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Rotating neutron stars have modes that are driven unstable by gravitational

radiation reaction, principally the r-mode, a Rossby wave with n = 3,m = 2,

and hence large gravitational radiation reaction. Here n and m label the Legen-

dre functions associated with the mode. The r-mode instability is active when

gravitational driving dominates viscous dissipation. It has been suggested that

this instability can (1) set the largest angular frequency of rotation of accreting

neutron stars and (2) significantly spin down newborn neutron stars prevent-

ing them from reaching millisecond periods. Both the maximum frequency that

neutron stars can reach and the frequency to which newborn stars can be spun

down to in the first few years after formation depend on the neutron star compo-

sition via viscous dissipation and neutrino cooling. The nonlinear development

of the instability plays a very important role in determining how the saturation

process works, and also illustrates how instabilities can saturate at low ampli-

tudes as a consequence of nearly resonant excitation of other modes.

We model the nonlinear interactions between modes together with basic

neutron star physics including viscous heating, cooling and spin evolution of

the star. The nonlinear effects are included via three-mode couplings. We show

that in most scenarios one triplet of modes is sufficient to stop the growth of

the instability. To explore possible nonlinear behaviors we parameterize uncer-

tain properties of neutron stars such as the superfluid transition temperature



and the rate at which the star cools via neutrino emission. The average evolu-

tion of the mode amplitudes can usually be approximated by quasi-stationary

states that change slowly with spin frequency and temperature and can be de-

termined algebraically. The spin and temperature evolution follow or oscillate

around trajectories along sequences of quasi-stationary states.

In the Low Mass X-ray Binary (LMXB) case (Chapter 2), after some brief

initial oscillations, the modes settle into their quasi-stationary states and the

quasi-steady approximation is almost exact. The star heats via viscous dissipa-

tion from the three modes and, if this heating is balanced by neutrino cooling,

then the evolution will either be stable or enter a slow thermogravitational run-

away on a very long timescale of ≈ 106 years. The stable evolutions can be (1)

cyclic - with a small cycle size and a typical frequency change of at most 10%,

or (2) the star can evolve toward a full equilibrium state in which the accre-

tion torque balances the gravitational radiation emission. Alternatively, if the

cooling cannot balance the heating, a faster runaway occurs, the r-mode crosses

several parametric instability thresholds, and more modes need to be included.

In the young neutron star case (Chapter 3), the pulsar is hot T ∼ 1010K

and cools fast. The evolution depends on whether the neutrino cooling can

be stopped by viscous heating from the three modes. In this case the evolution

is more dynamic. After a short precursor, the modes oscillate around quasi-

stationary states and the spin and temperature of the star oscillate around ther-

mal equilibrium. There are three possible outcomes: the neutron star can spin

down on different sides of or along the r-mode stability curve. If the viscosity is

too low to stop the cooling a runaway occurs.
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CHAPTER 1

INTRODUCTION

It has been over 26 years since the discovery of the first millisecond radio

pulsar in 1982 by Backer et al [4]. This pulsar, labeled as PSR B1937+21, has a

spin rate of 642 Hz and remains one of the fastest known spinning neutron stars.

Since then powerful telescopes and observatories have revolutionized the field

of observational astronomy. A large number of millisecond pulsars have been

identified, with the majority located in globular clusters.

Globular clusters have high stellar densities and make the existence of binary

systems more likely. The globular cluster location together with the inferred low

magnetic fields of accreting millisecond pulsars compared to young neutron

stars favor the ’recycling’ theory as an explanation for their formation. In this

scenario an old, slowly rotating neutron star is spun up or recycled through

accretion from a companion star.

Neutron stars are the most compact stars in the observable universe. They

are about as massive as the sun and have a radius roughly between 10 − 20 km,

depending on the equation of state [5]. Since they are very compact they have

high gravitational fields, and in a binary accreted material spirals towards the

neutron star with angular momentum that is too high to hit the tiny star directly.

It instead orbits in a disk around the compact object. The gas then heats due to

viscosity as it spirals inward emitting X-rays. Eventually, the matter reaches

the surface of the neutron star and transfers angular momentum to the neutron

star increasing the rotation rate. The recycling process ends when the pulsar is

revitalized and has reached millisecond periods, and the companion is almost

emptied and turned into a white dwarf or brown dwarf. At this point the in-
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fall of matter stops, the X-ray emission declines, and the neutron star becomes

a radio millisecond pulsar. In dense globular clusters the neutron star can also

swap companion stars. One such example was observed by the Chandra X-ray

Telescope in Tuc 47 W in 2005 [6]. This binary contains a millisecond pulsar

with a period of T = 2.35 ms and a normal companion star of about 0.12M�.

It is believed that this star has been captured recently, and is not the original

companion that spun up the pulsar. A shock wave is observed around the mil-

lisecond pulsar as its companion is trying to dump more matter on the already

fast spinning object. In contrast with this system, SAX J1808.4-3658 has a similar

pulsation period, but it is located outside a globular cluster [7]. Its companion is

a depleted star with a mass of only 0.05M�. This pulsar is likely with its original

companion.

SAX J1808.4-3658 was also the first millisecond pulsar discovered in an X-

ray binary, and was considered to be direct proof of pulsar recycling [8]. It is a

transient source and recent XMM-Newton and Gemini observations studied its

behavior in quiescence (see Heinke et al. (2006) [9].) They found that the binary

exhibits particularly low X-ray luminosity and relatively high optical luminos-

ity. The strong heating of its companion star, inferred from the optical lumi-

nosity, could suggest that radio emission turns on when accretion turns off [9].

This would make the binary a transition object between accreting X-ray bina-

ries and millisecond radio pulsars. On the other hand, the low X-ray luminosity

provides evidence for enhanced neutrino cooling in its core.

The spin rates of radio-quiet neutron stars in X-ray binaries can be estimated

using emitted X-ray oscillations. There are three different types of oscillations.

The spin of the neutron star can be measured directly if there are fixed hot spots
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on the star by observing the rise and fall of the surface temperature as the hot

spots appear and disappear due to rotation. The hot spots are believed to occur

at the magnetic footpoints, where the electromagnetic radiation is funneled back

into the surface of the star. Hot spots were first observed in 2005 by the XMM-

Newton satellite on the surfaces of three nearby neutron stars. Currently, there

are 10 sources that exhibit such behavior with spin frequencies between 182−599

Hz [13]. The other measures of spins are indirect. The second is through X-ray

burst oscillations. These are coherent millisecond pulsations during type I X-

ray bursts, which are explosive thermonuclear reactions on the surface of the

neutron star. When enough accreted material (degenerate gas) is compressed

against the surface of the neutron star thermal instabilities set off exothermic

nuclear fusion reactions. The explosive burning occurs when the layer of he-

lium formed near the surface of the neutron star ignites. Three sources were

found to exhibit both burst oscillations and hot spots and in those cases the

burst oscillation frequency is very close to the spin frequency with frequency

drifts of up to a few Hz [10, 11, 12]. There are almost 20 neutron stars that dis-

play burst oscillations [13]. They have frequencies ranging from 45 − 620 Hz.

Some of these sources have oscillations that have been detected at the same fre-

quency in multiple bursts. Others have been seen in only one burst or part of

one burst and are not yet reliable such as the 1122 Hz transient source in XTE

J1739-285 [14]. The third and last type of oscillations are Quasi-Periodic Oscil-

lations (QPOs) in the X-ray brightness of the binary system. These oscillations

are dominated by two kHz frequencies. The highest kHz QPO may reflect the

orbital frequency of the gas in the disk near the neutron star. The separation be-

tween the two kHz QPOs varies as the accretion rate changes and some models

predict that this separation is related to the stellar spin [15].
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The speed record of the first millisecond pulsar discovered held for 24 years

and was broken in 2006 by another radio pulsar spinning at 716 Hz. This 24 year

year gap between detections suggests that neutron stars spinning this fast are

rare. Moreover, based on a Bayesian statistical analysis of the spin frequencies of

11 accretion powered millisecond pulsars whose spin periods are known from

burst oscillations, Chakrabarty et al. [10] claimed a cutoff limit of νmax = 760 Hz

(95% confidence). A more recent analysis, which added two more pulsars to

the sample, found νmax = 730 Hz [11]. Instruments have no significant selection

effects against detecting burst oscillations at frequencies well above 1 kHz [11].

Theoretically, the recycling model of pulsars allows for spins as high as 1.6

kHz depending on the equation of state. Cook, Shapiro and Teukolsky [16, 17]

model the recycling of pulsars to millisecond periods via accretion from a Kep-

lerian disk onto a bare, non-spinning neutron star with M = 1.4M�. Depending

on the equation of state they find that spin frequencies of between ≈ 670 Hz

and 1600 Hz could be achieved before mass shedding or radial instability set

in (these calculations predated the realization that the r-mode instability could

limit the spin frequency). So, one question is what is the mechanism that lim-

its the rotation rate of neutron stars. This limiting frequency νmax will depend

on the internal neutron star physics such as cooling, dissipation and strength

of magnetic fields, and so it is a probe of the high density nuclear physics of

neutron stars.

At first sight, one might conclude that mass shedding or radial instability

sets νmax, and that it is just above the record ν = 716 Hz determined for PSR

J1748-2446ad [18, 19]. However, the nuclear equations of state consistent with

this picture all have rather large radii ≈ 16 − 17 km for non-rotating 1.4 M�
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models; see Table 1 in Cook et al. [16]. For these equations of state, the r-mode

instability should lead to νmax somewhat below 716 Hz; see Eq. (2.33) in Chap-

ter 2 below. We conjecture that the r-mode instability always leads to limiting

frequencies below mass shedding or radial instability. In other words, the detec-

tion of the 716 Hz rotator is consistent with accretion spin-up mitigated by the

r-mode instability only for equations of state for which mass shedding or radial

instability would permit even faster rotation. Ultimately, this may be turned

into useful constraints on nuclear equations of state. However, at present the

uncertainty in the physics of internal dissipation is a significant hindrance in

establishing such constraints.

The youngest supernova in our galaxy was discovered in 2008 and the star

is believed to have exploded less than 150 years ago [20]. Neutron stars are

born in the aftermath of core-collapse supernova explosions as the stellar rem-

nant becomes gravitationally decoupled from the stellar ejecta. An interesting

and timely question is whether they are born spinning at millisecond periods or

spinning closer to the observed periods of young pulsars. Theoretically, follow-

ing the collapse, a 8 − 30M� progenitor can easily lead to neutron stars rotating

with periods of ∼ 1 ms. Observationally, the fastest known young pulsar is the

Large Magellanic Cloud supernova remnant N157B, which has a rotation pe-

riod of 16 ms. Another fast young neutron star is the Crab pulsar. It is the best

known pulsar and has a period of 33 ms. Assuming the rotational spin-down

is well described by a power law Ω̇ ∝ −Ωn, Lyne et al. find the braking index of

the pulsar to be n = 2.51 ± 0.01 [21]. Using this braking index and the current

period of the pulsar one can estimate the initial period to be 19 ms [22]. Another

way to predict the distribution of initial pulsar periods is through population

synthesis studies. These studies generally use present day observations with
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some assumption of their time evolution to reconstruct the birth distributions

of periods and magnetic fields of the pulsars. They currently favor initial peri-

ods in the range of several tens to several hundreds of milliseconds [23, 24]. The

apparent discrepancy between the theoretically expected fast rotation rates and

the observed slow rotation could be reconciled if the r-mode instability or some

other mechanism could spin the stars down efficiently, preventing them from

reaching millisecond periods [25].

One mechanism that could slow down newborn neutron stars and explain

the sub-breakup spin frequencies of millisecond pulsars is the r-mode instabil-

ity. R-modes are oscillations in rotating fluids that occur due to the Coriolis

effect. They are subject to the classical Chandrashekar-Friedman-Shutz (CFS)

instability [26, 27], which is driven by the gravitational radiation backreaction

force. In the absence of fluid dissipation, the CFS mechanism causes any mode

that is retrograde in the co-rotating frame, but prograde in the inertial frame to

grow as it emits gravitational radiation [28, 29]. The principal unstable r-mode

is the n = 3,m = 2 mode, where n and m label the Legendre functions associ-

ated with the mode. In the rotating frame the r-mode has an angular velocity

of ωr = 2Ω/3 and is retrograde, while in the inertial frame it has an angular

velocity of ωi = ω − mΩ = (2/3 − 2)Ω = −4Ω/3, and is prograde.

In more realistic situations, there is a competition between the internal vis-

cous dissipation and gravitational driving [28, 29, 30, 31, 32, 33]. The r-mode

is linearly unstable when the gravitational driving dominates the viscous dissi-

pation. This happens above a critical curve in the angular velocity-temperature

(Ω − T ) plane along which the damping and driving rates are equal. Once the

r-mode is unstable, it grows exponentially. Soon it may enter a regime where
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other inertial modes that couple to the r-mode become excited and nonlinear

effects become important. Roughly speaking, nonlinear effects first become sig-

nificant as the amplitude passes its first parametric instability threshold. This

threshold amplitude depends on the detuning, the strength of the mode cou-

pling and the viscosity of the inertial modes, and is typically low (< 10−3). Mod-

eling and understanding the nonlinear effects is crucial in determining (1) the

final saturation amplitude of the r-mode, (2) the limiting spin frequency that

neutron stars can achieve, and (3) the frequency to which newborn neutron

stars can be spun down if they are born at millisecond periods. The r-mode

amplitude and the duration of the instability are also important in determining

whether the associated gravitational radiation could be detectable by gravita-

tional wave detectors on Earth.

The oscillation frequencies and the eigenfunctions of the modes themselves

can also be affected by effects such as those due to magnetic fields and buoy-

ancy. An r-mode oscillation perturbs the magnetic field inside the star, and the

resulting magnetic stress acts as a restoring force for the oscillation [34]. Follow-

ing Morsink and Rezania [35], we perform a quick calculation in Chapter 2 (see

Appendix B.2.) in which we assume that the eigenfrequencies are unchanged,

and compute the frequency corrections perturbatively for a constant internal

magnetic field. We find that these corrections are less than 2.0 × 10−6Ω for a

magnetic field of 1013 G and this suggests that we can neglect the effect. The

buoyancy effects become important when the spin frequencies of the star be-

come comparable with the Brunt-Vaisala frequency at roughly 100 Hz. This re-

gion of frequency space is relevant once the young neutron star has spun down

significantly. For g-modes, Lai has shown that there exists a zero inertial fre-

quency line ωi = 0 between 50−100 Hz above which the CFS instability is active
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[36]. For n = m + 1 r-modes A. Passamonti et al. [37] have shown that the mode

frequencies are roughly unaffected by buoyancy. While it does seem to turn the

instability off buoyancy significantly affects inertial mode frequencies and hence

three-mode resonances. In this work, we do not reach frequencies below 200 Hz

and do not include buoyancy effects.Reaching lower spin frequencies requires

low enough viscosity for the gravitational driving to dominate viscous dissipa-

tion at those frequencies. Low mode viscosity also makes the instability harder

to stop and our simple three-mode model is no longer sufficient to model the

instability. We focus on understanding possible nonlinear behavior using one

mode triplet and leave the inclusion of multiple mode triplets to future studies.

The rest of the thesis is structured as follows. In Chapter 2 we discuss our

model for the r-mode instability in neutron stars in Low Mass X-ray Binaries

(LMXBs). We use one triplet of modes: the r-mode and the first two inertial

modes that are excited at the lowest parametric instability threshold. The cou-

pled equations of the three-mode system are evolved numerically in conjunction

with the spin and temperature of the star. We include neutrino cooling, accre-

tional spin-up, gravitational radiation spin-down due to the unstable r-mode

and viscous heating due to the three modes. In Chapter 3 the same model is ap-

plied to young neutron stars. We add dipole spin-down due to large magnetic

fields and remove the accretion terms. Chapter 4 includes concluding remarks.

8



CHAPTER 2

THE EFFECTS OF R-MODE INSTABILITY ON THE SPIN EVOLUTION OF

NEUTRON STARS IN LMXBS1

2.1 Introduction

The r-mode instability has been proposed as an explanation for the sub-breakup

spin rates of neutron stars in LMXBs [28, 29, 42]. Cook, Shapiro and Teukolsky

[16, 17] model the recycling of pulsars to millisecond periods via accretion from

a Keplerian disk onto a bare neutron star with M = 1.4M� when Ω = 0. Depend-

ing on the equation of state they found that spin frequencies of between ≈ 670

Hz and 1600 Hz could be achieved before mass shedding or radial instability set

in (these calculations predated the realization that the r-mode instability could

limit the spin frequency). We conjecture that the limiting spin frequency aris-

ing from the r-mode instability is always below that from mass shedding or

radial instability. Observationally, the highest observed spin rate of millisecond

pulsars is 716 Hz for PSR J1748-2446ad [18, 19]. PSR B1937+21, which was dis-

covered in 1982, was the previous fastest known radio pulsar with a spin rate

of 642 Hz [4]; that this “speed” record stood for 24 years suggests that neutron

stars rotating this fast are rare. Moreover, based on a Bayesian statistical analy-

sis of the spin frequencies of the 11 nuclear-powered millisecond pulsars whose

spin periods are known from burst oscillations, Chakrabarty et al. [10] claimed

a cutoff limit of νmax = 760 Hz (95% confidence); A more recent analysis, which

added two more pulsars to the sample, found νmax = 730 Hz [11].

