ± 15 (40) 90 ± 15 (40) 0.42

G 78-28 H 90 ± 35 (50) 110 ± 35 (50) 0.68
Ks 80 ± 10 (40) 70 ± 10 (40) 0.75
J 100 ± 25 (45) 170 ± 23 (45) 0.24

GJ 623 CH4s 130 ± 10 (35) 200 ± 10 (35) 0.75
Ks 90 ± 10 (40) 200 ± 10 (40) 0.46
Brγ 150 ± 10 (40) 190 ± 10 (40) 0.63

Table 5.3: Alignment of Targets Within Pinhole and Estimated Closure Phase
Misalignment Error. Position determined by center of interferograms, errors es-
timated from spread over twenty images. Values in parentheses include 40 mas
uncertainty of the absolute pinhole position. Misalignment errors are calculated
using the simulation of Section 5.5.3, assuming a Strehl of 15% in H and CH4s,
45% in Ks and Brγ, and 10% in J band.
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(a) AO Corrected Phase (b) Overlay of Aperture Mask

(c) AO + Spatial Filter Phase (d) Overlay of Aperture Mask

Figure 5.2: Effect of the pinhole filter on sub-aperture scale phase variation. a)
AO corrected wavefront phase. Small scale spatial inhomogeneities are apparent.
b) The AO corrected wavefront with an overlay of the aperture mask. Notice that
the wavefront phase is inhomogeneous within the sub-aperture. c) AO corrected
wavefront after spatial filtering. The small scale features are smoothed out; the
wavefront exhibits structure with a characteristic scale close to that of the sub-
apertures. d) Within each sub-aperture, the spatially filtered phase is much more
uniform.
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Figure 5.3: Optical setup for pinhole filtered aperture masking interferometry at
Palomar. One takes advantage of the coronagraphic capabilities of PHARO by
inserting the aperture mask in the Lyot wheel and the spatial filter in the Slit
wheel.
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Figure 5.4: Imaging An Unresolved Targets Through a Pinhole. The point spread
function of three targets is shown with a pinhole of size 6λ/D overlaid. Square root
contrast scaling is used to highlight the truncated flux. (Left) The pinhole, located
in an image plane, truncated the portion of electric field which forms the outer rings
of the point spread function. In perfect seeing, the total flux blocked is very low.
(Center) Wavefront errors dispel flux outward creating a diffuse halo around the
target. The blocked flux increases, and more power aliases back into sub-aperture
scales, resulting in closure phase errors. (Right) When asymmetrically truncated,
the center of light shifts towards the pinhole center (black x). Each component of
a binary is truncated differently, leading to errors in astrometry or contrast.
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Figure 5.5: Effect of a Window Function. (Top Left) The aperture mask produces
a set of interference fringes beneath an envelope of size λ/dsub, as seen in this
Palomar 9-hole masking image. The central peak has been zeroed to highlight the
envelope and outer rings. The radius of the white ring is λ/dsub.(Bottom Left) The
power spectrum of the same interferogram, presented in units of baseline/D rather
than spatial frequency. Each island of transmitted power (or splodge) is of size
2dsub. This is expected, as the transmission function is related to the autocorrela-
tion of the mask. (Top Right) Using a window function of characteristic HWHM
λ/dsub (here, a super-Gaussian) removes the interferogram wings and its associated
read and wavefront noise. (Bottom Right) The window function produces a con-
volution kernel of size λ/2HWHM. Notice that a window function larger than 0.5
λ/dsub creates a kernel larger than 2dsub and mixes neighboring splodges, adding
redundancy noise. (see text)
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Effectiveness of Various Pinhole Diameters
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Figure 5.6: The RMS fit residuals of simulated data (H-band, no read noise) with
pinholes of various size, analyzed with (solid line) and without (dashed line) a
window function. The horizontal line is the measurement level without any pinhole
in place. The pinhole filter is most effective within the range 11-14 λ/D.
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companion flux was skewed closer to the pinhole edge and its flux truncated by a

few percent more, which is consistent with the measured locations of the objects

within the pinhole (Table 5.3). No bias was found in the relative astrometry.

Binary parameter errors decrease in proportional to the closure phase errors,

and indicate that one can use a pinhole to measure binary parameters more pre-

cisely. Detection contrast also scales with closure phase errors, and indicate pinhole

measurements can provide an increase of contrast by 20-25%. However, it must be

noted that our practice of scaling the closure phase errors until the χ2 of the best

fit is unity, because the data residuals did not improve, will partially counteract

the other gains in precision.

5.7 Summary of Results and Conclusions

In this text, we discussed spatial wavefront variation on the scale of NRM sub-

apertures, which contributes to closure phase errors we called sub-aperture redun-

dancy noise. We proposed that quasi-static wavefront errors on the scale of the

sub-aperture, which evolve over hundreds of seconds or with telescope movement,

give rise to the limitations of aperture masking calibration. Through simulations

and direct observation we have shown that the use of a pinhole filter effectively re-

duces sub-aperture spatial variation and can reduce closure phase errors, increase

visibility amplitudes, and lead to better calibration and higher detection contrasts.

With a simple premise, we estimate the optimal pinhole size to be dspf ≈ D/dsub

in units of λ/D, or about 12λ/D for the Palomar 9-hole mask. We confirm this

result using a detailed simulation of the Palomar aperture masking experiment and

show that the operational pinhole size ranges from 11 to 14λ/D. Smaller pinholes
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reject enough light from off-axis companions to alter the measured closure phases.

Larger pinholes provide little spatial filtering.

Because the pinhole is not a perfect low-pass filter, the truncation of off-axis

targets aliases power back into phase at sub-aperture scales. This introduces clo-

sure phase errors of its own, both systematic and stochastic. Using simulated

observations over a wide range of correction (Strehl ratio of 10-100%), we show

that a misalignment of the target by 200 mas introduces 0.3-1.0◦ degrees of system-

atic closure phase, which we have termed misalignment error. We propose several

methods for the calibration of this component although none are undertaken in

this experiment. As a result, the effectiveness of pinhole technique is limited by

the accuracy with which targets can be aligned within the center of the pinhole.

We installed a pinhole of size 0.779 arcsec (12λ/D at 1.6µm) in the Slit wheel

focal plane of the PHARO instrument on the Hale 200” Telescope at Palomar

Observatory. Using this pinhole we observed twenty single unresolved stars and

three well characterized binaries with and without the pinhole in a selection of

standard near infrared bands. The AO system provided moderate correct: Strehl

∼5-15% in H band and ∼20-40% in Ks band.

Observations of unresolved stars showed that the pinhole reduced the stochas-

tic variation of closure phases by 10-25% from one image to the next, and visibility

amplitudes increased. R.M.S. residuals to model fits decreased by a similar factor.

Each shows that increasing sub-aperture coherence decreases closure phase redun-

dancy noise. Lower fit residuals indicate that calibration improved, and that the

aperture masking calibration limit is partially attributable to small scale quasi-

static wavefront errors. Furthermore, detection contrasts scales proportional to fit

residuals, indicating an increase in detection contrast of 10-25%.
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The modest increase in closure phase signal to noise when the pinhole is used

suggests that the spectrum of wavefront errors contains relatively little power on

the smallest spatial-scales within the sub-aperture. Additionally, the smallest scale

variations which cycle multiple times within a single sub-aperture tend to produce

redundancy noise that averages out. The leading source of spatial redundancy

noise, both quasi-static instrumental and residual atmospheric wavefront errors, is

more likely low-order Zernike modes (i.e, ’phase slopes’) across the sub-apertures.

Section 5.10 presents a more detailed derivation of sub-aperture spatial redundancy

in terms of the spatial structure of the sub-aperture wavefront.

Simulations of these observations, when compared, predict a slightly larger

benefit from the pinhole filtering. As discussed in Section 5.3.2, temporal varia-

tions of the baseline phase within a single exposure leads to a sort of temporal

redundancy noise which cannot be removed by closure phases of the pinhole filter.

Furthermore, the slow response of the Palomar AO tip-tilt mirror (5 Hz) gives rise

to full aperture scale wavefront residuals which evolve on the order of a fraction

of an exposure. The baseline phase changes these residuals induce contribute to

the overall variation of the closure phases from one image to the next (though not

calibration errors). The simulation did not include temporal variations of the AO

residuals, and as a result gives the impression that the pinhole is more effective

at reducing stochastic closure phase noise (50% vs. 20%). Indeed, these results

imply that temporal variation of the wavefront phase is a large source of closure

phase variance with the current PALAO system.

We observed three well characterized binary systems to determine how the

pinhole influences the astrometric and photometric characterizations of discovered

systems. The measured binary parameters were consistent with those acquired
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without the pinhole, and those predicted by the measured orbital parameters of

the system. No bias was found in the astrometry (i.e., binaries did not tend

towards shorter separations with the pinhole), however contrast ratios with the

pinhole tended to be a few percent fainter. Our alignment technique placed the

system center of light near the pinhole center, and the light of the companion is

preferentially blocked by this arrangement. Better positioning of the target would

likely remedy this bias.

Although closure phase stochastic errors decreased by 20-25%, binary data

acquired with the pinhole provided no better fits to data, and suggest that binary

targets observed with the pinhole contain an additional 1.0◦ systematic error. After

simulating these observations with and without the pinhole, we conclude that the

systematic component arises from the off-center alignment of a resolved target.

Simulations demonstrate large & 1.0◦ alignment errors at low Strehl ratios (.10%

in H band and .20% in Ks).