1Published with minor modifications in R. Bondarescu, S. Teukolsky and I. Wasserman,
Phys. Rev. D 76, 064019 (2007).
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Since a physical model to follow the nonlinear phase of the evolution was

initially unavailable, Owen et al. [32] proposed a simple one-mode evolution

model in which they assumed that nonlinear hydrodynamics effects saturate

the r-mode amplitude at some arbitrarily fixed value. According to their model,

once this maximum allowed amplitude is achieved, the r-mode amplitude re-

mains constant and the star spins down at this fixed amplitude (see Eqs. (3.16)

and (3.17) in Ref. [32]). They used this model to study the impact of the r-mode

instability on the spin evolution of young hot neutron stars assuming normal

matter. In their calculation they include the effects of shear viscosity and n-p-e

bulk viscosity. They found that the star would cool to approximately 109 K and

spin down from a frequency close to the Kepler frequency to about 100 Hz in a

period of ∼ 1 yr [32].

Most subsequent investigations that did not perform direct hydrodynamic

simulations used the one-amplitude model of Ref. [32] for studying the r-mode

instability. Levin [38] used this model to study the limiting effects of the r-mode

instability on the spin evolution of LMXBs, assuming an r-mode saturation am-

plitude of ∼ 1; he adopted a modified shear viscosity to match the maximum

LMXB spin frequency of 330 Hz known in 1999. Levin found that the neutron

star followed a cyclic evolution in the Ω − T phase plane. The star spins up

for several million years until it crosses the r-mode stability curve, whereupon

the r-mode becomes unstable and the star is viscously heated for a fraction of a

year until the r-mode reaches its saturation amplitude (∼ 1). At this point the

spin and r-mode amplitude evolution equations are changed, following the pre-

scription of Ref. [32] to ensure constant amplitude. The star then spins down by

emitting gravitational radiation for another fraction of a year until it crosses the

r-mode stability curve again and the instability shuts off. The time period dur-
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ing which the r-mode is unstable was found to be about 10−6 times shorter than

the spin-up time, and Levin concluded that it is unlikely that any neutron stars

in LMXBs in our galaxy are currently spinning down and emitting gravitational

radiation. However, following work by Arras et al. [39] showing that nonlin-

ear effects become significant at small r-mode amplitude, Heyl [40] varied the

saturation amplitude, and found that the duration of the spin-down depends

sensitively on it. He predicted that the unstable phase could be as much as 30%

of the cyclic evolution for an r-mode saturation amplitude of α ≈ 10−5, and that

this would make some of the fastest spinning LMXBs in our galaxy detectable

by interferometers on Earth.

Jones [41] and Lindblom and Owen [46] pointed out that if the star contains

exotic particles such as hyperons (massive nucleons where an up or down quark

is replaced with a strange quark), internal processes could lead to a very high

coefficient of bulk viscosity in the cores of neutron stars. While this additional

high viscosity coefficient could eliminate the instability altogether in newly born

neutron stars [41, 46, 47, 48], Nayyar and Owen [48] proposed that it would

enhance the probability of detection of gravitational radiation from LMXBs by

blocking the thermal runaway.

The cyclic evolution found by Levin [38] and generalized by Heyl [40] arises

when shear or boundary layer viscosity dominates the r-mode dissipation. In

the evolutionary picture of Nayyar and Owen [48], the r-mode first becomes un-

stable at a temperature where shear and boundary layer viscosity dominate, but

the resulting thermal runaway halts once hyperon bulk viscosity becomes dom-

inant. The key feature behind the runaway is that shear and boundary layer

viscosities both decrease with increasing temperature, so the instability speeds
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up as the star grows hotter. However, if the bulk viscosity is sufficiently large

the star can cross the r-mode stability curve at a point where the viscosity is an

increasing function of temperature. Such scenarios were studied by Wagoner

[50] for hyperon bulk viscosty with low hyperon superfluid transition temper-

ature; similar evolution was found for strange stars by Andersson, Jones and

Kokkotas [49]. In this picture, the star evolves near the r-mode stability curve

until an equilibrium between accretion spin-up and gravitational radiation spin-

down is achieved. The value of the r-mode amplitude remains below the lowest

instability threshold found by Brink et al. [51, 52, 53] for modes with n < 30, and

hence in this regime nonlinear effects may not play a role.

Schenk et al. [54] developed a formalism to study the nonlinear interaction

of the r-mode with other inertial modes. They assumed a small r-mode ampli-

tude and treated the oscillations of the modes with weakly nonlinear pertur-

bation theory via three-mode couplings. This assumption was tested by Arras

et al. [39] and Brink et al. [51, 52, 53]. Arras et al. proposed that a turbulent

cascade would develop in the strong driving regime. They estimated that r-

mode amplitude was small and could have values between 10−1 − 10−4. Brink et

al. modeled the star as incompressible and calculated the coupling coefficients

analytically. They computed the interaction of about 5000 modes via approxi-

matively 1.3 million couplings of the 109 possible couplings among the modes

with n ≤ 30. The couplings were restricted to mode triplets with a fractional

detuning δω/(2Ω) < 0.002 since near-resonances promote modal excitation at

very small amplitudes. Brink et al. showed that the nonlinear evolution satu-

rates at a very small amplitude, generally comparable to the lowest parametric

instability threshold that controls the initiation of energy sharing among the sea

of inertial modes. However, Brink et al. did not model accretion spin-up or
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neutrino cooling in their calculation and only included minimal dissipation via

shear viscosity.

In this chapter we begin a more complete study of the saturation of the r-

mode instability including accretion spin up and neutrino cooling. We use a

simple model in which we parameterize uncertain properties of the star such as

the rate at which it cools via neutrino emission and the rate at which the energy

in inertial modes dissipates via boundary layer effects [42] and bulk viscosity. In

order to exhibit the variety of possible nonlinear behaviors, we explore a range

of models with different neutrino cooling and viscous heating coefficients by

varying the free parameters of our model. In particular, we vary: (1) the slip-

page factor S ns, which regulates the boundary layer viscosity, between 0 and 1

(see for example [43, 44, 45] for some models of the interaction between the oscil-

lating fluid core and an elastic crust) ; (2) the fraction of the star that is above the

density threshold for direct URCA reactions fdU, which is taken to be between

0 (0% of the star cools via direct URCA) and 1 (100% of the star is subjected to

direct URCA reactions), and in general depends on the equation of state used;

and (3) the hyperon superfluidity temperature Tc, which is believed to be be-

tween 109 − 1010 K (We use a single, effective Tc rather than modelling its spatial

variation.) We focus on Tc & 5× 109 K for which nonlinear effects are important.

For low Tc . 3×109 K, Wagoner [50] showed that the evolution reaches a steady

state at amplitudes below the lowest parametric instability threshold found by

Brink et al. [53]. It is important to note that all our evolutions start on the part

of the r-mode stability curve that decreases with temperature and that the bulk

viscosity does not play a role in any of our bound evolutions.

We include three modes: the r-mode at n = 3 and the two inertial modes
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at n = 13 and n = 14 that become unstable at the lowest parametric instabil-

ity threshold found by Brink et al. [53]. We evolve the coupled equations for

the three-mode system numerically in conjunction with the spin and tempera-

ture evolution equations. The lowest parametric instability threshold provides a

physical cutoff for the r-mode amplitude. In all cases we investigate, the growth

of the r-mode is initially halted by energy transfer to the two daughter modes.

We observe that the mode amplitudes settle into a series of quasi-stationary

states within a period of a few years after the spin frequency of the star has

increased above the r-mode stability curve. These quasi-stationary states are

algebraic solutions of the three-mode amplitude equations (see Eqs. (2.6)) and

change slowly as the spin and the temperature of the star evolve. Using these

solutions for the mode amplitudes, one can reduce the eight evolution equa-

tions (six for the real and imaginary parts of the mode amplitudes, which are

complex [54]; one for the spin, and one for the temperature) to two equations

governing the rotational frequency and the temperature of the star. Our work

can be regarded as a minimal physical model for modeling amplitude saturation

realistically.

The outcome of the evolution is crucially dependent on whether the star can

reach a state of thermal equilibrium. This can be predicted by finding the curve

where the viscous heating by the three modes balances the neutrino cooling,

referred to below as the Heating = Cooling (H = C) curve. The H = C curve

can be calculated prior to carrying out an evolution using the quasi-stationary

solutions for the mode amplitudes. If the spin frequency of the star upon be-

coming unstable is below the peak of the H = C curve, then the star will reach

a state of thermal equilibrium. When such a state is reached we find several

possible scenarios. The star can: (1) undergo a cyclic evolution; (2) reach a true
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equilibrium in which the accretion torque is balanced by the rate of loss of an-

gular momentum via gravitational radiation; or (3) evolve in thermal equilib-

rium until it reaches the peak of the H = C curve, which occurs on a timescale

of about 106 yr, and subsequently enter a regime of thermal runaway. On the

other hand, if the star cannot find a state of thermal equilibrium, then it enters a

regime of thermogravitational runaway within a few hundred years of crossing

the r-mode stability curve. When this happens, the r-mode amplitude increases

beyond the second parametric instability, and more inertial modes would need

to be included to correctly model the nonlinear effects. This is beyond the scope

of this work.

This chapter focuses on showing how nonlinear mode couplings affect the

evolution of the temperature and spin frequency of a neutron star once it be-

comes prone to the r-mode CFS instability. We do this in the context of three

mode coupling, which may be sufficient for large enough dissipation. To illus-

trate the types of behavior that arise, we adopt a very specific model in which

the mode frequencies and couplings are computed for an incompressible star,

modes damp via shear viscosity, boundary layer viscosity and hyperon bulk

viscosity, and the star cools via a mixture of fast and slow processes. This model

involves several parameters that are uncertain, and we vary these to find ‘phase

diagrams’ in which different generic types of behavior are expected. Moreover,

the model itself is simplified: (1) A more realistic treatment of the modes could

include buoyant forces, and also mixtures of superfluids or of superfluid and

normal fluid in different regions. (2) Dissipation rates, particularly from bulk

viscosity, depend on the composition of high density nuclear matter, which

could differ from what we assume.
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Nevertheless, although the quantitative details may differ from what we

compute, we believe that many features of our calculations ought to be robust.

More sophisticated treatment of the modes of the star will still find a dense set

of modes confined to a relatively small range of frequencies. Most importantly,

this set will exhibit numerous three mode resonances, which is the prerequisite

for strong nonlinear effects at small mode amplitudes. Thus, whenever the un-

stable r-mode can pass its lowest parametric instability threshold, it must start

exciting its daughters. Whether or not that occurs depends on the temperature

dependence of the dissipation rate of the r-mode; for the models considered

here, where bulk viscosity is relatively unimportant, soon after the star becomes

unstable its r-mode amplitude passes its first parametric instability threshold.

Once that happens, the generic types of behavior we find - cycles, steady states,

slow and fast runaway - ought to follow suit. The details of when different be-

haviors arise will depend on the precise features of the stellar model, but the

principles we outline here (parametric instability, quasisteady evolution, com-

petition between heating and cooling) ought to apply quite generally.

In Sec. 2.2 we describe the evolution equations of the three modes, the an-

gular frequency and the temperature of the neutron star. We first show how

the equations of motion for the modes of Schenk et al. couple to the rotational

frequency of the star in the limit of slow rotation. We then give a short review

of the parametric instability threshold and the quasi-stationary solutions of the

three-mode system. The thermal and spin evolution of the star is discussed next.

This is followed by a description of the driving and damping rates used. Sec. 2.3

provides an overview of the results, which includes a discussion of each evolu-

tion scenario and of the initial conditions and input physics that lead to each

scenario. Sec. 2.4.1 discusses cyclic evolution in more detail. An evolution that
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leads to an equilibrium steady state is presented next in Sec. 2.4.2. The two types

of thermal runaway are then discussed in Sec. 2.4.3. The prospects for detecting

gravitational radiation for the evolutions in which the three-mode system cor-

rectly models the nonlinear effects are considered in Sec. 2.5. We summarize the

results in the conclusion. Appendix A.1 sketches a derivation of the equations

of motion for the three modes and Appendix A.2 contains a stability analysis of

the evolution equations around the thermal equilibrium state.

2.2 Evolution Equations

2.2.1 Three mode system: coupling to uniform rotation

In this section we review the equations of motion for the three-mode system in

the limit of slow rotation. In terms of rotational phase τ for the time variable

with dτ = Ω dt Eq. (2.49) of Schenk et al. [54] can be rewritten as

dCα

dτ
= iω̃αCα +

γα
Ω

Cα −
2iω̃ακ̃
√

Ω
CβCγ, (2.1)

dCβ

dτ
= iω̃βCβ −

γβ

Ω
Cβ −

2iω̃βκ̃
√

Ω
CαC?

γ ,

dCγ

dτ
= iω̃γCγ −

γγ

Ω
Cγ −

2iω̃γκ̃
√

Ω
CαC?

β .

Here the scaled frequency ω̃ j is defined to be ω̃ j = ω j/Ω, the dissipation rates of

the daughter modes are γβ and γγ, γα is the sum of the driving and damping rates

of the r-mode γα = γGR − γα v, and the dimensionless coupling is κ̃ = κ/(MR2Ω2).

These amplitude variables are complex and can be written in terms of the vari-

ables of Ref. [54] as C j(t) =
√

Ω(t)c j(t) (see Appendix A.1 for a derivation of Eqs.

2.1). The index j loops over the three modes j = α, β, γ, where α labels the r-
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mode or parent mode and β and γ label the two daughter modes in the mode

triplet.

When the daughter mode amplitudes are much smaller than that of the par-

ent mode, one can approximate the parent mode amplitude as constant. Under

this assumption one performs a linear stability analysis on Eqs. (2.1) and finds

the r-mode amplitude when the two daughter modes become unstable (see Eqs.

(B5-B7) of Ref. [53] for a full derivation). This amplitude is the parametric insta-

bility threshold

|Cα|
2 =

γβγγ

4κ̃2ω̃βω̃γΩ

1 + Ω2
(

δω̃

γβ + γγ

)2 , (2.2)

where the fractional detuning is δω̃ = ω̃α − ω̃β − ω̃γ. Thorough explorations of

the phase space of damped three-mode systems were performed by Dimant [55]

and Wersinger et al. [56].

For the three modes at the lowest parametric instability threshold, ω̃α ≈ 0.66,

ω̃β ≈ 0.44, ω̃γ ≈ 0.22, κ̃ ≈ 0.19 and |δω̃| ≈ 3.82 × 10−6. Note that ω̃ is twice the w of

Brink et al. [51, 52, 53]. Here β labels the mode with n = 13,m = −3 and γ labels

the n = 14,m = 1 mode. The amplitude the r-mode has to reach before exciting

these two daughter modes is |Cα| ≈ 1.5 × 10−5
√

Ω [53].

We next rescale the rotational phase τ by the fractional detuning as τ̃ = τ|δω̃|

and the mode amplitudes by

|Cα|0 =
|δω̃|
√

Ωc

4κ̃
√
ω̃βω̃γ

, |Cβ|0 =
|δω̃|
√

Ωc

4κ̃
√
ω̃αω̃γ

, (2.3)

|Cγ|0 =
|δω̃|
√

Ωc

4κ̃
√
ω̃βω̃α

,

which for the r-mode is, up to a factor of
√

Ω̃ =
√

Ω/Ωc, the no-damping limit of

the parametric instability threshold below which no oscillations will occur. The
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coupled equations become

dC̄α

dτ̃
=

iω̃α

|δω̃|
C̄α +

γ̃α

|δω̃|Ω̃
C̄α −

i

2
√

Ω̃
C̄βC̄γ, (2.4)

dC̄β

dτ̃
=

iω̃β

|δω̃|
C̄β −

γ̃β

|δω̃|Ω̃
C̄β −

i

2
√

Ω̃
C̄αC̄?

γ ,

dC̄γ

dτ̃
=

iω̃γ

|δω̃|
C̄γ −

γ̃γ

|δω̃|Ω̃
C̄γ −

i

2
√

Ω̃
C̄αC̄?

β ,

with C̄ j = C j/|C j|0 and γ̃ j = γ j/Ωc being the newly rescaled amplitudes and

dissipation/driving rates, respectively.

Quasi-Stationary Solution

In terms of amplitudes and phase variables C j = |C j|eiφ j Eqs. (2.4) can be rewrit-

ten as

d|C̄α|

dτ̃
=

γ̃α

Ω̃|δw̃|
|C̄α| −

sin φ|C̄β||C̄γ|

2
√

Ω̃
, (2.5)

d|C̄β|

dτ̃
= −

γ̃β

Ω̃|δw̃|
|C̄β| +

sin φ|C̄α||C̄γ|

2
√

Ω̃
,

d|C̄γ|

dτ̃
= −

γ̃γ

Ω̃|δw̃|
|C̄γ| +

sin φ|C̄α||C̄β|

2
√

Ω̃
,

dφ
dτ̃

=
δω̃

|δω̃|
−

cos φ

2
√

Ω̃

(
|C̄β||C̄γ|

|C̄α|
−
|C̄α||C̄γ|

|C̄β|
−
|C̄β||C̄α|

|C̄γ|

)
,

where we have defined the relative phase difference as φ = φα − φβ − φγ. These

equations have the stationary solution

|C̄α|
2 =

4γ̃βγ̃γ
Ω̃|δω̃|2

(
1 +

1
tan2 φ

)
, (2.6)

|C̄β|
2 =

4γ̃αγ̃γ
Ω̃|δω̃|2

(
1 +

1
tan2 φ

)
,

|C̄γ|
2 =

4γ̃αγ̃β
Ω̃|δω̃|2

(
1 +

1
tan2 φ

)
,

tan φ =
γ̃β + γ̃γ − γ̃α

Ω̃|δω̃|
.
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Note that in the limit in which γβ + γγ >> γα the stationary solution for the

r-mode amplitude |Cα| is the same as the parametric instability threshold.

2.2.2 Temperature and Spin Evolution

The spin evolution equation is obtained from conservation of total angular mo-

mentum J, where

J = IΩ + Jphys. (2.7)

Following Eq (K39-K42) of Schenk et al. [54] the physical angular momentum of

the perturbation can be written as

ΩJphys =
∑
AB

C?
BCA

∫
d3xρ[(Ω̂ × ξ?B) · (Ω̂ × ξA) (2.8)

− i
(ω̃A + ω̃B)

2
ξ?B · (Ω̂ × ξA)].

Since the eigenvectors ξA ∝ eimAφ the cross-terms will vanish for modes with

different magnetic quantum numbers m as
∫

ei(mA−mB)φdφ = 0 for mA , mB. Eq.

(2.8) can be re-written for our triplet of modes as

Jphys = MR2(kαα|Cα|
2 + kββ|Cβ|

2 + kγγ|Cγ|
2), (2.9)

where kαα is defined as

kαα =
1

MR2

∫
d3xρ[(Ω̂ × ξ?α ) · (Ω̂ × ξα) − iω̃αξ

?
α · (Ω̂ × ξα)] (2.10)

and similarly for kββ and kγγ. In terms of the scaled variables C̄ j = C j/|C j|0 (with

|C j|0 defined in Eq. (2.3)) the angular momentum of the perturbation can be writ-

ten as

Jphys =
MR2Ωc|δω̃|

2

(4k̃)2ω̃αω̃βω̃γ

(kαα|C̄α|
2ω̃α (2.11)

+kββ|C̄β|
2ω̃β + kγγω̃γ|C̄γ|

2).
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We chose the same normalization for the eigenfuctions as Refs. [54, 39, 51, 52, 53]

so that at unit amplitude all modes have the same energy εα = MR2Ω2. The

energy of a mode α is Eα = MR2Ω2|cα|2 = MR2Ω|Cα|
2. The rotating frame energy

is the same as the canonical energy and physical energy [54]. The canonical

angular momentum and the canonical energy of the perturbation satisfy the

general relation Ec = −(ω/m)Jc [27].

Angular momentum is gained because of accretion and lost via gravitational

waves emission
dJ
dt

= 2γGRJc rmode + Ṁ
√

GMR, (2.12)

where Jc rmode = −(mα/ωα)εα|cα|2 = −3MR2Ω|cα|2 = −3MR2|Cα|
2. Eq. (2.12) can be

rewritten in terms of the scaled variables above as

dJ
dτ̃

= −
6γ̃GR

Ω̃

MR2Ωc|δω̃|

(4k̃)2ω̃βω̃γ

|C̄α|
2 +

Ṁ
√

GMR
ΩcΩ̃|δω̃|

. (2.13)

Thermal energy conservation gives the temperature evolution equation

C(T )
dT
dt

=
∑

j

2E jγ j + KnṀc2 − Lν(T ), (2.14)

= 2MR2Ω(γα v|Cα|
2 + γβ|Cβ|

2

+ γγ|Cγ|
2) + KnṀc2 − Lν(T ).

The three terms on the right hand side of the equation represent viscous heat-

ing, nuclear heating and neutrino cooling. The specific heat is taken to be

C(T ) ≈ 1.5 × 1038 T8 erg K−1, where T = T8 × 108 K. Nuclear heating occurs

because of pycnonuclear reactions and neutron emission in the inner crust [57].

At large accretion rates such as that of the brightest LMXBs of Ṁ ≈ 10−8M�/yr,

the accreted helium and hydrogen burns stably and most of the heat released in

the crust is conducted into the core of the neutron star, where neutrino emission

is assumed to regulate the temperature of the star [57, 58]. The nuclear heat-
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ing constant is taken to be Kn ≈ 1 × 10−3 [57]. Following Ref. [50], we take the

neutrino luminosity to be

Lν = LdUT 6
8 RdU(T/Tp) + LmUT 8

8 RmU(T/Tp) (2.15)

+ Le−iT 6
8 + Ln−nT 8

8 + LCpT 7
8 ,

where the constants for the modified and direct URCA reactions are defined

by LmU = 1.0 × 1032 erg sec−1, LdU = fdU × 108LmU [59, 60], and the electron-ion,

neutron-neutron neutrino bremsstrahlung and Coopper pairing of neutrons are

given by Le−i = 9.1 × 1029 erg sec−1 [57], Ln−n ≈ 0.01LmU, LCp = 8.9 × 1031 erg sec−1

[61]. The fraction of the star fdU that is above the density threshold for direct

URCA reactions is in general dependent on the equation of state [62] and in this

work we treat fdU a free parameter with values between 0 and 1.

The proton superfluid reduction factors for the modified and direct URCA

reactions are taken from Ref. [60] (see Eqs. (32) and (51) in Ref. [60]):

RdU(T/Tp) =
[
0.2312 +

√
(0.76880)2 + (0.1438v)2

]5.5
(2.16)

× exp
(
3.427 −

√
(3.427)2 + v2

)
,

RmU(T/Tp) =
(
0.2414 +

√
(0.7586)2 + (0.1318v)2

)7
,

× exp
(
5.339 −

√
(5.339)2 + (2v)2

)
where the dimensionless gap amplitude v for the singlet type superfluidity is

given by

v =

√
1 −

T
Tp

1.456 − 0.157

√
Tp

T
+ 1.764

Tp

T

 . (2.17)

Similar to Ref. [50], we use Tp = 5.0 × 109 K. In terms of the scaled variables Eq.

(2.14) becomes

C(T )
dT
dτ̃

=
2MR2Ω2

c |δω̃|

(4κ̃)2ω̃αω̃βω̃γ

(ω̃αγ̃α v|C̄α|
2 + ω̃βγ̃β|C̄β|

2 (2.18)

+ω̃γγ̃γ|C̄γ|
2) +

KnṀc2 − Lν(T )
ΩcΩ̃|δω̃|

.
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2.2.3 Temperature and Spin Evolution with the Mode Ampli-

tudes in Quasi-Stationary States

Assuming that the amplitudes evolve through a series of spin- and temperature-

dependent steady states, i.e., dCi/dτ̃ ≈ 0, the spin and thermal evolution equa-

tions can be rewritten by taking J ≈ IΩ and using Eqs. (2.6) in Eq. (2.13).

dΩ̃

dτ̃
= −

6γ̃GR

Ω̃2|δw̃|

γ̃βγ̃γ

4k̃2 Ĩω̃βω̃γ

kαα

(
1 +

1
tan2 φ

)
(2.19)

+
Ṁ
Ω2

c

√
GMR

MR2 ĨΩ̃|δω̃|
,

where Ĩ = I/(MR2). The thermal evolution of the system is given by

C(T )
dT
dτ̃

=
2MR2Ω2

c

(4κ̃)2ω̃αω̃βω̃γ

γ̃αγ̃βγ̃γ

Ω̃|δω̃|

(
ω̃αγ̃α,v

γ̃α
+ ω̃β (2.20)

+ω̃γ

) (
1 +

1
tan2 φ

)
+

KnṀc2 − Lν(T )
ΩcΩ̃|δω̃|

.

By setting the right hand side of the above equation to zero, one can find the

Heating = Cooling (H = C) curve. Below, we find that Eqs. (2.19)-(2.20) describe

the evolution very well throughout the unstable regime. These equations are a

minimal physical model for the effects of nonlinear coupling on r-mode evolu-

tion.

2.2.4 Sources of Driving and Dissipation

The damping mechanisms are shear viscosity, boundary layer viscosity and hy-

peron bulk viscosity; for modes j = α, β, γ we write

γ j v(Ω,T ) = γ j sh(T ) + γ j bl(Ω,T ) + γ j hb(Ω,T ). (2.21)
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The r-mode is driven by gravitational radiation and damped by these dissipa-

tion mechanisms, while the pair of daughter modes (n = 13,m = −3 labeled

as β and n = 14,m = 1 labeled as γ) is affected only by the viscous damping.

Brink et al. [51, 52, 53] determined that this pair of modes is excited at the low-

est parametric instability threshold. Their model uses the Bryan [63] modes of

an incompressible star, which has the advantage that the mode eigenfrequen-

cies (and eigenfunctions) are known analytically. This enables them to find near

resonances efficiently. We are using their results, but we include more realistic

effects such as bulk viscosity, whose effect vanishes in the incompressible limit

(Γ1 → ∞ in Eq. (2.29))

For our benchmark calculations, we adopt the neutron star model of Owen

et al. Ref. [30] (n = 1 polytrope, M = 1.4M�, Ωc = 8.4× 103 rad sec−1 and R = 12.53

km) and use their gravitational driving rate and shear viscous damping rate for

the r-mode

γGR(Ω) '
Ω̃6

3.26
sec−1, (2.22)

γα sh(T ) '
1
τsh

1
T 2

8

,

where τsh = 2.56 × 106 sec. (In Sec. 2.5 we consider approximate scalings with M

and R.)

The damping rate due to shear viscosity for the two daughter modes is cal-

culated using the Bryan modes for a star with the same mass and radius

γβ sh(T ) ' 3.48 × 10−4 sec−1 1
T2

8

, (2.23)

γγ sh(T ) ' 4.52 × 10−4 sec−1 1
T2

8

.
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The geometric contribution γsh/η of the individual modes increases significantly

with the degree n of the mode scaling approximatively like n3 for large n (see Eq.

(29) of Brink et al. [52] for an analytic fit to the shear damping rates computed

for the 5,000 modes in their network), and hence the inertial modes with n = 13

and n = 14 have shear damping rates about three orders of magnitude larger

than that of the r-mode.

The damping due to boundary layer viscosity is calculated using Eq. (4) of

Ref. [42],

γα bl(T,Ω) ' 0.009 sec−1 S 2
ns

√
Ω̃

T8
, (2.24)

γβ bl(T,Ω) ' 0.028 sec−1 S 2
ns

√
Ω̃

T8
,

γγ bl(T,Ω) ' 0.021 sec−1S 2
ns

√
Ω̃

T8
.

Analogous to Wagoner [50], we allow the slippage factor S ns to vary. The slip-

page factor is defined by Refs. [50, 43, 67] to be S 2
ns = (2S 2

n + S 2
s )/3, with S n

being the fractional difference in velocity of the normal fluid between the crust

and the core [43] and S s the fractional degree of pinning of the vortices in the

crust [67]. Note that γβ bl and γγ bl are both greater than 2× γα bl and can easily be

comparable to γGR in the unstable regime.

The damping rate due to bulk viscosity produced by out-of-equilibrium hy-

peron reactions for the r-mode is found by fitting the results of Nayyar and

Owen [48]. This rate is taken to have a form similar to that taken by Wagoner

[50]

γα hb = fhb
t−2
0ατ(T )Ω̃4

1 + (ω̃αΩτ(T ))2 , (2.25)

and for the daughter modes

γβ hb = fhb

t−2
0β τ(T )ω̃2

β

1 + (ω̃βΩτ(T ))2 , (2.26)
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and similarly foe γγ hb. The relaxation timescale

τ(T ) =
t1T−2

8

Rhb(T/Tc)
(2.27)

The reduction factor is taken to be the product of two single-particle reduction

factors [47, 48]

Rhb single(T/Tc) =
a5/4 + b1/2

2
exp

(
0.5068 −

√
0.50682 + y2

)
(2.28)

where a = 1+0.3118y2, b = 1+0.2566y2 and y =
√

1.0 − T/Tc(1.456−0.157
√

Tc/T +

1.764Tc/T ). The constants t1 ≈ 10−4 sec and t0α ≈ 0.00058 sec are found by

fitting the results of Ref. [48]. The factor fhb allows for physical uncertainties;

we take fhb = 1 throughout the body of the paper since Tc , which enters γ j hb

exponentially, is also uncertain. For the daughter modes, the dissipation energy

due to bulk viscosity is calculated using the modes for the incompressible star.

In the slow rotation limit, it is given to leading order in Γ−2
1 by

−ĖB j =

ζω2
j

Γ2
1

 ∫ d3x

∣∣∣∣∣∣ξ j · ∇p

p

∣∣∣∣∣∣2 . (2.29)

This approximation was proposed by Cutler and Lindblom [65] and adopted

by Kokkotas and Stergioulas [66] for the r-mode and by Brink et al. [52] for the

inertial modes. The adiabatic index Γ1 is regarded as a parameter; we use Γ1 ≈ 2.

The damping rate is

γ j hb = −
ĖB j

ε
, (2.30)

where ε = MR2Ω2 is the mode’s energy in the rotating frame at unit amplitude

and j = β, γ. Using this procedure, we calculate

t0β ≈ 1.4 × 10−5 sec, (2.31)

t0γ ≈ 1.0 × 10−5 sec.
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2.3 Summary of Results

Fig. 2.3(a) shows possible evolutionary trajectories of a neutron star in the an-

gular velocity-temperature Ω̃ − T8 plane, where T = T8 × 108 K is the core tem-

perature, and Ω̃ = Ω/Ωc = Ω/
√
πGρ̄ with ρ̄ the mean density of the neutron

star. Fig. 2.3(b) displays the regions in fdU − S ns in which the trajectories occur.

Here fdU represents the fraction of the star that is above the density threshold

for direct URCA reactions and S ns is the slippage factor that reduces the rela-

tive motion between the crust and the core taking into account the elasticity of

the crust [43]. The stability regions are shown at fixed hyperon superfluidity

temperature, Tc = 5.0 × 109 K. The initial part of the evolution is similar in all

scenarios and can be divided into phases.

Phase 0. Spin up below the r-mode stability curve at T8 = T8 in such that nuclear

heating balances neutrino cooling.

Phase 1. Linear regime. The r-mode amplitude grows exponentially. The phase

ends when the r-mode reaches the parametric instability.

Phase 2. The triplet coupling leads to quasi-steady mode amplitudes. The star

is secularly heated at approximately constant Ω because of viscous dissipation

in all three modes.