Binary parameter errors and detection contrast both decrease in proportion to

the closure phase errors, and indicate that one can achieve more precisely measured

binary parameters and higher contrasts (20-25%) with the pinhole. However, our

practice of scaling closure phase errors to account for data residuals will partially

counteract the other gains in precision and requires calibration of the misalignment

error in the high contrast or high precision regime.

Finally, we showed that multiplying the images by an apodized window function

acts to reduce the effects of wavefront error similar to a spatial filter. We found

that the optimal window function has a half-width at half-max of about λ/dsub,

with smaller window functions favored for targets in which read noise is higher.
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5.8 Discussion

5.8.1 A Strategy for Future Pinhole Observations

In light of this investigation, the pinhole can prove effective in two scenarios.

When seeing or correction is poor, and closure phase observations do not reach the

calibration limit, a pinhole filter will clearly provide higher signal to noise closure

phases and more efficient data taking.

At the other extreme, the pinhole may be valuable for improving very-high

Strehl ratio (&80%) observations with extreme-AO systems. The high spatial

frequencies filtered by the pinhole contribute a larger proportion of the overall

wavefront errors in this scenario. The pinhole could be optimally tuned to the

AO actuator size, much larger, and alignment requirements would be substantially

relaxed. Most importantly, the aliasing of high spatial frequency content into sub-

aperture scale phase errors is a higher order effect of the wavefront (Poyneer &

Macintosh, 2004). At very high levels of correction, the aliased power is a smaller

component of closure phase errors.

We can arrive at a rough estimate of a pinhole performance on extreme-AO sys-

tems by simulating a higher-order AO system, such as the 3368-actuator Palomar

3000 system (P3K, Dekany et al. (2007)). As mentioned earlier, our simulation

does not account for the sluggish tip-tilt correct of the current Palomar system

and over predicted the pinhole performance as a result. The P3K system will have

upgraded response by using the current 241 actuator system to perform low-order

correction, and thus provide more stable correction. Using the specifications of

this system, we simulated a 10:1 binary separated by 150 mas in H band under

152



typical conditions (c.f., Section 5.5.2). A pinhole of size 12λ/D decreased stochas-

tic closure phase errors to 20% nominal values, i.e., a fivefold increase in signal to

noise. When compared to our simulations of the current AO system (a twofold

increase), the pinhole can impact extreme-AO observations favorably.

For very-high Strehl ratio observations, misalignment error will be lower and

less sensitive to changes in correction (0.19◦ in this example). Empirically cali-

brating misalignment by observing a reference star at the same position as the

primary is only a partial solution (as it does not take into account the compan-

ion), likely limited by the pointing accuracy of the observer, and decreases the

overall efficiency of the observations. Instead, dithering the center of light around

the pinhole center will likely be an effective way to minimize this systematic com-

ponent. Using diametrically opposed target placements successfully reduced the

misalignment component to 0.11◦ in simulation, a reduction of nearly half.

Finally, one must also consider the optimal pinhole size to survey across the

near infrared bands. For example, if the effective range of pinhole sizes is narrow

enough (e.g., 11-14 λ/D for this experiment) a single pinhole may not accommodate

multiple wide band infrared filters. In those cases, multiple pinholes tuned to

specific observation bands will be most effective.

5.8.2 Extreme-AO Aperture Masking Experiments

Next generation adaptive optics systems with aperture masks, such as Palomar

3000 (Dekany et al., 2007) and Gemini Planet Imager (Macintosh et al., 2008),

provide actuator densities high enough to correct wavefront errors on sub-aperture

scales. Design and optimization of these aperture masking experiments which bal-
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ance sub-aperture size and number against adaptive optics correction and the limi-

tations of systematics requires a more detailed understanding of how sub-aperture

wavefront errors impact closure phases, and where resources should be focused.

This work provides one such investigation, and Section 5.10 presents a formalism

for this optimization. Extreme-AO systems are anticipated to provide highly stable

correction down to scales of 8 cm and thus may motivate smaller and additional

sub-apertures, providing more spatial frequency coverage and resolution. This

balance will depend on the spatial and temporal power spectra of the corrected

wavefront residuals, and this data should be accumulated.
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Figure 5.7: Misalignment of a single star within the pinhole introduces closure
phase errors. (a) The Palomar 9-hole mask, overlaid with three closure triangles
for which the misalignment errors are calculated. (b) Error due to misalignment at
1.6 µm (H band) as a function of target distance from the pinhole center. (Several
azimuthal orientations are plotted for each separation.) (c) Closure phase errors
at 2.2 µm (Ks band), in which the pinhole is smaller. In both cases, errors in
visibility amplitude errors below .005 for the same ranges.
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Window Function Decreases Closure Phase RMS
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Figure 5.8: Window functions reduce closure phase error from read noise. These
curves, from top to bottom, display the reduction in RMS closure phase error
when read noise is 0% (top, solid), 0.2%, 0.4%, 0.6%, 1.0%, and 5.0% (bottom,
dotted) of the peak image intensity. The optimal window function is typically of
size ∼ λ/dsub, or ∼ 12λ/D for the Palomar aperture mask, with higher read noise
favoring tighter window functions. Smaller window functions quickly add large
amounts of redundancy noice. (See text.) Note: Even with no read noise (solid
curve), a window function reduces closure phase errors, indicating that the window
function provides an effect similar to spatially filtering the wavefront.
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Window Function Decreases Closure Phase RMS
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Figure 5.9: Curves showing the effectiveness of the window function as in Figure
5.8, except the wavefront is static over an exposure. Most notably, a window
function provides better spatial filtering when the wavefront is static (solid line).
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AO Correction Drives Flux Changes
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Figure 5.10: Drops in flux transmission through the pinhole are driven by changes
in AO performance. The binary GJ 623 was resolved in Ks using twenty five
masking images through the pinhole. The images which produced the best fitting
closure phases (as measured by R.M.S. deviation from the model) also had the
least flux blocked by the mask. Poor correction displaces more flux into the outer
halo of the PSF, which is then blocked by the pinhole. Poor correction also leads to
larger closure phase errors. This trend is not caused by misalignment or movement
of the target within the pinhole (see text), but rather changes in AO correction.
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Increase of Visibility Log-Amplitude with Spatial Filter in H
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Increase of Visibility Log-Amplitude with Spatial Filter in Ks
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Figure 5.11: Closure phase standard deviation (scatter) is reduced and baseline
visibility amplitude is increased when observed through the pinhole filter. Data
points are drawn from observations of 26 single stars. Horizontal lines are the
median of the data (solid) and the simulated experiment (dashed). (Top Row)
Closure phase scatter is reduced by 10 and 19 percent in H and Ks band mea-
surements, respectively. (Bottom Row) Visibility amplitude is increased by 14 and
18 percent in H and Ks bands, respectively. In all cases, the simulation (model)
predicts a larger reduction in noise (see Discussion).
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5.9 Pinhole Filtering: Inteferometry

Observing through a pinhole alters the measured complex visibility of a point

source even in the absence of any wavefront aberrations. This analysis assumes

that the Fraunhofer approximation applies, i.e., that the electric field in the image

plane is the Fourier Transform of the phasor of the wavefront phase in the pupil

frame. We assume no wavefront aberrations, including those from optical errors

and central obscurations.

The optical path is shown in Figure 5.3. We denote the electric field at the

telescope aperture with the subscript a and the electric field after spatially filtering

with the subscript spf . The coordinates in the image plane are ~θ; all angles are

measured in units of λ/D. We assume the pinhole has angular diameter dspf and
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is positioned at ~θ = 0. The point source is located at an angular position ~α on the

sky and ~α = 0 corresponds to perfect alignment of the source in the pinhole.

The wavefront phasor at the entrance of the aperture is:

Ea(~x) = Π(~x/D)e2πi~α·~x/D,with
Π(~x/D) = 1 for |~x/D| < 1

2
,

Π(~x/D) = 0 elsewhere.
(5.5)

The optics of the spatial filter truncate the electric field in the focal plane,

which results in a convolution when the field is transformed back at a pupil plane.

The spatially filtered electric field is then:

Espf (~x) = [Π(~x/D)e2πi~α·~x/D] ? [
2J1(π~xdspf/D)

(π~xdspf/D)
], (5.6)

where the star represents convolution.

The use of an aperture mask, M(~x), containing a baseline~b ultimately measures

the spatial frequency ~u = ~b/λ of the complex visibility. For clarity, we present this

as a function of baseline:

V (~b) =

∫
d~x
[
M(~x)M∗(~x+~b)

] [
E(~x)E∗(~x+~b)

]
, (5.7)

where E(~x) is the electric field sampled by the mask.

Without the spatial filter, substitution for the field from Equation 5.5 gives

V (~b) = T (~b)e2πi~α·~b/D, with T (~b) =

∫
d~x M(~x)M∗(~x+~b). (5.8)

With the spatial filter, the aperture mask samples Espf (~x) of Equation 5.6. By
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recognizing that convolution with e2πi~α·~x/D leads to a Fourier Transform, doing so

before substitution yields:

Vspf (~b) = T (~b)

∫
d~θ Π[~θ/dspf ]× e2πi~θ·~b/D ×

[
2J1(π|~θ − ~α|)
π|~θ − ~α|

]2

(5.9)

In the limit of an infinite pinhole, the integral converges to the value

T (~b)e2πi~α·~b/D.

We can extend use this approach to include arbitrary pupil-plane phase errors

which arise prior to propagation through the pinhole system. In the presence of

inhomogeneous phase in the pupil plane, eiφ(x), Equation 5.6 becomes

Espf (~x) = [Π(~x/D)e2πi~α·~x/Deiφ(~x)] ? [
2J1(π~xdspf/D)

(π~xdspf/D)
], (5.10)

Repeating the steps above, the complex visibility is written as:

Vspf (~b) = T (~b)

∫
d~θ Π[~θ/dspf ]× e2πi~θ·~b/D × PSF [~θ − ~α], (5.11)

with

PSF [~θ] =

∣∣∣∣∫ d~x e2πi~θ·~x/D Π(~x/D)eiφ(~x)

∣∣∣∣2 . (5.12)

5.10 Spatial Structure of Closure Phase Redundancy Noise

Within this work it has been stated that non-zero closure phases can be introduced

by sub-aperture phase inhomogeneities, and that producing a more coherent phase

across a sub-aperture will lead to better measurements. While this statement has

been studied at length for the seeing limited case (see, e.g., Readhead et al. (1988)

and Nakajima et al. (1989)), no approach has been put forward tailored for NRM

observations with adaptive optics.
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Spatially filtering the smallest scale structure of wavefront inhomogeneities is

one approach for producing a more coherent sub-aperture wavefront. Next gener-

ation adaptive optics systems, such as Palomar 3000 and Gemini Planet Imager,

provide actuator densities high enough to correct wavefront errors on sub-aperture

scales. Additionally, pupil-reimaging techniques, such as Serabyn et al. (2006) have

successfully concentrated the set of actuators onto a subset of the pupil, thus pro-

viding increased actuator densities and achieving very high Strehl ratios (&92%)

with conventional adaptive optics systems on a smaller aperture. Sparse NRM

techniques generally cover less than 10% of the full aperture; one can conceive of

future experiments which concentrate adaptive optics correction to sub-aperture

wavefront modes.

Design and optimization of new aperture masking experiments, which balance

sub-aperture size and number against adaptive optice correction and the limita-

tions of systematics, requires a more detailed understanding of how sub-aperture

wavefront errors impact closure phases, and where resources should be focused.

This section presents a formalism for this optimization, and establishes redun-

dancy noise in the semi-coherent sub-aperture case. We also find that decomposing

the sub-aperture wavefronts in Zernike modes is convenient for accommodating the

conventions used in adaptive optics.

Zernike Modes

By describing the inhomogeneities of a static wavefront with Zernike modes, we will

investigate the spatial noise sources of aperture masking interferometry and show

that the primary noise source for closure phases comes from only the structure of

the wavefront within the sub-aperture.
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A static wavefront can be decomposed into Zernike modes, Zm
n (x), a set of

orthonormal functions which naturally describe perturbations to spherical wave-

fronts. The polynomials are defined on a unit circle, and must be scaled to fit the

aperture. We use the definitions of Noll (1976) which normalize the polynomials

such that they are orthnormal, i.e.,

∫
d2x Z0

0(x) = 1 (5.13)∫
d2x Zm

6=0(x) = 0 (5.14)∫
d2x Zm

n (x)Zs
r (x) = δnr δms (5.15)

Although Kolmogorov turbulence distributes power into even very high order

Zernike modes, most of the power falls into the low order modes. To facilitate

discussion of these modes, we present their names: Z0, piston; Z±1
1 , tip/tilt; Z0

2 ,

defocus; and Z±2
2 astigmatism.

5.10.1 Baseline Visibility Measurement

The measured visibility of the incoming wavefront, eiφ(~x), through an aperture

M(~x) is:

V (~r) =

∫ texp

0

dt

∫
d~x ei[φ(~x+~r,t)−φ(~x,t)]M(~x+ ~r)M(~x). (5.16)

If the aperture, M(~x), is a two-hole mask with unit area circular sub-apertures

separated by a distance~b, then the visibility of the corresponding baseline simplifies

to
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V (~b) =

∫ texp

0

dt

∫
sub−

aperture 1

d~x ei[φ(~x+~b,t)−φ(~x,t)]. (5.17)

In the limit of zero exposure time, the instantaneous baseline visibility is

V (~b) =

∫
sub−

aperture 1

d~x ei[φ(~x+~b)−φ(~x)]. (5.18)

Notice that the integral is carried out over the set of redundant baselines. For

a so called non-redundant mask, the baselines stretching between sub-aperture

centers are redundant only within the sub-aperture. The baseline phasors, not

phases, add.

One could decompose the wavefront over each sub-aperture into Zernike modes.

We define a sub-aperture at ~x = 0 by φ1(~x) =
∑

n,m amn Z
m
n (~x), with amn =∫

d~x φ1(~x)Zm
n (~x). The wavefront over the sub-aperture at ~x = ~b, φ2(~x), is de-

composed into Zernike coefficients bmn .

Referring to Equation 5.18, we note that the quantity φ(~x+~b)− φ(~x) is itself,

then, a sum of Zernike terms. We denote the coefficients of this difference by

αmn ≡ amn − bmn .

We also note that if the apertures are far separated (with respect to the adaptive

optics decorrelation length), then we can assume the Zernike coefficients of the

two sub-apertures are uncorrelated. This implies, then, that the coefficient αmn has

the same statistics as the single aperture coefficients, with a standard deviation

increased by
√

2.

This allows us to represent the visibility by

165



V (~b) =

∫
sub−

aperture 1

d~x exp

[
i
∑
n,m

αmn Z
m
n (~x)

]
. (5.19)

Taylor expanding the exponential the sub-aperture yields

V (~b) =

∫
sub−

aperture 1

d~x δ(~x)+

[
i
∑
n,m

αmn Z
m
n (~x)

]
− 1

2

[∑
n,m

αmn Z
m
n (~x)

]2

+O(α3) (5.20)

and integrating the Zernike polynomials yields

V (~b) = 1 + iα0
0 −

1

2

∑
n,m

(αmn )2 +O(α3). (5.21)

The leading order error in the visibility phase is α0
0 = a0

0 − b0
0, the difference of

the sub-aperture Z0
0 (piston) modes. The piston mode is the average phase above

the sub-aperture. However, the second and third order terms are not generally

zero: the visibility phase is not generally equal to the average phase above one sub-

aperture minus the average phase of the other sub-aperture. This is the source of

redundancy noise.

The leading order term that affects the amplitude of V (~b) is equivalent to the

mean wavefront variance over the sub-aperture.

5.10.2 Instantaneous Closure Phase

In this sub-section we show that closure phases remove sub-aperture piston, but

that high order terms persist.

We define the bispectrum, B(~b1,~b2), as
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B(~b1,~b2) ≡ V (~b1) V (~b2) V ∗(~b1 +~b2). (5.22)

The argument (complex phase) of the bispectrum is the closure phase.

For three sub-apertures centered at ~x = 0, ~b1, and ~b1 +~b2, we can follow the

same progression that lead to equation 5.21 for the bispectrum

B(~b1,~b2) =

∫
sub−

aperture 1

d~x d~x′ d~x′′ ei[φ(~x+~b1)−φ(~x)] ei[φ(~x′+~b1+~b2)−φ(~x′+~b1)] ei[φ(~x′′)−φ(~x′′+~b1+~b2)],

(5.23)

where each integral occurs over the domain of the sub-aperture centered at ~x = 0

only.

We cast the bispectrum in terms of the sub-aperture Zernike modes of the three

sub-apertures. We define the three sets of Zernike coefficients over the apertures

centered at ~x = 0, ~x = ~b1, and ~x = ~b1 +~b2 as amn , bmn , and cmn , respectively.

Again, we recognize that the bispectrum is the difference between Zernike de-

compositions, and denote the difference coefficients as αmn ≡ bmn −amn , βmn ≡ cmn −bmn ,

and γmn ≡ amn − cmn . Their definitions lead to the identity: αmn + βmn + γmn = 0.

B(~b1,~b2) =

∫
sub−

aperture 1

d~x exp

[
i
∑
n,m

αmn Z
m
n (~x) + βmn Z

m
n (~x′) + γmn Z

m
n (~x′′)

]
. (5.24)

Taylor expanding the exponential yields the following terms:
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0th Order : 1 (5.25)

1st Order : i
∑
n,m

∫
αmn Z

m
n (~x) + βmn Z

m
n (~x′) + γmn Z

m
n (~x′)

= α0
0 + β0

0 + γ0
0 = 0 (5.26)

2nd Order : −1

2

∑
n,m,r,s

∫
αmn α

s
rZ

m
n (~x)Zs

r (~x) + αmn β
s
rZ

m
n (~x)Zs

r (~x
′) + αmn γ

s
rZ

m
n (~x)Zs

r (~x
′′)

βmn α
s
rZ

m
n (~x′)Zs

r (~x) + βmn β
s
rZ

m
n (~x′)Zs

r (~x
′) + βmn γ

s
rZ

m
n (~x′)Zs

r (~x
′′) +

γmn α
s
rZ

m
n (~x′′)Zs

r (~x) + γmn β
s
rZ

m
n (~x′′)Zs

r (~x
′) + γmn γ

s
rZ

m
n (~x′′)Zs

r (~x
′′)(5.27)

= −α0
0β

0
0 − α0

0γ
0
0 − β0

0γ
0
0 −

1

2

∑
n,m

[
(αmn )2 + (βmn )2 + (γmn )2

]
(5.28)

= −1

2

∑
n 6=0,m

[
(αmn )2 + (βmn )2 + (γmn )2

]
(5.29)

Equation 5.28 is obtained by directly integrating the Zernike terms over x,x′,

and x′′. The last line pulls the n = 0 terms out of the sum and uses the identify

1
2
(α0

0 + β0
0 + γ0

0)2 = 0 to remove these term. We see that to second order of αmn ,

βmn , and γmn , the error in the closure phase is zero. The bispectrum amplitude and

phase are both unaffected by sub-aperture piston.