Phase 3. Several trajectories are possible depending on how the previous phase

ends.

a. Fast Runaway. The star fails to reach thermal equilibrium when the trajectory

passes over the peak of the Heating = Cooling (H = C) curve. This leads to rapid

runaway. The daughter modes damp eventually as bulk viscosity becomes im-

portant, and the r-mode grows exponentially until the trajectory hits the r-mode

stability curve again. This scenario ends as predicted by Nayyar and Owen [48].
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Figure 2.1: (a)Typical trajectories for the four observed evolution scenarios are
shown in the Ω̃ - T8 phase space, where Ω̃ = Ω/Ωc. The dashed lines (H = C
curves) represent the points in the Ω̃ − T8 phase space where the dissipative ef-
fects of the heating from the three-modes exactly compensate the neutrino cool-
ing for the given set of parameters (S ns, fdU, Tc, ...) of each evolution. (b)The cor-
responding stability regions for which these scenarios occur are plotted at fixed
hyperon superfluidity temperature Tc = 5.0 × 109 K, while varying fdU and S ns.
The position of the initial angular velocity and temperature (Ω̃in, T8 in) with re-
spect to the maximum of this curve determines the stability of the evolution. (I)
Ω̃in > Ω̃H=C max. Trajectory R1. Fast Runaway Region. After the r-mode becomes
unstable the star heats up, does not find a thermal equilibrium state and contin-
ues heating up until a thermogravitational runaway occurs. (II) Ω̃in < Ω̃H=C max.
The evolutions are either stable or, if there is a runaway, it occurs on timescales
comparable to the accretion timescale. The possible trajectories are (1)Trajectory
C. Cycle Region. (2) Trajectories S 1 and S 2. Steady State Region. (3) Trajectory
R2. Slow Runaway Region.
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However, the r-mode passes its second parametric instability threshold soon af-

ter it starts growing again. This requires the inclusion of more modes to follow

the evolution, which is the subject of future work.

b. The star reaches thermal equilibrium. There are then three possibilities:

(i) Cycle. The star cools and spins down slowly, descending the H = C curve

until it crosses the r-mode stability curve again. At this point the instability

shuts off. The star cools back to T8 in at constant Ω̃ and then the cycle repeats

itself. At Tc = 5.0 × 109 K this scenario occurs for values of S ns < 0.50 and large

enough values of fdU. However, if Tc is larger, the cycle region in the fdU-S ns

phase space increases dramatically (see Fig. 2.9(a)). Note that our cycles are dif-

ferent from those obtained by Levin [38] in that the spin-down phase does not

start when the r-mode amplitude saturates (or in our case when it reaches the

parametric instability threshold), but rather when the system reaches thermal

equilibrium. The r-mode amplitude does not grow significantly above its first

parametric instability threshold, remaining close to ∼ 105 and so the part of the

cycle in which the r-mode is unstable also lasts longer than in Ref. [38]. Also,

our cycles are narrow. During spin-down the temperature changes by less than

20 % and Ω̃ changes by less than 10% of the initial value. (See Sec. 2.2 for a de-

tailed example.)

(ii) Steady State. For small S ns and large enough fdU ( fdU & 5 × 10−5, S ns . 0.04;

see Fig. 2.3(b)) the star evolves towards an Ω̃ equilibrium. The trajectory either

ascends or descends the H = C curve (spins up and heats or spins down and

cools). The evolution stops when the accretion torque equals the gravitational

radiation emission.

(iii) Slow Runaway. For small S ns and very small fdU (S ns . 0.03, fdU < 5 × 10−5)

the star ascends the H = C curve until the peak is overcome and subsequently a
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runaway occurs. The daughter modes eventually damp and the r-mode grows

exponentially until it crosses its second parametric instability threshold and

more modes need to be included.

Bulk viscosity only affects the runaway evolutions; the cyclic and steady

state evolutions found here would be the same if there were no hyperon bulk

viscosity. For large Tc ∼ 1010, or for models with no hyperons at all, there would

be no runaway region (See Fig. 2.9(a) for an fdU−S ns scenario space with a larger

Tc = 6.5× 109 K where the fast runaway region has shrunk dramatically and the

slow runaway region has disappeared.)

2.4 Possible Evolution Scenarios

In this section we examine examples of the different types of evolution in more

detail. We assume Ṁ = 10−8M�/yr and Tc = 5.0 × 109 K.

2.4.1 Cyclic Evolution

In this sub-section we present the features of typical cyclic trajectories of neutron

stars in the angular velocity temperature plane in more detail. We focus on two

cases: (C1) S ns = 0.10 and fdU = 0.15 and (C2) S ns = 0.35 and fdU = 0.142. In

this scenario the 3-mode system is sufficient to model the nonlinear effects and

successfully stops the thermal runaway. The numerical evolution is started once

the star reaches the r-mode stability curve. The initial temperature of the star

is at the point where nuclear heating equals neutrino cooling in Eq. (2.18) that
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Figure 2.2: Two cyclic trajectories in the Ω̃−T8 plane are displayed for a star with
Tc = 5.0 × 109 K and (a) fdU = 0.15 and S ns = 0.10, and (b) fdU = 0.142 and S ns =

0.35, which is close to the border between the stable and unstable region (see Fig.
2.3(b)). The thick solid line labeled as the Heating = Cooling (H = C) curve is
the locus of points in this phase space where the neutrino cooling is equal to the
viscous heating due to the unstable modes. The other solid line representing
the r-mode stability curve is defined by setting the gravitational driving rate
equal to the viscous damping rate. The part of the curve that decreases with T8

is dominated by boundary layer and shear viscosity, while the part of the curve
that has a positive slope is dominated by hyperon bulk viscosity. In portion
a1 → b1 of the trajectory the star heats up at constant Ω̃. Part b1 → c1 represents
the spin down stage, which occurs when the viscous heating is equal to the
neutrino cooling. c1 → d1 shows the star cooling back to the initial T8. Segment
d1 → a1 displays the accretional spin-up of the star back to the r-mode stability
curve. The cycle a2 → d2 proceeds in the same way. This cycle is close to the
peak of the H = C curve. Configurations above this peak will run away.
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is approximately T8 in ≈ 3.29 for both cases. The initial Ω is the angular velocity

that corresponds to this temperature on the r-mode stability curve, which differs

for the different S ns (Ω̃in = 0.183 for C1 and Ω̃in = 0.288 for C2).

Figs. 2.2(a) and (b) display the cyclic evolution for trajectories C1 and C2 of

Fig. 2.3(b). In leg a1 → b1 of the trajectory the r-mode and, once the r-mode

amplitude increases above the first parametric instability threshold, the two

daughter modes it excites, viscously heat up the star until point b1 when the

neutrino cooling balances the viscous dissipation. This part of the evolution oc-

curs at constant angular velocity over a period of theat−up ≈ 100 yr and a total

temperature change (∆T )a1−b1 ≈ 0.80 (≈ 24% of T8 in). The points where the vis-

cous heating compensates the neutrino cooling are represented by the Heating

= Cooling (H = C) curve. This is determined by setting Eq. 2.18 to zero and us-

ing the quasi-stationary solutions given by Eq. (2.6) for the three modes on the

right hand side. The star continues to evolve on the H = C curve for part b1 → c1

of the trajectory as it spins down and cools down back to the r-mode stability

curve. This spin-down stage lasts a time tspin−down b1−c1 ≈ 23, 000 yr that is much

longer than the heat-up period. This timescale is very sensitive to changes in

the slippage factor and can reach 106 yr for smaller values of S ns that are close

to boundary of the steady state region. The cycle is very narrow in angular ve-

locity with a total angular velocity change of less than 4%, (∆Ω̃)b1−c1 ≈ 0.0066.

The temperature also changes by only about 2%, (∆T8)b1−c1 ≈ 0.08 in this spin-

down period. Segment c1 → d1 represents the cooling of the star to the initial

temperature on a timescale of ∼ 2, 000 yr. In part d1 → a1 the star spins up by

accretion at constant temperature back to the original crossing point on the r-

mode stability curve. This last part of the trajectory is the longest-lasting one,

taking ≈ 200, 000 yr at our chosen Ṁ of 10−8M�yr−1. The cycle C2 in Fig. 2.2(b)
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proceeds in a similar fashion. It is important to note that this configuration is

close to the border between the “FAST RUNAWAY” and “CYCLE” regions and

therefore close to the peak of the H = C curve. Configurations above this peak

(e.g., with the same fdU and higher S ns) will go through a fast runaway.

Fig. 2.3(a) shows the evolution of the three modes in the first few years af-

ter the star first reaches the r-mode stability curve. In this region the r-mode

is unstable and initially grows exponentially. Once it has increased above the

first parametric instability threshold the daughter modes are excited. The os-

cillations of the three modes display some of the typical dynamics of a driven

three-mode system. When the r-mode transfers energy to the daughter modes

they increase exponentially while the r-mode decreases. Similarly, when daugh-

ter modes decrease the r-mode increases. The viscosity damps the oscillations

and the r-mode amplitude settles at a value close to the parametric instability

threshold. Fig. 2.3(b) displays the evolution of the r-mode amplitude divided

by the parametric instability threshold on a longer timescale. It can be seen

that the r-mode never grows significantly beyond this first threshold. Fig. 2.3(c)

shows the evolution of the parametric instability threshold as a function of time.

The threshold increases as the temperature increases and the star is viscously

heated by the three modes. When the star spins down in thermal equilibrium,

the threshold decreases to a value close to its initial value.

2.4.2 Steady State Evolution

This sub-section focuses on evolutions that lead to a steady equilibrium state

in which the rate of accretion of angular momentum is balanced by the rate of
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Figure 2.3: (a)The amplitudes of the r-mode |Cα| and of the n = 13,m = −3
and n = 14,m = 1 inertial modes |Cβ| and |Cγ| are shown as a function of time
for a star that executes a cyclic evolution (same parameters as in Fig. 2.2). The
lowest parametric instability threshold is also displayed. (b)The ratio of the r-
mode amplitude to the parametric instability threshold is plotted as a function
of time. It can be seen that once the r-mode crosses the parametric instability
threshold it remains close to it for the rest of the evolution. (c)The parametric
instability threshold is displayed as a function of time. Its value changes as the
angular velocity and temperature evolve.
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Figure 2.4: The trajectory of a neutron star in the Ω̃ − T8 phase space is shown
for a model with Tc = 5.0 × 109 K, fdU = 0.03 and S ns = 0.03 that reaches an equi-
librium steady state. The star spins up until it crosses the r-mode stability curve
and the r-mode becomes unstable. The r-mode then quickly grows to the first
parametric instability threshold and excites the daughter modes. In leg a → b
of the trajectory the star is viscously heated by the mode triplet until the system
reaches thermal equilibrium. Segment b → c shows the star continuing to heat
and spin up in thermal equilibrium until the accretion torque is balanced by
the gravitational radiation emission. The r-mode stability curve represents the
points in phase space where the viscous driving rate is equal to the gravitational
driving rate. The H=C curve is the locus of points where the viscous dissipation
due to the mode triplet balances the neutrino cooling.

loss via gravitational radiation emission. This scenario is restricted to stars with

small slippage factor (S ns . 0.04, see Fig. 2.3(b)) and boundary layer viscosity. A

typical trajectory of a star that reaches such an equilibrium is shown in Fig. 2.4.

As always, we start the evolution at the point on the r-mode stability curve at

which the nuclear heating balances neutrino cooling. Above the r-mode stabil-

ity curve the gravitational driving rate is greater than the viscous damping rate

and the r-mode grows exponentially until nonlinear effects become important.

In this case, as in the cyclic evolution, the triplet of modes at the lowest paramet-

ric instability threshold is sufficient to stop the thermal runaway. The r-mode

remains close to the first instability threshold for the length of the evolution and
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Figure 2.5: The (Ω̃, T8) initial values (region delimited by the solid line) that lead
to equilibrium steady states and their corresponding final steady state values
(region enclosed by the dashed line) are shown. Since both the initial and final
values of T8 are low, these evolutions are roughly independent of Tc.

after a few oscillations the three modes settle into their quasi-stationary states,

which change only secularly as the spin and temperature of the star evolve. The

modes heat the star viscously at constant Ω̃ in segment a→ b of the trajectory for

theat−up ≈ 1, 100 yr. At point b, the star reaches a state of thermal balance. In leg

b → c the star continues its evolution in thermal equilibrium and slowly spins

up due to accretion until the angular velocity evolution also reaches an equilib-

rium. The timescale to reach an equilibrium steady state is tsteady ≈ 3.5 × 106 yr

for this set of parameters.

Fig. 2.5 displays the possible initial values for the angular velocity Ω̃ and

temperature T8 of the star that lead to a balancing between the accreted angular

momentum and the angular momentum emitted in gravitational waves. The

fraction of the star that is above the threshold for direct URCA reactions and the

slippage factor are varied within the corresponding “STEADY STATE” region

of Fig. 2.3(b). The final equilibrium values are also displayed and cluster in
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a narrower region than the initial values. Because viscosity is so small in this

regime, the values of Ω also tend to be small. Thus, although an interesting

physical regime, this case is most likely not relevant to recycling by accretion to

create pulsars with spin frequencies as large as 716 Hz. Note that a steady state

can be achieved when S ns = 0. This is the probable end state of the problem

first calculated by Levin [38]. The reason we do not find a cycle at low S ns is

twofold: (1) the shear viscosity we are using is lower (shear viscosity in Ref.

[38] is amplified by a factor of 244), and (2) the nonlinear couplings keep all

mode amplitudes small.

2.4.3 Thermal Runaway Evolutions

We now consider evolutions in which the three-mode system is not sufficient

to halt the thermal runaway. We observe two such scenarios. In the first sce-

nario, the star is unable to reach thermal equilibrium. The runaway occurs on

a period much shorter than the accretion timescale and so the whole evolution

is at approximately constant angular frequency. In the second scenario, the star

reaches a state of thermal equilibrium but the spin evolution does not reach a

steady state. The star continues to spin up by accretion until it climbs to the

peak of the H = C curve, thermal equilibrium fails and a runaway occurs.

Fast Runaway

A typical trajectory of a star that goes through a rapid thermal runway is dis-

played in Fig. 2.6. This star has S ns = 0.25 and fdU = 0.058. Initially, the growth of

the r-mode is halted by the two daughter modes once the lowest parametric in-
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Figure 2.6: This plot compares the full evolution resulting from solving Eqs.
(2.4),(2.13),(2.18) with the reduced Ω − T evolution that assumes the ampli-
tudes go through a series of steady states Eqs. (2.19)-(2.20) for a model with
Tc = 5.0 × 109 K, fdU = 0.058 and S ns = 0.25. (a) The temperature is displayed
as a function of time for the two different methods. (b) The angular velocity
Ω̃ = Ω/Ωc is shown as a function of temperature. The evolution occurs at con-
stant spin frequency. It can be seen that the steady-state amplitude approxima-
tion is extremely good. The ‘X’ shows the point at which the r-mode crosses
its second lowest parametric instability threshold, where additional dissipation
would become operative.
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stability threshold is crossed, and the three modes settle in the (Ω,T )-dependent

quasi-stationary states of Eqs. (2.6). They viscously heat up the star until hy-

peron bulk viscosity becomes important for the daughter modes. As the ampli-

tudes of the daughter modes decrease the coupling is no longer strong enough

to drain enough energy to stop the growth of the r-mode. The daughter modes

are completely damped and the r-mode increases exponentially. The system

goes back to the one-mode evolution described by Ref. [48].

Fig. 2.6(a) and (b) compare both the temperature evolution and the trajectory

in the Ω̃−T8 plane of the star for a simulation solving the full set of equations to a

simulation that assumes quasi-stationary solutions for the three amplitudes and

evolves only the angular velocity and temperature of the star. It can be seen that

the steady state approximation is very good until the thermal runaway occurs.

Afterward, the temperature evolution of the reduced equations is offset slightly

from the quasi-steady result and intersects the r-mode instability curve sooner.

This evolution is similar to that described by Nayyar and Owen [48]. However,

the r-mode crosses its second lowest parametric instability much earlier in the

evolution (see the ‘X’ in the figure), and at that point more modes need to be

included to model the instability accurately. Thus, we cannot be sure that a

runaway must occur in this case. We shall return to this issue in a subsequent

paper.

Slow Runaway

In this section we examine evolutions in which the neutron star has both a very

small slippage factor, S ns . 0.03, and only a small percentage of the star is above

the threshold for direct URCA reactions, fdU < 5×10−5. A trajectory for this kind
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Figure 2.7: The trajectory of a neutron star in the Ω̃−T8 phase space is shown for
a model with Tc = 5.0 × 109 K, fdU = 4.0 × 10−5 and S ns = 0.02 that goes through
a slow thermogravitational runaway. Portion a → b of the trajectory shows the
mode triplet heating up the neutron star through boundary layer and shear vis-
cosity until the system reaches thermal equilibrium. Segment b → c represents
the accretional spin-up of the star in thermal equilibrium. The dotted-dashed
line is the locus of points where the viscous dissipation of the mode triplet is
equal to the neutrino cooling, and is labeled as the H = C curve. The star reaches
the maximum of this curve and fails to reach an equilibrium between the accre-
tion torque and gravitational emission. It then continues heating at constant
angular velocity and crosses its second lowest parametric instability threshold,
at which point more modes would need to be included to make the evolution
accurate. Eventually the star reaches the r-mode stability curve again.

of evolution is displayed in Fig. 2.7. After the star crosses the r-mode stabil-

ity curve, the r-mode increases beyond the first parametric instability threshold,

and its growth is temporarily stopped by energy transfer to the daughter modes.