To account for the errors in closure phase, we must go to third order. In a

similar process of integrating over Zernike terms, regrouping piston terms outside

the summation, and application of the identity α0
0 + β0

0 + γ0
0 = 0, we find the third

order term to be

Third Order : − i
6

∑
n6=0,m,
r 6=0,s,
v 6=0,w

∫
d~x αmn α

s
rα

w
v Z

m
n (~x)Zs

r (~x)Zw
v (~x)+ βmn β

s
rβ

w
v & γmn γ

s
rγ

w
v terms,

(5.30)

Piston terms again drop out, as do cross terms such as αmn β
s
rβ

w
v Z

m
n (~x)Zs

r (~x
′)Zv

w(~x′).
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Although this integral is difficult to solve analytically, we can use several rela-

tions to restrict the set of Zernike indices which produce non-zero integrals. We

recognize that, when integrated over the unit circle, the angular part of the Zernike

polynomials restricts either one or three of the azimuthal indices to be even. This

implies the leading term of the sequence to be α±1
1 α±1

1 α0,±2
2 . If we assume the long

baseline approximation such that α has the same statistical behavior as the sub-

aperture coefficients, then the leading term of closure phase noise is the product

of two sub-apertures’ tip/tilts and one sub-aperture’s defocus/astigmatism.

Equation 5.30 provides a valuable avenue for estimating the impact of sub-

aperture adaptive optics. For example, the PALM3K extreme-AO system actuator

spacing is 8.1 centimeters (Dekany et al., 2007). Using the current 9-hole NRM

mask with 42 cm sub-apertures, corresponding to roughly 21 actuators per sub-

aperture, the PALM3K system will be able to actively control the first twenty one

terms of the expression above (see, for example Nakajima & Haniff (1993)). This

provides a useful metric for balancing sub-aperture size again other considerations,

such as calibration and quasi-static wavefront limitations, photon noise, and trade-

offs between smaller sub-apertures and increasing the number of sub-apertures.
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CHAPTER 6

SYNTHESIS AND CONCLUSIONS

This body of work provides the technical underpinnings of Non-Redundant

Aperture Masking Interferometry with Adaptive Optics and contributes to a young

but growing literature on this subject. By enabling high-contrast infrared imaging

at diffraction-limited separations, the combined technique allows for the resolu-

tion of brown dwarfs and exoplanet systems that cannot be observed by any other

method. One of the most valuable uses of this technique is in the detection of

short period brown dwarf binary systems, which lead to model-independent mea-

surements of brown dwarf masses. These, in turn, can be used to empirically test

and refine current brown dwarf evolution and atmospheric models which also set

the foundation for our understanding of massive Jupiter exoplanets.

Enhancing the precision of NRM with AO by upgraded AO systems and re-

fined analysis techniques will enable even higher contrasts and the resolution of

exoplanets directly. The scientific potential of NRM exoplanet imaging includes

the mass measurement of exoplanets and the full-characterization of planetary sys-

tems imaged by coronagraphic surveys (e.g., Hinkley et al. (2011)). For nearby

stars, the NRM working angle corresponds to planet-star separations of much less

than 5 AU, and provides a unique method to image exoplanets formed in situ by

core accretion (Kraus et al., 2009).

The goal of this final chapter is to review and synthesize the results of the

presented studies. Section 1 reviews the new methods that have been developed

in this work, Section 2 reviews the major results, Section 3 explores the possible

future work that could be motivated by these studies, and Section 4 concludes with

the broader implications of this work.
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6.1 Refinement of the NRM with AO Technique: Results

Completing this work required several new numerical and statistical methods for

using NRM with AO to detect faint companions. The early successes of NRM with

AO imaging were driven by the immediate effectiveness of the closure phase method

for producing observations uninhibited by quasi-static wavefront errors. The de-

tection of moderate-contrast companion can be readily identified (e.g., Martinache

et al. (2007); Pravdo et al. (2006), and NRM provides much higher precision than

direct imaging alone. But the forward model approach (see Chapter 3), when

employed before this work, often produced spurious detections of faint compan-

ions, sometimes even at the many-sigma level. This over confidence arose in part

because of inherent correlations of the closure phase signals that were not taken

into account (c.f. Kulkarni (1989)); this is not to be confused by correlations of

measurement error, which can be handled by a covariant matrix. By developing

a simple Monte Carlo simulation that tests the forward model fits against sim-

ulated observations bootstrapped directly from the data, we now have tools to

confidently search for unknown, high-contrast companions. The simulation also

inherently incorporates measurement noise and calibration errors (and their cor-

relations), which makes the the simulation a more robust choice for calculating

contrast detection limitations (Chapter 4). The simulation has also been used by

Zimmerman et al. (2011) (of which I am a contributing author), which will pub-

lish the first NRM images taken by an Integral Field Spectrograph and dedicated

exoplanet instrument.

More broadly, my studies in this work aim to mix empirical analysis tools with

theoretical foundations to extract more precise information from current NRM im-

ages, and to reach higher contrast. Chapter 4 described a novel, intuitive, empirical
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method for averaging closure phases that resulted a 2-4 fold increase in measure-

ment precision over what would have been derived by conventional averaging of

closure phases of bispectra.

Chapter 5 asserts that NRM is calibration-limited by quasi-static wavefront

errors on the sub-aperture scale, and describes precisely how these errors alter clo-

sure phases and bispectra. Upcoming extreme-AO systems will push observations

far enough into the calibration limit that individual modes of sub-aperture wave-

front errors may be discernible in the closure phase data. Developing higher-order

calibration methods may enable closure phases to be calculated that remove the

impact of some sub-aperture scale wavefront errors, in much the same way that

current radial velocity surveys extend to lower velocities by accurately parameter-

izing the point spread function response to telescope flexure. These same tools will

aid in the design of future aperture masking experiments that optimally alleviate

noise from AO residuals and instrumental effects. These new masks will balance

sub-aperture size and number against adaptive optics stability and actuator den-

sity. This balance will depend on the spatial and temporal power spectra of the

corrected wavefront residuals, and a formalism for doing so it presented.

6.2 Refinement of the NRM with AO Technique: Future

Work

By far, the greatest advances in NRM for the near term will arise from new NRM-

equipped exoplanet imagers with extreme-AO systems, e.g., Project 1640 at Palo-

mar (Hinkley et al., 2009), the Gemini Planet Imager (Macintosh et al., 2008),

and SPHERE on VLT (Beuzit et al., 2006). These instruments also feature In-
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tegral Field Spectrographs capable of taking narrow-band images across multiple

wavelengths simultaneously. As discussed in Chapter 1, the inherent dependence

of quasi-static speckles behavior on wavelength allows one to distinguish true com-

panions from quasi-static speckles.

Much of the focus in the high-contrast imaging community is currently directed

toward obtaining higher contrast with coronagraphs behind extreme-AO and by

invoking speckle deconvolution algorithms that eliminate many of the quasi-static

speckles at wide separations (beyond 0.5 arcseconds; e.g., Crepp et al. (2010)).

Early speckle deconvolution algorithms anticipate to increase detection contrast

by a factor of 20 (Hinkley et al., 2010).

Narrow-band IFS NRM images, also allows one to construct algorithms anal-

ogous to speckle deconvolution that deconvolve closure phase errors, e.g., differ-

ential closure phases or differential spatial frequency phases. In the case of NRM

phase deconvolution, one aims to exploit the linear relationship between baseline

phase errors and inverse wavelength that one would expect to arise from physically

induced pupil-plane phase errors (i.e., ∆φ = ∆x/λ). In order to develop a relation-

ship between closure phase, pupil-plane phase errors, and wavelength, one needs

a more sophisticated understanding of how higher mode wavefront phase errors

affect closure phases (i.e., Section 5.10 to Chapter 5). The joint effort of closure

phases and deconvolution algorithms are complementary methods for mitigating

the effect of quasi-static wavefront errors.

Zimmerman et al. (2010), of which I am a contributing author, will publish

the first IFS NRM data, acquired by the Project 1640 instrument. Our analysis

reveals strong, positive correlations (¿ 0.80) between closure phase errors of various

channels, on par with those found by Crepp et al. (2010) for coronagraphic images.
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This indicates that deconvolution algorithms can reduce closure phase errors. We

estimate a reduction by 5-10x per channel and a corresponding increase in detec-

tion contrast. While the AO correction provided by the PALAO system is not

high enough to produce the simple, linear relationship just discussed, the recently

commissioned extreme-AO system PALM3K is likely to do so. (It is important

to stress that developing more exacting algorithms to extract closure phases from

NRM images is crucial for these techniques to be effective. In my analysis of

the Zimmerman et al. (2010) data, redesigned extractions methods and diligent

awareness of systematic errors enabled clean deconvolution.)

Additionally, the spatial frequencies measured by an NRM are a function of

wavelength; hence, each channel of an IFS measures unique signals, increase the

total spatial frequency coverage by a factor of roughly twenty in the wavelength

limit, without considering chromatic techniques. The technique of IFS NRM, when

used with the current AO system and the Project 1640 instrument, has achieved an

estimated detection contrast of 1000:1 (∆M∼7.5) or higher at the diffraction limit.

The Project 1640 coronagraph performance is anticipated to increase by more

than tenfold after upgrading to the Palomar extreme-AO system and enabling the

precision wavefront control device of the instrument (Hinkley et al., 2010). Based

on these specifications, NRM with the Project 1640 instrument may reach as high

as 104:1 contrasts (∆M∼10.0).

Finally, one consequence of IFS NRM imaging is that it makes an excellent

tool for diagnosing instrumental misalignments and wavelength dependent errors,

which can, in turn, aid coronagraphic observations. For example, my analysis of

the Zimmerman et al. (2010) NRM images found evidence of a small tilt of the

mask in the Lyot wheel. Also, the dependence of the mask transmission function
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on wavelength allows for a robust, independent determination of the central wave-

length of each channel with a single image. This scaling relation is a necessary

parameter of speckle deconvolution algorithms (e.g., Crepp et al. (2010), Figure

5) and crucial for extracting precise spectra from IFS images (E. Rice, private

communication). It is worth noting that the scaling relation may change as the

telescope moves, since the IFS lenslets alters the point spread function reaching the

detector. In other words, the scaling relation may be change from target to target,

and NRM provides an efficient way to calibrate this concurrent with coronagraph

observations.

For these reasons, this is a very exciting time for high-contrast NRM imaging,

and certainly deserves further attention in subsequent studies with more advanced

equipment.

6.3 Study of Brown Dwarf Binaries using LGSAO: Results

NRM is most sensitive to companions between λ/2D and 4λ/D, corresponding

to angular separations of 50 to 400 mas in the Ks infrared band (2.2µm). When

providing good correction, NRM with LGSAO has been shown to reach 102:1

(∆Ks=5.0) contrasts at the diffraction limit (Dupuy et al., 2009). The enhanced

contrast and resolution of NRM with LGSAO makes the technique a formidable

tool for resolving low mass brown dwarf (T dwarfs) companions to nearby field

brown dwarfs, particularly to enable high precision mass measurements (Chapter

2).

In Chapter 4, I used NRM in conjunction with the Palomar Laser Guide Star

Adaptive Optics system (LGSAO, Roberts et al. (2008)) to survey sixteen nearby
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field brown dwarfs for companions. Due to the proximity of nearby field brown

dwarfs, the combined technique reached physical projected separations ranging

from 0.6-8.0 AU for most of the survey targets; this was the first imaging survey

to probe for companions to brown dwarfs shortward of 3 AU and the first NRM

with LGSAO survey at Palomar. Setbacks with the LGSAO system hampered the

observing, but despite the setbacks the survey reached contrasts of ∆Ks=1.5-2.5

outward of 100 mas. These results benefited greatly from the enhanced closure

phase averaging mentioned in the previous subsection.

In addition to seeking a subset of brown dwarf companions suitable for dynam-

ical mass measurements, the imaging survey can glean insights into the formation

process of brown dwarfs. The companion fraction of brown dwarfs is proposed

to be low (≈ 15%) and peaked within a narrow separation range, 3-10 AU (Bur-

gasser et al., 2008), little conclusive results are known for separations less than 3

AU. Using preliminary evidence compiled from irregular and sparse radial velocity

datasets, several authors suggested that at least as many brown dwarfs may reside

shortward of 3 AU (Jeffries & Maxted, 2005; Pinfield et al., 2003; Chappelle et al.,

2005). Such interesting statistical results may suggest that the brown dwarf binary

formation mechanism is different than that for solar type binaries (Burgasser et al.,

2007). The NRM with LGSAO imaging survey is one of the first observationally

complete surveys of the brown dwarf companion fraction at these separations.

The survey detected four candidate binaries with moderate to high confidence

(90-98%), including two with projected physical separations less than 1.5 AU.

This may indicate that tight-separation binaries contribute more significantly to

the binary fraction than currently assumed, consistent with the preliminary ra-

dial velocity results. One companion resides within the formal diffraction limit,
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and one companion orbits a target previously imaged as part of a Hubble Space

Telescope companion search. All four candidates suggest brown dwarf masses and

the candidate status of all four targets can be immediately resolved by NRM with

LGSAO imaging on the Keck Telescope. The short projected separations of the

systems indicate a favorable likelihood that masses of the brown dwarfs can be

obtained within a few years.

6.4 Study of Brown Dwarf Binaries using LGSAO: Future

Work

Concurrent with the NRM with LGSAO for brown dwarf binaries were the LGSAO

direct imaging surveys of Konopacky et al. (2010) and Dupuy et al. (2010) (and

references within). Taken together, the set has more than tripled the number of

late-M, L, and T dwarf binaries with dynamical mass measurements. was the

dynamical mass measurement survey of several authors.

Based on direct measurements of their luminosities and total masses, evolution

model radii give effective temperatures that are inconsistent with those from model

atmosphere fitting of observed spectra by 100-300 K (the ’temperature problem’).

Evolutionary models also underpredict the luminosities for the only binary with an

independent age measurement by a factor of ∼2 (the ’luminosity problem’), which

implies that model-predicted substellar masses may be systematically too large.

Evolutionary models are also still untested at early ages (.100 Myr).

To tackle the ’temperature problem,’ it must first be determined whether the

discrepancy arises from systematic errors within the atmospheric models or incor-
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rect estimated radii in the evolutionary models. This can be directly tested with

future discoveries of late-M and brown dwarf eclipsing binaries, as the tempera-

ture offset corresponds to a substantial radius difference (15-20%) (Dupuy et al.,

2010). Furthermore, infrared photometry has been shown to be a poor proxy for

effective temperature, particularly when visible photometry or a partial SED is

unavailable (Konopacky et al., 2010). In this respect, the low-resolution infrared

spectra of brown dwarfs obtained by Integral Field Spectrographs, combined with

dynamical mass measurements, will be valuable. Currently, no IFS instruments

are commissioned for telescopes with LGSAO systems. However, observations of

the two browns dwarfs resolvable with NGS AO, GJ 802b and GJ 581B (both from

Palomar), can be pursued.

Additionally, campaigns to image brown dwarfs in young systems (i.e., favor-

able contrasts between brown dwarfs and stellar primaries) can be pursued with

new high-contrast and IFS instruments, this would also move forward the test of

evolutionary models at young ages. Furthermore, because young systems have

constrained ages, comparisons of dynamical masses and model-implied masses will

begin to identify the nature of the ’luminosity problem’

Finally, continued observing of the currently known brown dwarf binaries with

LGSAO will increase the precision of the mass measurements. These binaries

have typical uncertainties larger than 30% (larger for the smallest mass brown

dwarfs) and are limited by relative astronomy of their orbits (as opposed to parallax

distance). Continued observation, especially with the improved relative astronomy

and photometry of NRM and LGSAO at Keck Telescope, can lead to truly high

precision mass and photometry measurements.
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6.5 Future Explorations: Probing Evolution and Forma-

tion of Brown Dwarfs and Massive Jupiter Exoplanets

Within this work, the uncertainty of brown dwarfs atmospheric and evolution

models (and by extension, giant exoplanets) have been discussed at length, and

empirical tests have been discussed, proposed, and carried out. Dynamical mass

measurements, along with precise photometry, has been regularly discussed as a

major empirical test. The extensions of these models to planetary masses, in

concert with observations, will provide insights into the mass, radius, structure,

temperature, and metallicity of the exoplanets. In this section, I discuss how

these soon to be discovered massive Jupiter exoplanets can form and arrive at

their observed location, and I propose a method and survey for testing theories of

planetary formation.

6.5.1 New Paradigms of Planet Formation Driven by Di-

rect Imaging

The Jupiter-sized planets detected so far are radically different than the gas giant

planets in our solar system. Radial velocity and transit surveys detect hot Jupiters

with orbital periods of a few days; directly imaged planet-like companions have

been found out beyond even 50 AU, e.g., HR 8799 (Marois et al., 2010). These

detections have motivated sweeping changes to the paradigms of planet formation

and migration (Ida & Lin, 2004; Boss, 2001). More broadly, dozens of newly

discovered planetary systems outward 5-10 AU are anticipated after first light of

dedicated exoplanet imagers begin coronagraphic surveys (Beichman et al., 2010).
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Core accretion occurs most rapidly at the ice line (2-8 AU), and characteris-

tically produces metal-enriched planets . 5MJ(Marcy et al., 2005). Subsequent

migration inward explains the short period hot-Jupiters, including the planet den-

sities measured by transits. At large separations, the timescales of formation are

too slow. Thus, wide-separated planets must be formed in situ by an alternative

method, such as gravitation instability (most prominent beyond 10 AU), or migrate

outward after formation near the ice line. Migration outward, either by planetes-

imals in the disk or massive inner planets, occurs on timescales of 50-100 Myrs

(Reipurth et al., 2007). The two mechanisms are predicted to yield different dis-

tributions of planetary mass, star-planet separation, luminosity, and metallicity.

Testing these theories has not yet been possible because of a lack of observable

data. The detection of well-characterized planetary systems around youthful stars,

including massive inner planets, before migration can occur, will be a key to testing

formation mechanisms (Hinkley et al. (2010), and references within).

6.5.2 A Growing Population of Nearby, Young Stars

Recently, great effort has been put into extending the membership of nearby, young

moving group associations in both the Northern and Southern hemisphere, includ-

ing several with median distances closer than 40 pc and ages less than 50 Myr.

Additionally, efforts are underway to identify new GK-type members, with a new-

membership rate of dozens per year (Zuckerman, 2004; Schlieder & Lepine, 2010).

The detection of full planetary systems around these stars provides a unique way

to test formation predictions.

With an inner working angle of 0.300” (10 AU @ 35 pc), the Gemini Planet

Imager and Project 1640 coronagraphs are unable to probe planets formed within
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about 10 AU, including those formed in situ by core accretion. NRM provides a

complement to coronagraph observations. The working angle of NRM at shortward

infrared wavelengths is 0.040-0.400” (1-13 AU), and both exoplanet instruments

will be equipped with NRM masks. Used jointly, NRM and Coronagraphs explore

the full planetary architecture outward of roughly 1 AU.