As in the previous scenarios, the star is viscously heated by the mode triplet at

constant Ω in part a → b of the trajectory on a timescale of about 5, 000 yr. At

point b, it reaches thermal equilibrium. In leg b → c of the trajectory, the star

continues its evolution by ascending the H = C curve and spinning up because

of accretion for about 2 × 106 yr without finding an equilibrium state for the an-

gular momentum evolution. Once it reaches the peak of the H = C curve, the
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cooling is no longer sufficient to stop the temperature from increasing exponen-

tially and a thermal runaway occurs. The cross mark ‘X’ on the trajectory shows

the point at which the r-mode amplitude crosses its second lowest parametric

instability threshold. At this stage more inertial modes need to be included to

model the rest of this evolution correctly. As for the cases that evolve to steady

states, these long-timescale runaways tend to occur at low spin rates.

2.5 Probability of Detection

Fig. 2.8 shows how the time the star spends above the r-mode stability curve

changes when S ns and fdU are varied. For large enough values of S ns the bound-

ary layer viscosity dominates. In this region of phase space the spin-down

timescale can be approximated by

tspin−down =

∫ c

b

dt
dΩ̃

dΩ̃ (2.32)

≈
Ĩτ0

GR

6
(4κ̃)2ω̃βω̃γ

|δω̃|2
1
|C̄α|

2

∆Ω̃

<Ω̃>6

≈ 250 yr
∆νkHz

<νkHz>7

1
M1.4R4

6

(
|cth
α |

|cα|

)2

,

where M1.4 = M/(1.4M�), R6 = R/(106cm), νkHz = ν/1kHz, Ĩ = 0.261 [?], the r-mode

amplitude at its parametric instability threshold |cth
α | ≈ |δω̃|/(4κ̃

√
ω̃βω̃γ) ≈ 1.5 ×

10−5, and C̄α =
√

Ω̃|cα|/|cα|th. This approximation agrees with spin-up timescales

obtained from our simulations to ∼ 25%.

The maximum ν is approximately the same as the initial frequency, and can

be determined by equating the driving and damping rate of the r-mode, since it
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Figure 2.8: The spin-down timescale is shown as slippage factor S ns and fraction
of the star subject to direct URCA fdU for cyclic evolutions are varied for a fixed
hyperon critical temperature of Tc = 5.0 × 109 K. This timescale dominates the
heat-up timescale and hence represents the time the star spends above the r-
mode instability curve. It increases as the viscosity is lowered and the star gets
closer to the steady state region.

is on the r-mode stability curve

νmax ≈ 800Hz
(

S ns

M1.4R6

)4/11 1

T 2/11
8

. (2.33)

Thus, the spin-down timescale is very sensitive to the slippage factor

tspin−down ∝ S −24/11
ns (∆νkHz/νkHz). The dependences on fdU and accretion rate

Ṁ are much weaker; a rough approximation, obtained by matching direct

URCA cooling and nuclear heating, is T8 in ∝ Ṁ1/6 f −1/6
dU R−1/6

6 M−1/9
1.4 , and νmax ∝

S 4/11
ns f 1/33

dU Ṁ−1/33R−1/3
6 M−34/99

1.4 . The gravitational wave amplitude measured at dis-

tance d [69, 70] is

h ≈ 1.6
R
d

√
GM
τ0

GRc3
Ω̃3|cα| (2.34)
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Figure 2.9: (a)The stability regions are plotted at fixed hyperon superfluidity
temperature Tc = 6.5 × 109 K, while varying fdU and S ns. The steady state region
remains roughly the same as in Fig. 2.3(b), the slow run-away region disappears,
and the cycle region increases dramatically while shrinking the fast-runaway
region. (b) The spin-down timescale is shown for the cyclic evolutions in part
(a).
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≈ 3 × 10−25
(
10kpc

d

)
M1.4R3

6ν
3
kHz

(
|cα|
cth
α

)
.

Taking ν ≈ νmax gives

h ∝ S 12/11
ns M−1/33

1.4 R2
6 f 1/11

dU Ṁ−1/11. (2.35)

The maximum distance at which sources could be detected by Advanced LIGO

interferometers, assuming hmin = 10−27, [69] is

dmax ≈ 3 Mpc
(
10−27

hmin

)
M1.4R3

6ν
3
kHz

(
|cα|
|cth
α |

)
(2.36)

≈ 1.5 Mpc
(
10−27

hmin

)
S12/11

ns M−1/11
1.4 R21/11

6

× T−6/11
8

(
|cα|
|cth
α |

)
.

Eqs. (2.33) and (2.36) imply that gravitational radiation from the r-mode in-

stability may only be detectable for sources in the Local Group of galaxies. Eq.

(2.33) implies that for accretion to be able to spin up neutron stars to ν & 700 Hz,

we must require (S ns/M1.4R6
√

T8in)4/11 & 1. Assuming this to be true, dmax . 1-1.5

Mpc. However, tspin−down ≈ 1000 yr at most, making detection unlikely for any

given source. Moreover, unless S ns can differ substantially from one neutron star

to another, only those with ν given by Eq. (2.33) can be r-mode unstable. Slower

rotators, including almost all LMXBs, are still in their stable spin-up phases.

Still more seriously, Fig. 2.3(b) shows that spin cycles are only possible for

S ns . 0.50, assuming Tc ≈ 5.0 × 109 K; Eq. (2.33) then implies ν . 450 Hz. This

would restrict detectable gravitational radiation to galactic sources, although

the duration of the unstable phase could be longer.

Within the context of our three mode calculation, S ns > 0.50, which is needed

for explaining the fastest pulsars, would imply fast runaway. There are two pos-

sible resolutions to this problem. One is that including additional modes pre-
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vents the runaway; we shall investigate this in subsequent papers. The second

is that Tc is larger, or that neutron stars do not contain hyperons (e.g., because

they are insufficiently dense). Fig. 2.9(a) shows the same phase plane as Fig.

2.3(b) but with Tc = 6.5 × 109 K, and Fig. 2.9(b) shows the results for tspin−down

analogous to Fig. 2.8. Larger Tc permits spin cycles for higher values of S ns (and

hence ν), but the time spent in the unstable regime is shorter.

2.6 Discussion and Concluding Remarks

In this chapter, we model the nonlinear saturation of unstable r-modes of accret-

ing neutron stars using the triplet of modes formed from the n = 3,m = 2 r-mode

and the the first two near resonant modes that become unstable (n = 13,m = −3

and n = 14,m = 1) by coupling to the r-mode. This is the first treatment of the

spin and thermal evolution including the nonlinear saturation of the r-mode in-

stability to provide a physical cutoff by energy transfer to other modes in the

system. The model includes neutrino cooling and shear, boundary layer and

hyperon bulk viscosity. We allow for some uncertainties in neutron star physics

that is not yet understood by varying the superfluid transition temperature, the

slippage factor that regulates the boundary layer viscosity, and the fraction of

the star that is above the density threshold for direct URCA reactions. In all

our evolutions we find that the mode amplitudes quickly settle into a series of

quasi-stationary states that can be calculated algebraically, and depend weakly

on angular velocity and temperature. The evolution continues along these se-

quences of quasi-steady states as long as the r-mode is in the unstable regime.

The spin and temperature of the neutron star can follow several possible tra-

jectories depending on interior physics. The first part of the evolution is the
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same for all types of trajectories: the star viscously heats up at constant angular

velocity.

If thermal equilibrium is reached, we find several possible scenarios. The

star may follow a cyclic evolution, and spin down and cool in thermal equilib-

rium until the r-mode enters the stable regime. It subsequently cools at constant

Ω until it reaches the initial temperature. At this point the star starts spinning up

by accretion until the r-mode becomes unstable again and the cycle is repeated.

The time the star spends in the unstable regime is found to vary between a few

hundred years (large S ns ∼ 1) and 106 yr (small S ns ∼ 0.05). Our cycles are dif-

ferent from those previously found by Ref. [38] in that our amplitudes remain

small, ∼ 10−5, which slows the viscous heating and causes the star to spend more

time in the regime where the r-mode instability is active. Furthermore, we find

that the star stops heating when it reaches thermal equilibrium and not when

the r-mode reaches a maximum value. The cycles we find are narrow with the

spin frequency of the star changing less than 10% even in the case of high spin

rates ∼ 750 Hz. Other possible trajectories are an evolution toward a full steady

state in which the accretion torque balances the gravitational radiation emis-

sion, and a very slow thermogravitational runaway on a timescale of ∼ 106 yr.

These scenarios occur for very low viscosity (S ns . 0.04). Although theoretically

interesting, they do not allow for very fast rotators of ∼ 700 Hz.

Alternatively, if the star does not reach thermal equilibrium, we find that it

continues heating up at constant spin frequency until it enters a regime in which

the r-mode is no longer unstable. This evolution is similar to that predicted by

Nayyar and Owen [48]. However, the r-mode grows above its second paramet-

ric instability threshold fairly early in its evolution and at this point more iner-
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tial modes should be excited and the three-mode model becomes insufficient.

Modeling this scenario accurately is subject of future work.

We have focused on cases with Tc & 5 × 109 K. These are cases for which the

nonlinear effects are substantial. In this regime, hyperon bulk viscosity is not

important except for thermal runaways where we expect other mode couplings,

ignored here, to play important roles. Fast rotation requires large dissipation, as

has long been recognized [42, 38] and these models can only achieve ν & 700 Hz

if boundary layer viscosity is very large. Alternatively, at lower Tc . 3 × 109 K,

large rotation rates can be achieved at r-mode amplitudes below the first para-

metric instability threshold [50]. Nayyar and Owen found that increasing the

mass of the star for the same equation of state makes the hyperon bulk viscosity

become important at lower temperatures [48]. Conceivably, there are accreting

neutron stars with relatively low masses that have lower central densities and

small hyperon populations. These could evolve as detailed here and only spin

up to modest frequencies. Hyperons could be more important in more massive

neutron stars leading to larger spin rates and very small steady state r-mode

amplitude as found by Wagoner [50].

Our models imply small r-mode amplitudes of ∼ 10−5 and therefore gravi-

tational radiation detectable by advanced LIGO interferometers only in the lo-

cal group of galaxies up to a distance of a few Mpc. The r-mode instability

puts a fairly stringent limit on the spin frequencies of accreting neutron stars of

νmax ≈ 800Hz[S ns/(M1.4R6)]4/11T−2/11
8 . In order to allow for fast rotators of & 700

Hz in our models a large boundary layer viscosity with (S ns/M1.4R6
√

T8in)4/11 ∼ 1

is required. Slippage factors of order ∼ 1 lead to time periods on which the r-

mode is unstable with a timescale of at most 1000 yr, which is about 10−3 times
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shorter than the accretion timescale. This would mean that only about 1 in 1000

LMXBs in the galaxy are possible LIGO sources. However, lower slippage fac-

tors lead to a longer duration of the gravitational wave emission, but also lower

frequencies. We also note that in this model we have considered only very fast

accretors with Ṁ ∼ 10−8M�yr−1 and most LMXBs in our galaxy accrete at slower

rates. Investigations with more accurate nuclear heating models are a subject

for future work.

Our analysis could be made more realistic in several ways, such as by includ-

ing the effects of magnetic fields, compressibility, multi-fluid composition [?],

superfluidity, superconductivity, etc. These features would render the model

more realistic, but its generic features ought to persist, since the upshot would

still be a dense set of mode frequencies exhibiting three mode resonances and

parametric instabilities with low threshold amplitudes. Although the behavior

of the star would differ quantitatively in a model different from ours in detail,

we expect the qualitative behaviors we have found to be robust, as they are

well described by quasi-stationary mode evolutions whose slow variations are

determined by competitions between dissipation and neutrino cooling, and ac-

cretion spin-up and gravitational radiation spin-down. In our model, it seems

that three mode evolution involving interactions of the r-mode with two daugh-

ters at the lowest parametric instability threshold is often sufficient to quench

the instability. Our treatment is inadequate to follow what happens when the

system runs away; for this, coupling to additional modes is essential. For this

regime, a generalization of the work of Brink et al. [51, 52, 53] that includes ac-

cretion spin-up, viscous heating and neutrino cooling would be needed. Such

a calculation is formidable even in a “simple” model involving coupled inertial

modes of an incompressible star.
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CHAPTER 3

THE EFFECTS OF R-MODE INSTABILITY ON THE SPIN EVOLUTION OF

NEWBORN NEUTRON STARS

3.1 Introduction

R-modes are driven unstable by gravitational radiation reaction via the

Chandrasekhar-Friedman-Schutz (CFS) mechanism [26, 27]. They were proven

to be unstable at all rotation rates in the absence of fluid dissipation [28, 29].

When dissipation is present r-modes are unstable when the gravitational driv-

ing dominates fluid dissipation. One can find a critical curve in the angular

velocity - temperature (Ω − T ) phase space along which the gravitational driv-

ing of the n = 3,m = 2 r-mode is equal to the viscous dissipation (this critical

curve is referred to as the r-mode stability curve in this thesis). Above the curve

the r-mode is linearly unstable and grows exponentially. Young neutron stars

are hot. We take an initial temperature of T = 1010 K and assume that the star is

spinning close to break-up with angular velocity Ω ∼ 0.67
√
πGρ̄, which places

it well in the unstable regime. Nonlinear effects become important when the

r-mode amplitude is above its first parametric instability threshold and other

inertial modes that couple to the r-mode are excited. The star can be born with

an r-mode amplitude above the lowest parametric instability threshold or it can

be born with a lower amplitude in which case the r-mode amplitude usually

grows exponentially until it reaches parametric instabillity. Modeling nonlinear

effects is important because they provide a natural saturation amplitude for the

r-mode via energy transfer to other modes in the system and are also crucial in

determining the final frequency to which the star can be spun down to.
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Previous investigations that did not perform direct hydrodynamic simula-

tions used a simple one-mode evolution model that assumes the nonlinear ef-

fects saturate the r-mode amplitude at some arbitrarily fixed value. This model

was proposed by Owen et al. [30, 32] in 1998. Once the maximum allowed am-

plitude is achieved the r-mode amplitude remains constant and the star spins

down at this fixed amplitude. They found that the newborn neutron star would

cool to approximately 109 K and spin down from a frequency close to the Kepler

frequency to about 100 Hz in ∼ 1 yr. In their calculation they include the effects

of shear viscosity and bulk viscosity for ordinary neutron star matter composed

of neutrons, protons and electrons and assume modified URCA cooling.

Jones [41] and Lindblom & Owen [46] pointed out that if the star contains

exotic particles such as hyperons, internal processes could lead to a very high

bulk viscosity in the cores of neutron stars. They predicted that for young neu-

tron stars this viscosity would either eliminate the instability altogether or leave

a short window of instability of up to a day or so for modified URCA cooling

[46, 48] that would not render the gravitational radiation detectable. Various

authors [50, 71, 48] used the one-mode model to find that hyperon viscosity can

stop the growth of the r-mode amplitude at low amplitudes and that in this case

imposing an artificial saturation amplitude may be unnecessary. These studies

mainly dealt with millisecond pulsars in Low Mass X-ray Binaries, but the idea

can be extended to newborn stars [72]. The main difference is that the star is

hotter and cools much faster. The star starts spinning down when the viscous

heating due to the r-mode balances neutrino cooling and higher viscosity makes

this balance happen at lower r-mode amplitudes.

The formalism to study the nonlinear interactions of the r-mode with other
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inertial modes was developed by Schenk et al. [54]. They assumed a small r-

mode amplitude and treated the oscillations of the modes with weakly nonlin-

ear perturbation theory via three-mode couplings. This assumption was tested

by Arras et al. [39] and Brink et al. [51, 52, 53, 73]. Arras et al. proposed that a

turbulent cascade will develop in the strong driving regime. They studied both

the newborn neutron star and the LMXB case and did not include hyperon bulk

viscosity. They estimated that the r-mode amplitude was small and could have

values between 10−1 − 10−4. Brink et al. computed the interactions of about 5000

modes via approximately 1.3 × 106 couplings among modes with n ≤ 30. They

modeled the star as incompressible and calculated the coupling coefficients ana-

lytically. The couplings were restricted to near resonant modes with a fractional

detuning of δω/(2Ω) < 0.002. Brink et al. showed that the nonlinear evolu-

tion saturates at amplitudes comparable with the lowest parametric instability

threshold. Brink et al. did not include spin or temperature evolution in their

model, choosing constant T and Ω.

In the previous chapter we investigated the r-mode instability for neutron

stars in LMXBs including neutrino cooling and accretional spin-up. We took the

mode triplet at the lowest parametric instability threshold found by Brink et al.

and solved the coupled equations for the three modes together with the spin

and temperature evolution numerically for a neutron star in an LMXB model.