This combination of targets and techniques opens up exoplanet searches to

massive inner planets, planets near the ice line, and planets formed in situ by bona

fide core accretion. Probing at these separations is not possible by radial velocity

because of stellar variability of youthful targets. It should be noted that such

a survey complements ongoing NRM companion searches in the Upper Scorpius

star-forming region. At an age of 5 Myrs, the region is ideal for planet searches,

but its distance (140 pc) limits detections to beyond 7 AU even with NRM (Kraus

et al., 2008).

6.5.3 Feasibility of the Survey with Exoplanet Instruments

and NRM

NRM provides the highest contrast of any technique at the diffraction-limited, and

one of the core motivations of this dissertation has been to refine the technique

of NRM to reach contrasts high enough to detect massive Jupiter exoplanets with

these next generation instruments.

The foremost factor influencing the detection of massive Jupiter planets at close

separations with NRM is that the host star must be bright enough to function as a

natural guide star. Currently, the Gemini Planet Imager and Project 1640 require

I band magnitudes ¡ 8-9 in order to use extreme-AO (Macintosh et al., 2008;
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Hinkley et al., 2009). The performance drops sharply after this limit. Second,

the distance determines the physical star-planet separations probed by NRM. The

working angle of NRM at shortward infrared wavelengths (40-400 mas) corresponds

to roughly 1-10 AU at 20 parsecs. Finally, the host star is preferred to be of late-

type, i.e., intrinsically faint.

Both hemispheres have nearby, young moving group associations with median

distances closer than 40 pc and ages less than 50 Myr. As mentioned previously,

great effort has been put into extending their membership, particularly adding

late-type members. Additionally, moderate to high resolution spectra exist to

characterize these stars.

These targets make an ideal survey for planet detection. Imposing I ¡ 9 yields 91

targets of median distance 45 pc observable from Gemini Observatory and about

35 targets observable from Palomar Observatory. Figure 6.1 shows the anticipated

detection limits for a median object; Figure 6.2 shows the brightness and distance

distribution for the Gemini sample. Roughly half of the objects are sensitive to 5-

10 MJ objects between 2.0-8.0 AU with the upgraded instrumentation. Assuming

that the Jupiter fraction of solar-type stars is 20% (Beichman et al., 2010) and that

they are evenly distributed in mass between 1-10 MJ , one can expect to discovery

4-6 planetary systems.

6.6 Conclusions

This dissertation has provided the first thorough treatment of Non-Redundant

Aperture Masking Interferometry with Adaptive Optics, and outlines its use as an

observational tool for detecting brown dwarf and exoplanet companions at close-
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Figure 6.1: Star-Planet Contrast of brown dwarfs and massive Jupiters (green
tracks) orbiting a late-G star, plotted against anticipated P1640 NRM contrast
limits (black lines). Youthful brown dwarfs and exoplanets are bright enough to
be detected by NRM on P1640 and Gemini Planet Imager. Vertical lines (blue)
plot the age of known, nearby moving groups. Note that planets of mass 6-9 MJ

are consistently detectable with the estimated performance using extreme-AO and
precision wavefront control (see text). A brown dwarf of any mass can be detected
most targets.
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Figure 6.2: (Top) Histogram of visual magnitudes for all currently known moving
group objects observable from Gemini Observatory. Fifty-three targets are V < 8.5
and ninety-one targets are V < 9.5. I band magnitudes are 0.5 lower (i.e., V-I=0.5)
for these targets. These sets represent I < 8 and I < 9, respectively, in the AO
sensing wavelength of the Palomar AO system. (Bottom) Histogram of distances
for the 91 targets with I < 9. The median distance is 45 pc, corresponding to
physical separations of 1.8 - 7.2 AU for the Palomar NRM working angles.

184



separations and testing models of their astrophysical evolution.

I presented results of a detection search for companions to sixteen nearby,

known brown dwarfs using NRM with LGSAO on the Palomar 200” Hale Tele-

scope. The four candidate brown dwarf companions detected with this survey,

if confirmed, these brown dwarfs make excellent candidates for dynamical mass

measurement. (Chapter 4)

I investigated the impact of small-scale wavefront errors (those smaller than a

sub-aperture) on NRM using a technique known as spatial filtering through calcula-

tion, simulation, and observational tests conducted with an optimized pinhole and

aperture mask in the PHARO instrument at the 200” Hale Telescope. I find that

spatially filtered NRM can increase observation contrasts by 10-25% on current

AO systems and by a factor of 2-4 on higher-order AO systems.

Completing this work required several new numerical and statistical methods

for using NRM with AO to detect faint companions. The improved analysis tools

allow for confident detection of faint targets by NRM, robust calculation of contrast

limits, and empirical averaging techniques that yield lower closure phase noise. I

also developed a formalism for detailing the impact of sub-aperture quasi-static

wavefront errors on closure phases that will be valuable for improving higher order

calibration techniques for NRM with exoplanet imaging instruments.

Combined, the evidence presented in this dissertation leads to the conclusion

that NRM with AO is rapidly developing into a fully mature high-contrast tech-

nique. With further attention and subsequent studies with more advanced instru-

mentation, the exoplanets resolved by NRM will contribute key scientific discov-

eries to the burgeoning population of directly imaged planetary systems.
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APPENDIX A

PRIMER: IMAGING THROUGH A TURBULENT ATMOSPHERE

WITH ADAPTIVE OPTICS

A.1 The Point Spread Function

The image intensity pattern incident on the telescope detector, I(~θ), can be rep-

resented as the convolution of the object (or source) intensity distribution on the

sky, S(~θ), with the point spread function of the atmosphere and telescope, τ(~θ):

I(~θ) = S(~θ) ? τ(~θ), (A.1)

where the star, ?, denotes convolution. This representation is valid when the

object under consideration is small enough that its emitted light is perturbed by

essentially identical optical aberrations, i.e., isoplanatic. When this condition is

valid is dependent on the the quality of seeing but is typically on the order of a

few arcseconds in the infrared.

The source, located far enough to be considered at infinity, imparts a electric

field plane wave upon the telescope aperture (Ea) which is the Fourier Transform

of the electric field emitted by the source (Es).

Ea(~x) =

∫
Es(~θ) exp(2πi~θ · ~x/λ)d~θ (A.2)

Throughout this text we will denote this form of the Fourier Transform by Ea(~x) =

F [Es(~θ)].

Equation A.1 can be derived directly by considering the truncation of the in-

coming wavefront at the telescope pupil. We represent the transmission of the

pupil by a two dimensional function, P (~x), valued zero where light is blocked and
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one where light is fully transmitted. Apodized pupils can be represented by giving

the function a value between zero and one.

The electric field distribution incident upon the detector (Ed) is directly related

to the Fourier Transform of the wavefront incident on the telescope aperture. The

detector is located at the so-called image (or focal) plane, and measured in angular

units ~θ; the telescope aperture is in the pupil plane, and measured in physical units

(i.e., meters), ~x.

Ed = F [Ea(~x)P (~x)]

= Es(~θ) ? F [P (~x)]

Id(~θ) = < |Ed(~x)|2 >

= S(~θ) ? |F [P (~x)]|2. (A.3)

In the equations above, the brackets denote a time average over many cycles of the

emitted electric field. Inherent in this derivation is the assumption that the source

is spatially incoherent, i.e., < Es(~θ1)E∗s (
~θ2) >= S(~θ)δ(~θ2 − ~θ1).

In analog to Equation A.1, the point spread function is

τ(~θ) = |F [P (~x)]|2. (A.4)

For an idealized telescope (i.e., a circular top-hat function of diameter D), this

leads to the familiar Airy function point spread function.

Atmospheric turbulence introduces perturbations to the wavefront incident on

the telescope aperture and imperfect optics further perturb the wavefront during

its propagation to the detector. To a good approximation, these errors can be

considered as pupil-plane phase errors; scintillation by the atmosphere produces

amplitude changes on the order of 10−4, optical errors impart phase errors in both
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the pupil plane and image plane but can be approximated as only the former. Thus,

the wavefront is modified by aberrations of the form A(x) = eiφ(x), where φ(x) is

the phase error introduced across the pupil plane. If we treat the aberrations as a

modification to the pupil function, the distorted point spread function is

τ [~θ] = |F [eiφ(~x)P (~x)]|2. (A.5)

The structure of the wavefront aberrations drive the form of the short and

long exposure aberrated point spread function. While uncorrected atmospheric

turbulence perturbs the point spread function in an unknown way at every instant,

its long exposure average value is a well-determinable function of the aperture

and atmospheric seeing. On short times (defined by timescales shorter than the

timescale by which the wavefront aberrations, τ0), the phase aberrations can be

approximated as static; the resulting image is composed largely of the granular

structure of speckles. As the exposure extends over several coherence lengths,

many instances of speckles ultimately smear the image. Flux is displaced from

the core of the perfect point spread function core into a larger diffuse area. For

typical uncorrected atmospheric seeing in the infrared, the coherence time of the

atmosphere is tens of milliseconds and the long exposure image has a full width

half max of approximately one arc second.

Fourier Domain

Taking the Fourier Transform of the image in Equation A.3 yields

i(~f) =

∫
P (~x+ ~f)P ∗(~x) < Ea(~x+ ~f)E∗a(~x) > d~x. (A.6)

The term < Ea(~x+ ~f)E∗a(~x) > is the spatial coherence function of the electric field

incident on the aperture or, alternatively, referred to as the (complex) visibility
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Ṽ (~f) when normalized so that Ṽ (0) = 1. Importantly, the complex visibility is

fundamentally related to the source intensity distribution, a relationship known as

the van Cittert-Zernike theorem (Thompson, 2001):

Ṽ (~f) = < Ea(~x+ ~f)E∗a(~x) > / < |Ea(0)|2 > and (A.7)

Ṽ (~f) =

[∫
S(~θ) exp(2πi~θ · ~f/λ) d~θ

]
/

[∫
S(~θ) d~θ

]
. (A.8)

Likewise, the Fourier Transform of the image reduces to

i(~f) = Ṽ (~f) T (~f) with (A.9)

T (~f) =

∫
d~x P (~x+ ~f)P ∗(~x)eiφ(~x+~f)−iφ(~x). (A.10)

where T (~f) is the optical transmission function, representing the amount by which

a given spatial frequency, ~f , is transmitted by the atmosphere and telescope.

This recasts the direct imaging problem as a challenge to obtain precision mea-

surements of the complex visibility. The complex visibility, by Equation A.8, is a

direct measure of one Fourier component the source brightness distribution.

A.2 Atmospheric Turbulence and Adaptive Optics

A.2.1 Kolmogorov Turbulence

Spatial Structure of Atmospheric Turbulence

The wavefront phase fluctuations imparted by the atmosphere arise because the

wavefront propagates through a large number of small index of refraction variations

of various physical sizes on its path to the telescope aperture. By the law of
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large numbers, this aggregate deformation is Gaussian, and the variation of the

wavefront phase at any one point in space and time is a Gaussian random variable.

The wavefront variation has a spatial structure dependent on the mechanism which

drives the fluctuations, and this can most easily be facilitated by discussing the

phase structure function, Dφ(~r1, ~r2), describing the mean-squared phase variations

between two points in space separated by a distance vector, ~r = ~r1−~r2, at a given

instant in time.

Dφ(~r1, ~r2) =< [φ(~r1)− φ(~r2)]2 > . (A.11)

The brackets imply averaging over the spatial extent of the turbulence.

Turbulence arises by velocity fields mixing different layers of air in pressure

equilibrium, but with different temperatures, densities, and indices of refraction;

these small differences in local velocities move pockets of high and low temperature

(and density) around in a random fashion. Kolmogorov (1941) first studied the

spatial structure of these velocity differences. In principle, the structure function

varies at each point due to its local instantaneous conditions, but with a few

assumptions the problem is greatly simplified. If the atmosphere is assumed to

be homogenous, isotopic, and incompressible, a single structure function can be

applied to every point of origin and depends only on the total displacement between

two points, i.e, r = |~r1 − ~r2| and Dv(~r1, ~r2) = f(|~r1 − ~r2|) (Batchelor, 1953).

Furthermore, Kolmogorov showed that, for the spatial scales in which these

eddies more by turbulent flow, a scale generally ranging from millimeters to kilo-

meters for typical wind speeds (∼5 m/s), the structure function reduces to a single

power law function: D(r) = C2
vr

2/3. The constant C2
v is a measure of the energy

in the turbulence.

Tatarskii (1961) later related the random motions of these pockets of temper-
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ature variation to index of refraction inhomogeneities, finding that the index of

refraction structure function also follows a 2/3 power law: Dn(r) = C2
nr

2/3. Given

a measure of the turbulence strength, C2
n, this equation completely describes the

statistical nature of index of refraction (and phase) fluctuations. The structure

constant C2
n varies with broadly over seasons, as well as daily and hourly.

The structure constant also varies with height in the atmosphere, and the wave-

front propagates through many individual turbulence cells. The total deformation

of the wavefront is found by integrating over the depth of the atmosphere, leading

to the phase structure function, D(r) =< [φ(x+ r)− φ(x)]2 > expressed as:

Dφ(r) = 2.91 r5/3 sec(z)

(
2π

λ

)2 ∫
dh C2

n(h) (A.12)

= 6.88

(
r

r0

)5/3

(A.13)

with

r0 =

[
0.423 sec(z)

(
2π

λ

)2 ∫ L

0

C2
n(h)dh

]−3/5

. (A.14)

Thus the nature of atmospheric phase variation across an aperture reduces to

a fairly simple expression, i.e, phase variations are gaussian distributed at each

point with a variance which follows the structure function expression. Despite

the complex mechanisms driving atmospheric turbulence, its statistical nature can

be characterized by a single parameter, the Fried parameter r0, which is a func-

tion of the turbulence strength, zenith angle, cumulative path length through the

atmosphere, and wavelength.
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Significance of the Fried Parameter, r0

While the Fried parameter has been introduced here as a matter of convenient

bookkeeping, the parameter naturally lends itself to a deeper significance. Indeed,

Fried (1966) introduced the parameter as the maximum diameter of an aperture

before atmospheric distortion seriously limits its resolving performance. That is,

the seeing-limited resolution of a large telescope obtained through an atmosphere

characterized by a Fried parameter, r0, is no better than the resolution of a diffrac-

tion limited telescope of diameter r0. Both circumstances lead to a point spread

function of full width at half max ∼ λ/r0.

In particular, despite the dependence of the Fried parameter on the turbulence

strength constant (and each layer of the atmosphere) and the zenith angle, an

estimate of r0 can be obtained by measuring the full-width half-max of a long-

exposure uncorrected image.

Furthermore, Noll (1976) showed that the wavefront variance averaged across

an aperture of size r0 is σ2 = 1.03rad2, or more generally σ2 = 1.03(D/r0)5/3 for

an aperture of diameter D. Two points separated by more than r0 are essentially

incoherent. This result leads to the adoption of a simple picture of turbulence as a

collection of cells of r0 with constant phase, but random phase between individual

cells.

From its definition in Equation A.14, r0 can be see to vary as a function of

λ6/5. With r0 ∼30 cm in H band (1.6µm), this scaling implies that even 5-10

meter class telescopes are diffraction limited in the mid-infrared (λ > 10µm).

Diffraction limited performance of adaptive optics systems is easier to achieve at

longer wavelengths and fewer actuators are necessary.
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Turbulence in the Fourier Domain

Additionally, one can calculate the power spectral density of the structure function,

detailing the strength of phase fluctuations to a given spatial frequency. As we

will see in later sections, aperture masking interferometry measures specific spatial

frequencies of the incoming wavefront, and such, this description of turbulence is

in some ways more natural to this task. This calculation results in the Kolmogorov

Power Spectrum:

Φn(k) =
0.023

r
5/3
0

k−11/3. (A.15)

Thus, the phase variation across an aperture can be decomposed to indepen-

dent (Fourier) spatial frequencies. The phase of these spatial frequencies, in turn,

are subject to random Gaussian fluctuations with a variance which follows the Kol-

mogorov Power Spectrum. The steep negative slope of the Kolmogorov spectrum

implies that power preferentially resides in low-spatial frequency (i.e., large scale)

perturbations to the wavefront (Noll, 1976). Large scale wavefront errors result in

diffraction speckles in the image, indicating that speckles ought to determine the

structure of short exposure images and dominate the image noise.

Temporal Variation of the Wavefront

Turbulence is a time-varying phenomena, as local inhomogeneities are driven by

winds and eddies. The simplest model of this effect, the Taylor hypothesis of frozen

turbulence treats the atmosphere as a static, spatial phase structure that is blown

across the aperture by some wind with velocity, v. (If multiple levels contribute to

the total turbulence, the temporal behavior can still be treated by assuming the

turbulence weighted wind velocity.) Under this assumption, the temporal variation
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of the phase over a time interval, τ , is equivalent to the spatial variation of the

phase over distance vτ .

Dφ,Taylor(δt = τ, δr = 0)⇐⇒ Dφ,Frozen(δt = 0, δr = vτ). (A.16)

Under these assumptions, the wavefront becomes decoherent over timescales of

τ0 = r0/v. With typical wind speeds on the order of 5-10 m/s, t0 ∼30-60 ms. By

its definition, τ0 also scales as λ6/5.

This timescale provides a natural length of time to separate long exposures

from short exposures. Short exposures, t << τ0, are perturbed, essentially, by

a single instantaneous realization of the atmosphere. In these circumstances, the

high spatial frequency information of the image is retained. This forms the basis

of speckle interferometry. Long exposures, alternatively, quickly lose high spatial

frequency information. The granular structure of speckles smooth away and the

halo forms.

A more in depth treatment of turbulence recognizes that the truncation of

turbulence cells at the aperture edge results in rapid fluctuation of the high spatial

frequencies as these cells are blown across the aperture edge. Greenwood (1976)

calculated that the characteristic frequency of turbulence variations to be

fg = 2.31λ−6/5

[
sec(z)

∫ L

0

dh C2
n(h) v5/3(h)

]3/5

. (A.17)

For the constant wind case, the Greenwood frequency can be approximated as

fg ≈ 0.43
v

r0

≈ 0.43
1

τ0

. (A.18)

For typical observing the Greenwood frequency is tens of hertz. To effectively

reduce most of the phase fluctuations, adaptive optics systems must be capable of

correcting the wavefront at a rate much faster than this frequency.
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A.3 Adaptive Optics

Adaptive optics systems function on the basis of phase conjugation, noting that

phase deformations can be corrected by reflecting the incoming wavefront off a de-

formed mirror in which the path length difference created along the mirror matches

the conjugate of the deformed wavefront. Sensing the wavefront distortions of the

incoming wavefront is often done by picking off a particular wavelength band of

the incoming flux that will not be used for science observations.