We found that one mode triplet was sufficient to stop thermal runaway in most

scenarios and confirmed that the r-mode amplitude settled very close to its para-

metric instability threshold and tracked the threshold for the rest of the evolu-

tion.

In this chapter we begin a study of the nonlinear development of the r-mode
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instability for newborn neutron stars. We include neutrino cooling, viscous

heating and spin-down due to emitted gravitational radiation and magnetic

dipole radiation. We use a simple model in which we parametrize the rate at

which the star cools via neutrino emission and the rate at which the energy in

inertial modes dissipates via boundary layer viscosity and bulk viscosity. In

oder to explore different nonlinear behavior we vary some of these parameters,

including the hyperon superfluidity temperature Th.

As before we include the three mode triplet at the lowest parametric insta-

bility threshold: the r-mode at n = 3 and two inertial modes at n = 14 and

n = 15. This corresponds to the second lowest zero-viscosity parametric insta-

bility threshold found by Brink et al. The reason for not using the lowest zero-

viscosity threshold is that in our case the system is strongly damped and the

zero-viscosity limit is no longer a good approximation. When δω/(γβ + γγ) << 1

where γβ and γγ are the damping rates of the daughter modes; the parametric

instability threshold amplitude ∝ √γβγγ/κ and is independent of δω. So, the

lowest detuning no longer leads to the lowest parametric instability threshold

and the second lowest parametric instability threshold from the zero-viscosity

limit happens to be the first lowest threshold in this case because it has a large

coupling coefficient. We do not include higher order corrections in angular ve-

locity for the coupling coefficients or detuning and the exact modes and value of

the coupling coefficient may change when these are included. Additionally, as

the star spins down the daughter modes comprising the lowest threshold will

change and different triplets of modes may become important. Modeling this is

subject of future work. Brink et al. found typical coupling coefficients between

0.01 and 3 for δω/(2Ω) < 0.002. The high n daughter modes and coupling co-

efficient we use (κ = 1.25) are most likely not the exact modes of the star that
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get excited nor the exact coupling coefficient, but they are representative for the

lowest parametric instability threshold for a dense set of modes in the strongly

damped regime. We believe that the different nonlinear behaviors we obtain are

robust, although the numerical values may change slightly for different three-

mode parameters.

Sec. 3.2 discusses the evolution equations. We first review the equation for

the three modes, the quasi-stationary solutions of the three mode system and the

parametric instability threshold. The gravitational driving and viscous damp-

ing rates are discussed next. Sec. 3.3 then provides an overview that includes a

discussion of each evolution scenario and input physics that leads to each sce-

nario. Each stable evolution type is further detailed in subsections of Sec. 3.5.

The runaway evolutions are discussed in detail in Sec. 3.6. The prospects of

detecting gravitational radiation are considered in Sec. 3.7. We summarize the

results in the conclusion. Appendix B.1 derives the frequency change in the

inertial modes due to the presence of a magnetic field. Appendix B.2 details

the method we use to compute the bulk viscosity timescales and compares

timescales resulting from our method with those computed by Lockitch and

Friedman [75]. Appendix B.4 contains a stability analysis of the evolution equa-

tions around thermal equilibrium.
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3.2 Mathematical Background

3.2.1 Three-mode Evolution Equations

The evolution equations for the mode amplitudes when the n = 3,m = 2 r-mode

couples to two near-resonant inertial modes can be written as

dCα

dτ
= iω̃αCα +

γα
Ω

Cα −
2iω̃ακ̃
√

Ω
CβCγ, (3.1)

dCβ

dτ
= iω̃βCβ −

γβ

Ω
Cβ −

2iω̃βκ̃
√

Ω
CαC?

γ ,

dCγ

dτ
= iω̃γCγ −

γγ

Ω
Cγ −

2iω̃γκ̃
√

Ω
CαC?

β .

The scaled frequency ω̃ j is ω̃ j = ω j/Ω, the dissipation rates of the inertial modes,

also called daughter modes, are γβ and γγ, γα is the sum of the driving and

damping rates of the r-mode γα = γGR − γα v, and the dimensionless coupling

is κ̃ = κ/(MR2Ω2). A derivation of the equations of motion for the three-mode

system in the limit of slow rotation in terms of rotational phase τ (dτ = Ω dt)

from the Lagrangian density can be found in Appendix A.1. This formalism

to study the nonlinear interaction of the r-mode with other inertial modes was

developed in Schenk et al. (in terms of the amplitude variables of Schenk et al.

[54] and Brink et al. [51, 52, 53] C j(t) =
√

Ω(t)c j(t)).

As in Ref. [74] we rescale the equations:

dC̄α

dτ̃
=

iω̃α

|δω̃|
C̄α +

γ̃α

|δω̃|Ω̃
C̄α −

i

2
√

Ω̃
C̄βC̄γ, (3.2)

dC̄β

dτ̃
=

iω̃β

|δω̃|
C̄β −

γ̃β

|δω̃|Ω̃
C̄β −

i

2
√

Ω̃
C̄αC̄?

γ ,

dC̄γ

dτ̃
=

iω̃γ

|δω̃|
C̄γ −

γ̃γ

|δω̃|Ω̃
C̄γ −

i

2
√

Ω̃
C̄αC̄?

β ,
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where we have used the same rescaling as in Ref. [74] with C̄ j = C j/|C j|0,

γ̃ j = γ j/Ωc, and Ωc is a fixed angular frequency chosen for reference. The ro-

tational phase τ is rescaled by the fractional detuning as τ̃ = τ|δω̃| and the mode

amplitudes scaled by the zero-viscosity parametric instability threshold

|Cα|0 =
|δω̃|
√

Ωc

4κ̃
√
ω̃βω̃γ

, |Cβ|0 =
|δω̃|
√

Ωc

4κ̃
√
ω̃αω̃γ

, (3.3)

|Cγ|0 =
|δω̃|
√

Ωc

4κ̃
√
ω̃βω̃α

.

3.2.2 Driving and Damping Rates

For our benchmark calculations, we adopt the neutron star model of Owen et al.

Ref. [30] (n = 1 polytrope, M = 1.4M�, Ωc = 8.4 × 103 rad sec−1 and R = 12.5 km)

and use their gravitational driving rate for the r-mode

γGR(Ω) ' 0.05M1.4R4
12.5

(
ν

1 kHz

)6
(3.4)

'
Ω̃6

3.26
sec−1,

where M1.4 = M/1.4M� and R12.5 = R/12.5 km. If hyperons are present in the

core of the neutron star then hyperon bulk viscosity dominates other forms of

bulk viscosity. In this chapter we consider hyperon bulk viscosity and boundary

layer viscosity to be the main sources of dissipation with

γ̃α hb =
fr hbτ(T,Tc)AhbΩ̃

4Iα
1 + (2ω̃αΩτ(T ))2 , (3.5)

γ̃ j hb =
fd hbτ(T,Tc)AhbI j

1 + (2ω̃ jΩτ(T ))2 ,

for the r-mode and daughter modes respectively. We treat the critical tempera-

ture Tc and the coefficient Ahb as parameters. Ahb is chosen so that the peak of

the r-mode stability curve is at about 1000 Hz for all our stable evolutions. We
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lower it to exhibit runaway behavior. The factors fr hb and fd hb allow for differ-

ent physical uncertainties in the r-mode and daughter mode viscosities. In this

chapter we take them to be 1. The mode integral for the daughter modes is

Ihb j =
1
R5

∫
d3x

∣∣∣∣∣∣ξ j · ∇p
p

∣∣∣∣∣∣2 , (3.6)

where the value of this integral for different inertial modes is listed in Ap-

pendix B.2. The damping rates computed via this method with modes and fre-

quencies for the incompressible stellar model are within a factor of 2 of those

computed by Lockitch and Friedman for an n = 1 polytope (see Appendix B.2).

The relaxation timescale

τ(T,Tc) =
t1T−2

9

Rhb(T/Tc)
, (3.7)

where we use the reduction factor proposed by Ref. [47]

Rhb(T/Tc) =
a5/4 + b1/2

2
exp

(
0.5068 −

√
0.50682 + y2

)
(3.8)

where a = 1+0.3118y2, b = 1+0.2566y2 and y =
√

1.0 − T/Tc(1.456−0.157
√

Tc/T +

1.764Tc/T ). The constant is taken to be t1 ≈ 10−6 sec.

The boundary layer viscosity is computed via Eq. (3) of Bildsten and

Ushomirsky [42] and is given by

γ j bl(T,Ω) = I jAblω̃
5/2S 2

ns

√
Ω̃

T9
(3.9)

where S ns is the slippage factor and I j is the mode integral for mode j. Here the

constant

Abl = 3.68 × 10−5
(
ρ

ρb

) √
R12.5

M1.4
(3.10)

and the mode integral

Ibl j =

∫
d cos θdφ

ξ j · ξ
?
j

R2 , (3.11)
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where ξ j is the displacement vector for mode j (see Appendix B.3 for the list

of integrals for the inertial modes in the lowest two zero-viscosity parametric

instability thresholds) and the density on the boundary layer is taken to be con-

stant ρb = 1.5 × 1014 g cm−3. In this chapter we use inertial modes with j = 592

(n = 15, m = −7) and j = 494 (n = 14, m = 5).

3.2.3 Angular Momentum and Temperature Evolution

Angular momentum is lost via gravitational wave emission

dJ
dt

= 2γGRJc rmode −
IΩ
τM

, (3.12)

where Jc rmode = −(mα/ωα)εα|cα|2 = −3MR2Ω|cα|2 = −3MR2|Cα|
2, I is the moment

of inertia of the star, IΩ/τM is the magnetic breaking torque, and τM is the cor-

responding timescale. We have adopted the simplest dipole magnetic dipole

model with a timescale

1
τM

=
B2R6Ω2

6c3I
=

1
1.2 × 107sec−1

R4
12.5B2

13

M1.4

(
ν

1kHz

)2
(3.13)

=
B2

13Ω̃
2

6.7 × 106sec−1 .

Here B13 = B/(1013 G). Eq. (3.12) can be rewritten in terms of the scaled variables

in Eq. (3.3) as
dJ
dτ̃

= −
6γ̃GR

Ω̃

MR2Ωc|δω̃|

(4k̃)2ω̃βω̃γ

|C̄α|
2 −

I
|δω̃|τM

. (3.14)

Thermal energy conservation gives the temperature evolution equation

C(T )
dT
dt

=
∑

j

2E jγ j − Lν(T ) (3.15)

= 2MR2Ω(γα v|Cα|
2 + γβ|Cβ|

2

+ γγ|Cγ|
2) − Lν(T ).
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Following Ref. [50], we take the neutrino luminosity to be

Lν = LdUT 6
9 RdU(T/Tp) + LmUT 8

9 RmU(T/Tp) (3.16)

+ Le−iT 6
9 + Ln−nT 8

9 ,

where the constants for the modified and direct URCA reactions are defined by

LmU = 1.0 × 1040 erg sec−1, LdU = fdU × 1046 erg sec−1 [59, 60], and the electron-ion,

neutron-neutron neutrino bremsstrahlung and Coopper pairing of neutrons are

given by Le−i = 9.1 × 1035 erg sec−1, Ln−n ≈ 1038 erg sec−1. The fraction of the star

fdU that is above the density threshold for direct URCA reactions is in general

dependent on the equation of state [62] and we take it to be 10% through most

of this chapter (we set fdU = 0 for one of the runaway cases in Sec. ??).

The proton superfluid reduction factors for the modified and direct URCA

reactions are taken from Ref. [60] (see Eqs. (32) and (51) in Ref. [60]):

RdU(T/Tp) =
[
0.2312 +

√
(0.76880)2 + (0.1438v)2

]5.5
(3.17)

× exp
(
3.427 −

√
(3.427)2 + v2

)
,

RmU(T/Tp) =
(
0.2414 +

√
(0.7586)2 + (0.1318v)2

)7
,

× exp
(
5.339 −

√
(5.339)2 + (2v)2

)
where the dimensionless gap amplitude v for the singlet type superfluidity is

given by

v =

√
1 −

T
Tp

1.456 − 0.157

√
Tp

T
+ 1.764

Tp

T

 . (3.18)

Similar to Ref. [50], we use Tp = 5.0 × 109 K. In terms of the scaled variables Eq.

(3.15) becomes

C(T )
dT
dτ̃

=
2MR2Ω2

c |δω̃|

(4κ̃)2ω̃αω̃βω̃γ

(ω̃αγ̃α v|C̄α|
2 + ω̃βγ̃β|C̄β|

2 (3.19)

+ ω̃γγ̃γ|C̄γ|
2) −

Lν(T )
ΩcΩ̃|δω̃|

.
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3.2.4 Quasi-Stionary Solutions

In terms of amplitudes and phase variables C j = |C j|eiφ j Eqs. (3.2) can be rewrit-

ten as

d|C̄α|

dτ̃
=

γ̃α

Ω̃|δw̃|
|C̄α| −

sin φ|C̄β||C̄γ|

2
√

Ω̃
, (3.20)

d|C̄β|

dτ̃
= −

γ̃β

Ω̃|δw̃|
|C̄β| +

sin φ|C̄α||C̄γ|

2
√

Ω̃
,

d|C̄γ|

dτ̃
= −

γ̃γ

Ω̃|δw̃|
|C̄γ| +

sin φ|C̄α||C̄β|

2
√

Ω̃
,

dφ
dτ̃

=
δω̃

|δω̃|
−

cos φ

2
√

Ω̃

(
|C̄β||C̄γ|

|C̄α|
−
|C̄α||C̄γ|

|C̄β|
−
|C̄β||C̄α|

|C̄γ|

)
,

where we have defined the relative phase difference as φ = φα − φβ − φγ.

These equations have the stationary solution

|C̄α|
2 =

4γ̃βγ̃γ
Ω̃|δω̃|2

(
1 +

1
tan2 φ

)
, (3.21)

|C̄β|
2 =

4γ̃αγ̃γ
Ω̃|δω̃|2

(
1 +

1
tan2 φ

)
,

|C̄γ|
2 =

4γ̃αγ̃β
Ω̃|δω̃|2

(
1 +

1
tan2 φ

)
,

tan φ =
γ̃β + γ̃γ − γ̃α

Ω̃|δω̃|
.

In the limit when |δω̃|/γ̃ j << 1

|C̄α|
2 ≈

4γ̃βγ̃γ
Ω̃|δω̃|2

, |C̄β|
2 ≈

4γ̃αγ̃γ
Ω̃|δω̃|2

, |C̄γ|
2 ≈

4γ̃αγ̃β
Ω̃|δω̃|2

. (3.22)

Assuming that the amplitudes evolve through a series of spin- and

temperature-dependent steady states, i.e., dCi/dτ̃ ≈ 0, the spin and thermal evo-

lution equations can be rewritten by taking J ≈ IΩ and using Eqs. (3.21) in Eq.
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(3.14).
dΩ̃

dτ̃
= −

6γ̃GR

Ω̃2|δw̃|

γ̃βγ̃γ

4k̃2 Ĩω̃βω̃γ

kαα

(
1 +

1
tan2 φ

)
−

1
τMΩc|δω̃|

(3.23)

where Ĩ = I/(MR2). The thermal evolution of the system is given by

C(T )
dT
dτ̃

=
2MR2Ω2

c

(4κ̃)2ω̃αω̃βω̃γ

γ̃αγ̃βγ̃γ

Ω̃|δω̃|

(
ω̃αγ̃α,v

γ̃α
+ ω̃β (3.24)

+ ω̃γ

) (
1 +

1
tan2 φ

)
−

Lν(T )
ΩcΩ̃|δω̃|

.

By setting the right hand side of the above equation to zero, one can find the

Heating = Cooling (H = C) curve. Below, we find that Eqs. (3.23)-(3.24) de-

scribe the type I and III evolutions well throughout the stable regime. When the

daughter modes are negligible the r-mode amplitude oscillates around a quasi-

stationary state of its own

|C̄α|
2 = |C̄H=C r−mode|

2 =

(
Lν
γ̃α v

)
(4κ̃)2ω̃βω̃γ

2MR2Ω3
cΩ̃|δω̃|

2
(3.25)

3.3 Brief Summary of Results

Fig. 3.1(a) and (b) show possible evolution scenarios for the spin and temper-

ature of a newborn neutron star due to the r-mode instability. They display

typical evolutionary trajectories in the angular velocity - temperature Ω̃ − T9

plane, where T = T9 × 109 K is the core temperature, and Ω̃ = Ω/Ωc = Ω/
√
πGρ̄

with ρ̄ the mean density of the neutron star.