Typically, the pupil plane aperture is subdivided into a number of sub-apertures

by a wavefront sensor which utilizes a method for measuring the phase across each

sub-aperture. For instance, a Shack-Hartmann wavefront sensor uses a lenslet

array to focus each sub-aperture onto a CCD, and the displacement of the spots

from a reference position indicate the slope of the wavefront across each sub-

aperture. These wavefront slopes are then used to reconstruct the overall shape of

the wavefront.

The steep negative slope of the turbulence power spectrum (k−11/3) indicates

that the overwhelming power of the turbulence arises at large scales (low spatial

frequencies). Noll (1976) showed that ∼85% of the spatial variance of the phase

across an aperture arises from variations of the tip and tilt of the wavefront. These

wavefront errors do not degrade the overall structure of the instantaneous point

spread function but rather shift the image about on the science camera (giving rise

to an image wander in successive short exposures and smearing in long exposures).

For this reason, many adaptive optics systems implement an additional component

to control the translational motion of the image.

The deformable mirror receives the measurements from the wavefront sensor
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and implements phase conjugation. A zonal approach of phase conjugation posi-

tions each actuator to minimize a least squared fit between the deformable mirror

surface and the turbulent wavefront. Or alternatively, a modal approach decom-

poses the wavefront into Zernike modes and introduces conjugate modes into the

deformable mirror to remove some subset of Zernike modes from the turbulent

wavefront (see, for example, Nakajima & Haniff (1993)).

Current generation adaptive optics systems dramatically reduce the effects of

atmospheric turbulence and alter the spatial and temporal power spectrum of the

wavefront phase. The characteristics of the adaptive optics corrected wavefront

and the limitations to correction are discussed here.

The finite spacing of the actuators limit the smallest wavefront features which

can be corrected (i.e., the highest frequency variation that happens within the

scale of the actuator size). This limits the field of view which can be corrected by

adaptive optics. The outer field of view of an image is formed by the high-spatial

frequency content of the wavefront; since the adaptive optics system cannot correct

the wavefront on scales smaller than r < ra, where ra is the actuator spacing, the

adaptive optics cannot correct the field of view beyond λ/ra. Beyond this outer

control radius, the region is essentially identical to the seeing limited case.

The length of time required for the wavefront sensor to gather enough photons

to measure the wavefront and the finite response lag between measurement and

implementation both introduce an error between the atmospheric wavefront and

the phase conjugation. Because the wavefront sensor is photon limited, the rate

at which the adaptive optics control system can be run is a function of the guide

star brightness.
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In addition to atmospheric turbulence, imperfections of the optics introduce

wavefront errors as well. Wavefront optical elements which occur before the wave-

front sensor (for instance, the primary mirror) can be corrected by the adaptive

optics system, up to the limitations of the actuator spacing. Smaller scale (higher

frequency) components remain in the wavefront. Optical elements which occur

after the wavefront sensor cannot be be corrected. These non-common path er-

rors have become a focus of the high-contrast imaging community, as these errors

generally set the ultimate limitation of contrast on can achieve with a system.

The performance of current adaptive optics systems are primarily characterized

in terms of the residual phase variance across the telescope aperture. This phase

variance can be reasonably well estimated by summing the individual error terms

described above. The estimated performance of a generic adaptive optics system is

given below, along with the specific performance of the Palomar Adaptive Optics

systems with the PHARO infrared imager on the Hale 200” Telescope (Troy et al.,

2000).

Adaptive Optics Spatial Errors

The finite spacing of the actuators (ra, Na actuators total) limit the smallest fea-

tures of the wavefront which can be corrected. Zonal methods aim to minimize

the overall wavefront variance over the aperture after correction; Model methods

decompose the wavefront structure into a set of linearly independent components

(usually Zernike modes) and configure the actuators to remove the lowest modes.

Both methods produce similar correction. It is generally assumed that an adap-

tive optics system can remove spatial wavefront errors on scales larger than 2ra

(frequencies lower than λ/2ra), or alternatively the Na lowest Zernike mode.s
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The residual atmospheric wavefront error after zonal correcting scales are

σ2
fit = κ

(
rs
r0

)5/3

, (A.19)

where κ depends on the various basis functions and influence properties of the

actuators. For PALAO, κ = 0.28. Noll (1976) developed an approximate relation

for the residual wavefront error after modal correction:

σ2
fit = 0.2944N

√
3/2

a

(
D

r0

)5/3

. (A.20)

The similarity of the two equations can be seen when ra ∼ D/
√
Na is substituted

into the former.

The PALAO system at Palomar utilizes Na = 241 actuators, with an actuator

spacing of ra = 31.2 cm. For typical H band (1.6 µm) seeing of 30 cm, this yields

atmospheric residual error of σfit ∼ 142 nm. The residual wavefront error due to

optical imperfections depends on the telescope and instrument and are estimated

to be ∼100 nm.

Adaptive Optics Temporal Errors

Greenwood (1979) showed the residual phase errors which result from the finite

rate at which the adaptive optics system measure and apply correction is

σ2
temp = κt

(
fg
fs

)5/3

, (A.21)

where, fg is the Greenwood frequency (Eq. A.18) and fs is the control loop fre-

quency. The constant κt depends on the servo algorithm; it is approximately 1 for

the PALAO system. Note that these errors arise even if the adaptive optics system

were able to perfectly conjugate the atmospheric wavefront, and instead result due
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to the lag between the wavefront sensor measurement and implementation of the

wavefront conjugate on the mirror.

The dynamical control loop of the adaptive optics system will also alter the tem-

poral power spectrum of the wavefront phase, and with it the temporal structure

function. Indeed, the Taylor hypothesis now only applies to those time intervals

shorter than the control loop period, ts = 1/fs. For time intervals longer than the

servo period the wavefront at a specific point can be regarded as uncorrelated, and

the structure function asymptotes to the Greenwood time-delay residuals.

DAO(t, δr = 0) = 6.88 (fg t)
5/3, t . 2ts (A.22)

= 2σ2
temp, t & 2ts (A.23)

and < φ(t+ δt)φ∗(t) >= 0 when t & 2ts.

Figure A.1 shows the temporal power spectrum of the residuals obtained with

the PALAO high-order deformable mirror during observations of a bright star.

The ”open loop” residuals show the temporal power spectrum of the atmospheric

turbulence; a clear t−5/3 power spectrum can be seen, consistent with the Kol-

mogorov model and the Taylor hypothesis. Operating with ”closed loop” (i.e., the

deformable mirror control loop activated), the adaptive optics system effectively

removed turbulence power at frequencies slower than fs ∼ 15Hz (timescales longer

than ts ∼ 65 msec). From these results, one can conclude that the corrected

wavefront decorrelates after 65 msec.

The PALAO system also uses an additional mirror to stabilize the image, i.e.

correct for tip-tilt wavefront errors. The finite time of implementation introduces
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an additional residual wavefront error of

σ2
temp,TT =

(
fT
fs,TT

)1/6(
λT
D

)
(A.24)

fT ∼ 0.0811
(r0

D

)( v

r0

)
(A.25)

where fT is the atmospheric tilt frequency. Figure A.1 shows the temporal power

spectrum of the tip-tilt residuals opened with the PALAO tip/tilt mirror during

observations of a bright star. The ”open loop” residuals show the natural temporal

spectrum of tip-tilt phase errors; ”closed loop” operation of the tip-tilt effectively

reduces the turbulence power at frequencies slower than fs,TT ∼ 5Hz. From this

expression we can estimate the residual tip/tilt errors, which are expected to decor-

relate after 200 msec.

One should recognize that control servo rate and wavefront sensor rate are

related but separated quantities. As an informal rule of thumb, the servo frequency

– the frequency with which the deformable mirror can apply effective correction –

can be approximated as one-tenth the wavefront sensor measurement rate.

Importantly, the rate at which the wavefront sensor depends on the brightness

of the target. Likewise, the level of wavefront residuals after correction is also a

function of target brightness. We can arrive at a rough scaling law for the residual

variance as a function of target magnitude (in the AO wavefront sensor waveband)

by requiring a uniform level of signal to noise by the wavefront sensor.

The number of photons per sub-aperture per cycle is Nphotons ∼ r2
atwfs. As-

suming the servo rate is decreased to keep the number of photons constant, the

temporal wavefront residuals increase by σ2
temp ∼ 10MAO/3. It follows that a drop

in target brightness of one magnitude leads to an increase of phase variance by ap-

proximately 2.15x (and a precipitous drop in Strehl ratio). The residual wavefront
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Figure A.1: The sparse, non-redundant aperture mask used for observations at
the Hale 200” Telescope at Palomar Observatory. Each pair of sub-apertures acts
as an interferometer of a unique baseline length and orientation. Overdrawn is
one such baseline. The 9-hole mask produces thirty-six baselines total; the point
spread function of the mask is a set of thirty-six overlapping fringes underneath a
large Airy envelope.

201



tip-tilt errors vary less dramatically due to the lower order exponent in Equation

A.24.

Given typical wind speeds at Palomar of about 5 m/s and servo control fre-

quencies of fs ∼15 Hz and fs,tt ∼5 Hz (valid for bright stars), temporal residual

errors are σtemp ∼140 nm and σtemp,TT .

Adaptive Optics Structure Function

These results motivate the adaptive optics corrected structure function given by

Greenwood (1979):

DAO(r) = 6.88(r/r0)5/3, r . rs (A.26)

= 2σ2
fit, r & rs (A.27)

with the implicit conclusion that wavefront residuals are not spatially correlated

at separations larger than rs: < φ(~x+ ~r)φ∗(~x) >= 0 when |~r| & rs.

Likewise, adaptive optics provides a high pass filter to the Kolmogorov Power

Spectrum, effectively eliminating power at spatial frequencies below kAO < 2π/2rs.
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