The evolution can be divided into several phases:

Phase 0. The star cools at nearly constant angular velocity Ω̃ = Ω̃i. The r-mode

amplitude grows exponentially. Several trajectories are possible depending on

whether the amplitude first reaches its parametric instability threshold or inter-
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Figure 3.1: Typical trajectories for five observed evolution scenarios are shown
in the Ω̃ − T9 plane, where Ω̃ = Ω/Ωc. Stable Evolutions. Type I: the star cools
until the cooling is balanced by the viscous heating from the three modes and
spins down in the first unstable region (T9 > T9 peak) - evolution A. The aver-
age trajectory can be determined by using quasi-steady state mode amplitudes
until the star intersects the r-mode stability curve. It then cools until it enters
the second unstable region: T9 < T9 peak and spins-down along r-mode stability
curve. Type II: the star spins down on the r-mode stability curve or oscillates
around it - evolutions B and C. In evolution C the thermal oscillations become
unstable and the star cools to the next thermal equilibrium region. Type III: the
star cools until it reaches thermal equilibrium to the left of the r-mode stability
curve (T9 < T9 peak) and subsequently spins down on the quasi-steady H = C
curve in the second unstable region- evolution D. Type R: Runaway evolution.
The three-mode system is not sufficient to model this evolution and more modes
need to be included.
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sects the r-mode stability curve.

• Type I. Evolution A. Phase 1a. Amplitudes settle in quasi-steady states.

The r-mode grows above its parametric instability threshold exciting the

daughters before the star reaches the r-mode stability curve. The triplet

coupling leads to oscillations of the three-mode amplitudes around quasi-

steady solutions. The star continues cooling at fixed angular velocity until

the viscous heating due to the three modes temporarily stops the cooling.

Phase 2a. The star spins-down. Some thermal oscillations at nearly con-

stant Ω̃ occur. Their amplitude depends on model parameters such as

the strength of the coupling coefficients. The average trajectory in the

Ω̃ − T9 plane is, however, well approximated by the Heating = Cool-

ing (H = C) curve computed using quasi-stationary solutions for the r-

mode and daughter mode amplitudes. These quasi-stationary states can

be determined algebraically and are slowly varying functions of Ω̃ and T9.

Eventually, the star reaches the r-mode stability curve.

Phase 3a It then cools into the stable region at approximately constant an-

gular velocity until it

(i) crosses to the second unstable region if the stable region is narrow

enough to avoid significant dipole spin-down. It can then spin and cool

down along the r-mode stability curve.

(ii) cools and spins down remaining in the stable region for the rest of the

evolution. The r-mode and daughter mode amplitudes quickly damp to

zero and the star spins down due to magnetic dipole radiation.

• (i) Type II. Evolutions B and C. Phase 1b. The star crosses in the stable region

before the daughter are excited. The r-mode damps exponentially until
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the star enters the second unstable region. The star reaches thermal equi-

librium close to the r-mode stability curve.

Phase 2b. The star either continues to evolve down the stability curve (evo-

lution B) with no thermal oscillations or oscillates around it (evolution

C). The average evolution is well described by the thermal equilibrium r-

mode amplitude. The daughter mode amplitudes either do not get excited

at all or reach only small values relative to the r-mode amplitude.

Phase 3b. The star cools, the daughter modes get excited as temperature

and hence the value of the parametric instability threshold decrease. The

triplet of modes oscillate around their quasi-stationary states. The evolu-

tion then overlaps evolution D and the star spins down on an H = C curve

determined by all three modes.

(ii) Type III. Evolution D. Phase 1c. Mode amplitudes settle into quasi-steady

states. The r-mode amplitude is lower than its thermal equilibrium value

near the r-mode stability curve. The trajectory passes the r-mode stability

curve, enters the second unstable region and the r-mode amplitude grows

exponentially until it reaches parametric instability. The mode triplet set-

tles into quasi-stationary state amplitudes.

Phase 2c Spins down on H = C curve. The star continues cooling with the

mode triplet close to its quasi-steady state until it reaches thermal equi-

librium. It then spins down losing usually more than half of its angular

velocity and cools slightly. As the star spins down the r-mode amplitude

increases and can disturb the balance between heating and cooling. The

star then develops thermal oscillations as it spins down. The average evo-

lution is still well described by the Heating = Cooling (H = C) curve com-

puted using the quasi-steady solutions.

63



0.6 0.8 1 1.2 1.4 1.6
T

9

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Ω
/Ω

c

R-mode Stability Curve
κ = 3.95 :  Evolution 1
κ = 1.25 :  Evolution 2
κ = 0.395: Evolution 3

1 2 3

Figure 3.2: The trajectories in the Ω̃ − T9 plane for evolutions with different
coupling coefficients are shown for three values of κ: 3.95, 1.25 and 0.395. All
other parameters are the same. The hyperon superfluidity temperature is Th =

6.0 × 109 K. The cooling is stopped by the heating later for larger κ and the
thermal oscillations are smaller.

Phase 3c. The r-mode intersects the r-mode stability curve again and

renters the stable region. The three modes damp to zero and the star con-

tinues spinning down due to the dipole term.

• Runaway. Evolution R. The growth rate of the r-mode is faster than the

neutrino cooling rate and the r-mode amplitude overshoots its parametric

instability threshold. All three modes get excited and grow exponentially

reaching amplitudes close to 1. Since the mode amplitudes are large this

evolution is very short (∼ one or two hours). Our evolutions do not accu-

rately model runaway scenarios as in this case more modes will be excited

as the r-mode amplitude passes other parametric instability thresholds.
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3.4 Shortcomings of the Model and Possible Improvements

We find that modeling nonlinear interactions with a single triplet of modes is

sufficient to stop the instability. Our treatment is inadequate to follow what

happens when the system runs away. In this case, one would include more

modes.

Another simplification is that we do not include higher order corrections in

angular velocity for the mode frequencies or coupling coefficients. These can be

important at high spin rates and since as the star spins down the exact values for

the detuning, frequencies and coupling coefficient can change. This can lead to

different triplets of modes determining the lowest parametric instability thresh-

old at different frequencies and the evolution can switch between these triplets

of modes. Modeling such behavior is beyond the scope of this work. Here, we

choose numbers that we think are representative for the detuning, coupling co-

efficient, mode frequencies and viscous damping rates and study the possible

nonlinear behaviors. This study is a first step in understanding the qualitative

behavior of the three mode system and we believe that the mode triplet we used

is typical for this system.

The triplet we choose is the lowest parametric instability threshold at zero

eccentricity in the limit of strong damping δω/(γβ + γγ) << 1. The daughter

modes that the r-mode couples to are n = 15, m = 7 and n = 14, m = 5. This triplet

has a detuning δω̃ = 10−4 and coupling κ = 1.25. A preliminary calculation that

included second order corrections in frequency and computed detunings for

modes with n < 20 found that resonances occur for similar high n modes [76].

This is reasonable as there are more modes that satisfy the selection rules [54] at
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high n and hence it is more likely for resonances to occur there. Furthermore,

as long as the combination of detuning and damping rates is low enough to

satisfy δω/(γβ + γγ) << 1, the evolutions are independent of the exact value of

the detunings. We varied the detuning by a factor of 100, between 10−6 and 10−4,

and did not observe significant changes in the evolution.

To test the dependence of the evolution on the coupling coefficient we vary

it by factors of
√

10 between κ = 0.395 and κ = 3.95. Fig. 3.2 shows that the

evolutions change but are qualitatively similar. Increasing κ decreases the am-

plitude of the thermal oscillations and increases the angular velocity Ω̃ at which

the star crosses in the stable region. The coupling coefficients found by Brink

et al. for an incompressible stellar model for near-resonant daughter modes

(δω/(2Ω) < 10−3) that couple to the n = 3, m = 2 r-mode vary roughly between

0.001 and 3 [73]. The coupling we choose, κ = 1.25, which corresponds to a

mode triplet that has a low enough detuning to maintain the strong damping

limit. To test the sensitivity of damping rates on mode functions we look at the

lowest and second lowest (n = 13, m = 3 and n = 14, m = 1 daughter modes)

zero-viscosity parametric instability thresholds. The product of the damping

rates for the two daughter modes γβγγ changes by factors of order 1 and the

individual rates change by factors of order 2.

Another important factor that will affect the parameters is the choice of stel-

lar model. Our model is simplified; a more realistic treatment could include

compressibility, more realistic magnetic fields, differential rotation, mixtures

of superfluid or superfluid and normal fluid regions. All these will affect the

precise numbers for the mode frequencies, coupling coefficients, viscosity and

hence the quantitative details of the evolution. However, more sophisticated
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treatments should still find a dense set of modes confined to a relatively narrow

frequency range. This set will exhibit three-mode resonances and hence strong

nonlinear effects at small amplitudes. The principles we outline here should be

quite general. The unstable region in which the star will spin down should still

depend on where the neutrino cooling can be balanced by heating. Concepts

such as parametric instability, competition between cooling and heating, and

quasi-steady evolution ought to apply for any system of modes where nonlin-

ear effects are important.

3.5 Stable Evolutions

In this section we examine examples of different types of stable evolutions in

more detail. We assume S ns = 0.10, fdU = 0.10 and Tp = 5.0 × 109 K.

3.5.1 Type I

In this subsection we detail two typical type I trajectories with hyperon super-

fluidity temperatures of Th = 6.0×109 K and Th = 2.0×109 K and the same initial

conditions: Ω̃i = 0.67 and T9i = 10. For this initial angular velocity and temper-

ature the evolutions are independent of the initial r-mode and daughter mode

amplitudes. However, this changes for the Th = 6.0 × 109 K case as Ω̃i is low-

ered. For an Initial Ω̃i = 0.60 an initial r-mode amplitude of C̄α(0) ≥ 3.0 × 10−4

lead to evolutions of type I, and initial r-mode amplitudes C̄α(0) < 3.0 × 10−4

lead to the star spinning down along the r-mode stability curve (type II evo-

lution). Roughly speaking, a type I evolution occurs when the amplitude of
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Figure 3.3: A typical type I trajectory in the Ω̃ − T9 plane is shown for Tc h =

6.0 × 109 K. The evolution starts at Ω̃i = 0.67, T9 i = 10. The star cools down
to T9 a = 1.43 in about 10 minutes. At this point the dissipation heating of the
3-modes balances the cooling and the star spins down, oscillating around its
quasi-steady solution for ta→b ≈ 0.1 yr until it intersects the r-mode stability
curve at T9 b = 1.25, Ωb = 0.45. It then cools down at constant Ω̃ = Ω̃b until
the cooling is again balanced by the viscous heating due to the r-mode. The
daughter modes do not get excited in this part of the evolution. The star then
spins and cools down in thermal equilibrium on the r-mode stability curve for
tc→d ≈ 2.8 yr until it enters the stable region again at Td ≈ 0.60, Ω̃d ≈ 0.25.

the r-mode grows beyond its parametric instability threshold early and excites

the daughters. This makes the viscous dissipation due to the three modes large

enough to stop cooling on the right side of the peak of the r-mode stability curve

(T9 > T9 peak). Larger amplitudes favor type I evolutions. The sharp transition

in C̄α(0) enforces that there is a cutoff between the different types of evolution.

Evolutions of a given type are alike and changes in initial conditions do not

affect the shape of the trajectory. They only affect the precursor/settling oscilla-

tions.

The first trajectory we focus on is displayed in Fig. 3.3 (This is the same as

the type A evolution in Fig. 3.1(a).) The star cools down from T9i = 10 to T9 ≈ 2

in the first minute or so. The r-mode and daughter mode amplitudes settle in
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Figure 3.4: Mode amplitudes displayed as a function of time for Th = 6.0 × 109

K. (a) Initial evolution. The three modes settle down to their quasi-steady states
in the first minute or so and then oscillate around these solutions. (b)Evolution
before the r-mode stability curve is reached. (c) The r-mode and its parametric
instability threshold amplitude shown as the star crosses from the right to the
left side of the r-mode stability curve.
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T9peak) is shown as a function of T9 in (a) and as a function of time in (b). Part
(a) details the initial oscillation of |C̄α| around the thermal equilibrium value
|C̄α|H=C r−mode. The r-mode eventually settle to its equilibrium value and con-
tinues spinning down along the r-mode stability curve. Part (b) shows the
agreement between the r-mode amplitude from the full evolution code and the
thermal equilibrium r-mode amplitude computed on the r-mode stability curve
|C̄α|H=C r−mode(Ω̃CFS,T9 CFS) with Ω̃ between Ωc = Ωb ≈ 0.45 and Ωd ≈ 0.25.
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Figure 3.6: Another type I evolution is shown for a lower hyperon superfluidity
temperature Th = 2.0× 109 K. (a) The trajectory of the star is shown in the Ω̃− T9

plane. The star cools from T9 i = 10, Ω̃i = 0.67 to T9 a ≈ 1.12 in about 10 min. At
this point the viscous heating is large enough to stop the neutrino cooling. The
star then spins down and cools to Ω̃b ≈ 0.27, T9 b ≈ 0.76 in ta→b ≈ 2.5 yr. At point
b the star intersects the r-mode stability curve and the r-mode becomes stable.
The star starts cooling at constant angular velocity. At this lower spin frequency
the dipole spin-down becomes important and the star spins down at T9 c ≈ 0.5
never reaching the unstable region of the Ω̃ − T9 plane again. (b) The r-mode
and its parametric instability threshold amplitude are shown as a function of
time. As before it can be seen that |C̄α|quasi = |C̄α|PIT is a good approximation
for the average r-mode amplitude until the star crosses in the stable region. The
oscillations around this quasi-stationary solutions are about 6 times smaller than
in the Th = 6.0 × 109 K evolution.
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their quasi-stationary states at T9 ≈ 2 and subsequently oscillate around these

solutions (Fig. 3.4(a)). The heating first balances the cooling at T9a ≈ 1.43. The

star then starts spinning down oscillating around thermal equilibrium (H = C

curve in the figure). Within a time of ta→b ≈ 0.1 yr the star spins down by more

than 50% of its initial value to Ω̃b ≈ 0.45, while the temperature changes slowly

with a total change in the average T9 of only (∆T9 a→b)av ≈ 0.14. The horizontal

temperature oscillations have an amplitude of ≈ 0.05. At point b, (T9 b, Ω̃b) =

(1.25, 0.45), the star intersects the r-mode stability curve. It then cools down at

constant spin frequency and in about tb→c = 14 hours reaches the left side of the

r-mode stability curve where T9 c ≈ 0.77 and Ω̃c = Ω̃b ≈ 0.45.

The second part of this evolution is really of type II and these evolutions

will be described in further detail in the next subsection. The upshot is that the

star reaches thermal equilibrium on the r-mode stability curve and spins down

along it. The r-mode does not grow above its parametric instability threshold.

No daughter modes are excited and the r-mode amplitude is well approximated

by its thermal equilibrium value |Cα|r−mode H=C evaluated on the r-mode stability

curve (see Fig. 3.5(b)). Since the amplitude is smaller, the spin-down is slower

and this part of the evolution is longer lasting, almost 3 yr.

Fig. 3.6(a) plots the trajectory in the Ω̃ − T9 plane of a star with hyperon su-

perfluidity temperature Th = 2.0 × 109 K. Lower Th makes the hyperon bulk

viscosity become important at lower temperatures (i.e., shifts the curve to the

left). As before, the star cools at constant Ω̃ until the heating dissipated by the

three-modes becomes large enough to balance the cooling. As expected, in this

scenario the star reaches thermal equilibrium at slightly lower temperature of

T9 ≈ 1.12 because the viscosity is lower. The star then starts spinning down
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in thermal equilibrium. Fig. 3.6(b) shows that the quasi-stationary solution re-

mains a good approximation for the average r-mode amplitude until the evo-

lution reaches the r-mode stability curve and the r-mode becomes stable. The

r-mode amplitude stays much closer to its quasi-stationary solution with an os-

cillation amplitude about 6 times lower than in the Th = 6.0 × 109 K scenario.

The spin-down time ta→b ≈ 2.5 years and Ω̃ changes by more than a factor of 2:

Ω̃b = 0.27, ∆Ω̃ = 0.40, T9 a = 1.12,T9 b = 0.76 and ∆T9 a→b ≈ 0.35. Point b is at

the intersection between the quasi-steady H = C curve and the r-mode stability

curve and can be determined analytically. Beyond this point the r-mode am-

plitude damps to zero and the star continues to spin down via magnetic dipole

radiation.

3.5.2 Type II

We now consider evolutions in which the star reaches thermal equilibrium close

to the r-mode stability curve and spins down along it. These are exemplified

by evolutions B (Th = 6.0 × 109 K, Ωi = 0.60 and any |C̄α|(0) < 4.0 × 10−5; for

|C̄α|(0) ≥ 4.0 × 10−5 a type I evolution is obtained) and C (Th = 1.2 × 1010 K,

Ωi = 0.67 and any |C̄α|(0) > 5.0 × 10−5; |C̄α|(0) ≤ 5.0 × 10−5 leads to a type III

evolution) in Fig. 3.1. The initial temperature is T9 i = 10 in both cases. The

second part of evolution A also falls in this category.

In the first scenario (evolution B in Fig. 3.1(a)) the r-mode never reaches its

parametric instability threshold and the evolution can be adequately described

by a one-mode model. The neutron star cools until the amplitude of the r-mode

is large enough to generate enough viscous heating to stop the cooling. It starts
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Figure 3.7: The trajectory of the neutron star in the Ω̃ − T9 plane is shown for
evolutions C and D of Fig. 3.1. The star cools to T9 a = 1.82 in about 6 minutes
and crosses the r-mode stability curve for the second time. In evolution C the
r-mode reaches large enough amplitudes for the viscous dissipation to balance
the cooling. It then settles in thermal equilibrium (H = C) and spins down along
the r-mode stability curve. It spins down to Ωb1 = 0.58, Tb1 ≈ 1.68 in ta1→b1 ≈ 48
hours. At this point the temperature of the star starts oscillating and the r-mode
amplitude oscillates around the stability curve for tb1→c1 = 6.7 × 105 sec until
T9c1 = 1.53, Ω̃c1 = 0.44. At this points it cools at constant Ω̃ for tc1→c2 = 1.2 × 104

sec to another thermal equilibrium region. The rest of the evolution coincides
for C and D. In the case of evolution D the star cools at constant Ω̃ = Ω̃i = 0.67
to T9b2 ≈ 1.13 in about 2 hours and spins down in tb2→e ≈ 3 yr on a H = C curve
determined by the quasi-steady states of all three modes.

spinning down oscillating around the r-mode stability curve and settles there.

As the spin frequency gets lower the dipole spin-down becomes more important

and the star eventually spins down into the stable region. The amplitude evolu-

tion will be similar qualitatively to Fig. 3.5. The full evolution lasts ≈ 3.2 yr and

as in the second part of evolution A, after an initial precursor, the r-mode am-

plitude is fairly precisely determined by |C̄α|H=C r−mode evaluated on the r-mode

stability curve.

In the second scenario (evolution B in Fig. 3.1) the r-mode amplitude passes

its first parametric instability threshold and excites the two daughters. The hy-
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Figure 3.8: (a) The r-mode |C̄α| and daughter mode |C̄β|, |C̄γ| amplitudes are dis-
played at the beginning of a type II evolution (evolution C in Fig1̇). The r-mode
is seen to settle to its equilibrium value |C̄α|H=C r−mode and the daughter mode os-
cillations damp to zero. (b) The r-mode and its thermal equilibrium solution
|C̄α|H=C r−mode are shown for the first part of the evolution (the trajectory oscillates
in the Ω̃−T9 plane around the r-mode stability curve). This equilibrium solution
is seen to be a good approximation for the average r-mode amplitude.

peron bulk viscosity temperature is larger and thus to the r-mode stability curve

is shifted to the right compared to the Th = 6.0 × 109 K case. However, the tra-

jectory is close enough the r-mode stability curve that it is favorable for the star

to return to that region of thermal equilibrium. Fig. 3.9(a) plots the initial evo-

lution of the three mode amplitudes. It shows that the amplitude settle towards

its equilibrium value |C̄α|H=C r−mode and subsequently oscillates around it.
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3.5.3 Type III

Type III evolutions occur when the r-mode amplitude grows above its para-

metric instability threshold after the star cools across the stable region. This

occurs at lower temperatures T9 < T9 peak and usually for low initial r-mode am-

plitudes. The r-mode amplitude needs to be low enough so that it does not

provide enough dissipation to stop the cooling on its own. Once the daughters

are excited they oscillate and settle to their quasi-stationary solutions. The star

spins down on an H = C curve determined by all three modes until it reenters

the stable region. This scenario is exemplified by evolution D in Fig. 3.1(b). The

star has Th = 1.2 × 1010 K, Ωi = 0.67, T9 i = 10 and |C̄α|(0) = 5.0 × 10−5. Any

|C̄α|(0) ≤ 5.0 × 10−5 leads to roughly the same type III evolution. This threshold

amplitude depends heavily on the initial spin frequency. Lower initial Ω̃ make

type III evolutions more likely.

Fig. 3.9 plots the amplitude evolution as a function of time. In Fig. 3.9(a)

the initial r-mode amplitude and daughter mode amplitudes are shown settling

to their quasi-stationary states in the first 40 min of the evolution. The star

continues cooling and reaches thermal equilibrium at tb2 ≈ 7 × 105 sec. It briefly

oscillates and then settles on the quasi-steady H = C curve. Fig. 3.9(b) displays

the r-mode amplitude |C̄α| and its quasi-stationary solution, which coincides

with the parametric instability threshold amplitude. The agreement between

the full evolution |C̄α| and its quasi-steady counterpart is very good for the first

0.5 yr or so. As the star spins down it can develop some thermal oscillations: the

cooling gets lower as T9 decreases and the star heats until the cooling balances

the heating again and the process repeats. The oscillations are initially unstable

and growing in size. Eventually, as the star spins down and cools further, they
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Figure 3.9: (a) The amplitudes of the r-mode |C̄α| and of the two daughter modes
|C̄β|, |C̄γ| are shown settling to their quasi-steady states in the first 40 minutes of
a type III evolution (evolution D in Fig. 3.1). (b) The r-mode amplitude and
its lowest parametric instability threshold (the parametric instability threshold
coincides with the r-mode quasi-steady solution) is shown as a function of time
for the whole evolution. The quasi-steady solution is a good approximation that
maps the evolution with an almost exact agreement in the non-oscillatory part
of the trajectory.

become stable. As these oscillations grow, the r-mode amplitude grows above

its quasi-steady solution. It then returns to this solution and stays close to it for

the rest of the evolution.
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3.6 Runaway Evolutions

In Fig. 3.10 we show two evolutions: one with lower viscosity that is unstable

and the other with slightly higher viscosity that is stable. The hyperon bulk vis-

cosity is varied by changing the coefficient Ahb from Ahb = 2.8×103 for the unsta-

ble evolution to Ahb = 2.9 × 103 for the stable evolution. Lowering the viscosity

raises the growth rate of the r-mode and makes the evolution unstable. Also,

since the hyperon bulk viscosity is inversely proportional to the temperature

for T > Tpeak (the hyperon bulk viscosity changes exponentially ∼ exp (Tc h/T ) for

Th/T >> 1 and ωτ << 1), lowering the cooling rate makes the star spend more

time at high temperatures with low viscosity and hence the evolutions are more

likely to run away. Evolution R in Fig. 3.1(b) is obtained by changing fdU from

0.10 to 0.0 and drastically reducing the cooling rate. Fig. 3.11 shows this unsta-

ble evolution that occurs for any |C̄α| > 7.0 × 10−5 and a stable evolution with

|C̄α| = 6.0 × 10−5 (evolutions are stable for |C̄α| ≤ 6.0 × 10−5). Both figures show

similar behavior. The unstable evolutions have Γα > Γβ + Γγ, while for the stable

evolutions Γα < Γβ+Γγ. Here Γα = γα/(|δω̃|Ω̃), Γβ = γβ/(|δω̃|Ω̃) and Γγ = γγ/(|δω̃|Ω̃).

Mathematically, one can easily see that Γα > Γβ + Γγ corresponds to an un-

stable evolution by looking at the second derivative of the r-mode amplitude

evolution equation:

d2C̄α

dτ̃2 =
dC̄α

dτ̃
(Γα − Γβ − Γγ) (3.26)

+ C̄α

[
Γα(Γβ + Γγ) −

|C̄β|
2 + |C̄γ|

2

4Ω̃

]
.

If Γα > Γβ + Γγ then the r-mode is unstable no matter how larger the daughter

modes become.

Assuming a solution of the r-mode amplitude of the form C̄α ∝ exp (st) and
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taking the daughter modes to be constant gives the roots

s± =
1
2

(Γα − Γβ − Γγ) (3.27)

±
1
2
.

√
(Γα − Γβ − Γγ)2 + 4[Γα(Γβ + Γγ) −

|C̄β|
2 + |C̄γ|

2

4Ω̃
]

=
1
2

(Γα − Γβ − Γγ) ±

√
(Γα + Γβ + Γγ)2 −

|C̄β|
2 + |C̄γ|

2

Ω̃


If Γα < Γβ + Γγ then the s− mode is always stable and the s+ mode is stable only if

|C̄β|
2 + |C̄γ|

2 < 4Γα(Γβ + Γγ)Ω̃. (3.28)

3.7 Detection of Gravitational Waves

We write the gravitational wave amplitude h0 following Watts et al. [13] as

h2
0 =

5G
2π2c3d2ν2

GW

ĖGW , (3.29)

where d is the distance to the source and the GW frequency νGW = 4ν//3 =

(4/3) × Ω/(2π). Here ν and Ω are the spin frequency and angular velocity of the

star.

For type II evolutions the daughter modes are not significant and the spin-

down occurs in thermal equilibrium ĖGW = Lν(T ), where T = TCFS(Ω) is deter-

mined by the CFS stability curve from equating γGR = γα v. The gravitational

wave amplitude becomes

h2
0 =

5GLν(T )
2π2c3d2ν2

GW

, (3.30)

Assuming direct URCA dominates the cooling

h2
0 ≈

5GLdUT 6
9 fdURdU(T/Tc)

2π2c3d2ν2
GW

, (3.31)
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Figure 3.10: (a)The growth rate of the r-mode γ̃α = γ̃GR − γ̃α v and the sum of the
viscous damping rates for the two daughter modes γ̃β + γ̃γ are shown versus
time. If γ̃α > γ̃β + γ̃γ the evolution is unstable. (b) The r-mode amplitude |C̄α|

is shown versus time for the two evolutions. In the unstable evolution the r-
mode amplitude grows exponentially while for the stable case it oscillates and
will eventually settle close to its quasi-steady state. Both evolutions have Th =

2× 109 K. The viscosity is different with Ahb = 2.9× 103 for the unstable case and
Ahb = 2.8 × 103 for the stable case.
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Figure 3.11: A similar runaway occurs for low cooling. Here fdU = 0.0, Ahb =

5.0 × 103 and Th = 1.2 × 1010 K for both evolutions. The initial amplitudes are
|C̄α|(0)stable = 6.0 × 10−5 and |C̄α|(0)unstable = 7.0 × 10−5.

where LdU ≈ 1046 erg/sec. Taking the square root

h0 ≈
T 3

9

νGW d

√
5GLdU fdURdU(T/Tc)

2π2c3 (3.32)

≈
3T 3

9

4ν d

√
5GLdU fdURdU(T/Tc)

2π2c3

Plugging in some fiducial values

h0 ≈ 1.9 × 10−26 T 3
9 RdU

νkHz

(
10 Mpc

d

) (
LdU

1046erg sec−1

fdU

0.10

)1/2

(3.33)

The above analysis holds when the daughter modes are negligible. When all

three modes are significant (type I and III evolutions) it is convenient to write h0
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in terms of the r-mode amplitude. Using the replacement ĖGW = −(ωα/m)J̇GW =

2γGRMR2|Cα|
2Ω:

h2
0 =

5GγGRMR2|Cα|
2Ω

πc3d2ν2
GW

. (3.34)

We then use the quasi-stationary approximation for the r-mode amplitude

h2
0 =

5GγGRMR2Ω2
c

πc3d2ν2
GW

γ̃βγ̃γ

4κ̃2ω̃βω̃γ

(
1 +

1
tan φ2

)
. (3.35)

In the strongly damping limit 1 >> 1/(tan φ)2 and the gravitational wave

amplitude can be written as

h2
0 ≈

5GγGRMR2Ω2
c

πc3d2ν2
GW

γ̃βγ̃γ

4κ̃2ω̃βω̃γ

, (3.36)

Putting in some fiducial values

h0 ≈ 4.6 × 10−27
(
1 Mpc

d

)
ν2

kHzM5/2
1.4 R−3/2

12.5 (3.37)

×
γβ

10−7sec−1

γγ

10−7sec−1 ,

where we assume γβ and γγ ∝ ρ
2 for the mass and radius scaling.

A minimum detectable signal amplitude h0 Ref. [13] can be written in terms

of the observation time Tobs, number of detectors D and signal to noise ratio S n

as

h0 = 11.4

√
S n

DTobs
. (3.38)

For D = 2 detectors, Tobs = 2 weeks and a signal to noise ratio given by the broad

band configurations one obtains h0 ≈ 4 × 10−26 for Advanced LIGO and h0 ≈

1× 10−26 for the Einstein telescope at ν = 900 Hz. Here we used the noise curves
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from Ref. [13]. In the first two weeks the spin frequency of the star changes

by about 40% for the type II evolution detailed in Sec. 3.5.2, by ∼ 5% for the

Th = 2.0 × 109 K and the type III evolutions, and by 15% for the Th = 6.0 × 109

K evolution. An upper limit for the distance to which such sources could be

detected is a few Mpc for type II evolutions and roughly 100 kpc for type I and

type III evolutions.

3.8 Discussion and Concluding Remarks

This is a first treatment of the r-mode instability in newborn neutron stars that

includes nonlinear saturation via three-mode couplings. This model provides a

physical cutoff for the instability by energy transfer to other modes in the sys-

tem. We vary the viscosity of the r-mode and inertial modes and explore the

different nonlinear behaviors. We find that the mode triplet at the lowest para-

metric instability threshold is sufficient to stop the instability in most scenarios

we consider. The different behaviors are determined by when the neutrino cool-

ing is balanced by viscous heating due to the three modes. The star spins down

in thermal equilibrium and this can occur before gravitational driving is bal-

anced by viscous dissipation (to the right of the peak of the r-mode stability

curve), to the left of the peak of the stability curve or on the stability curve.

We do not include higher order corrections in angular velocity in this work

and preliminary calculations show that they are important at high spins. When

these effects are included the evolution will most likely switch between triplets

of modes as the star spins down and the modes comprising the lowest paramet-

ric instability threshold change. This chapter describes the impact of one set of
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daughter modes on the r-mode instability and is a necessary first step. We use

typical numbers for the coupling inertial mode viscosity and coupling coeffi-

cients. The exact numbers will change when the model is rendered more real-

istic. In addition to including higher order frequency corrections one can also

add effects due to compressibility, multifluids and differential rotation. How-

ever, we believe that our simple model captures some of the generic features of

the system. The upshot is that a dense set of modes will exhibit three-mode res-

onances. Their evolution is well described by quasi-stationary solutions whose

slow variation depends on the competition between neutrino cooling and dissi-

pation, gravitational radiation and magnetic dipole radiation spin-down.
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CHAPTER 4

CONCLUSION

R-modes owe their origin to the Coriolis force and are a subset of a more general

set of modes known as inertial modes. In the linear regime, an r-mode is unsta-

ble and grows exponentially when gravitational driving dominates fluid dis-

sipation. Nonlinear effects become important once an unstable r-mode grows

above its first parametric instability threshold and excites other near resonant

modes in the system.

This thesis is a first treatment of the r-mode instability that models nonlin-

ear saturation and includes spin and temperature evolution of the neutron star.

Our model is simple. We use the eigenmodes and eigenfrequencies of an in-

compressible perfect fluid star. These eigenmodes are known analytically and

can be expressed in terms of Legendre functions labelled by integers n and m.

This simplifies the computation of shear, bulk and boundary layer viscosity and

allows us to use the coupling coefficients computed by Brink et al. [51, 52, 53].

We apply this model to both accreting millisecond pulsars and newborn neu-

tron stars. We model the nonlinear effects using the triplet of modes at the low-

est parametric instability threshold. The triplet is comprised of the n = 3, m = 2

r-mode and the first two inertial modes that are excited when the r-mode ampli-

tude crosses this first parametric instability threshold amplitude. We use simple

parametrizations for viscosity and cooling to explore different nonlinear behav-

iors. In most scenarios we consider, we find that one triplet is sufficient to stop

the growth of the r-mode instability.
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In the accreting neutron star case, we observe different outcomes that can

be easily predicted from initial angular velocity, neutrino cooling and viscosity

parameters. The outcome of each evolution is independent of the initial values

for the mode amplitudes as long as they are below the parametric instability.

The mode amplitudes settle very quickly into quasi-stationary states that

change slowly as the temperature and spin frequency evolve. Once these states

are reached, the mode amplitudes can be found algebraically and the system of

equations is reduced from eight to two equations: spin and temperature evo-

lution. The evolution of the neutron star’s angular velocity and temperature

follow easily calculated trajectories along these sequences of quasi-stationary

states. The outcome of the evolution depends on whether or not the star can

reach thermal equilibrium, where viscous heating is equal to neutrino cooling

(H = C curve; computed using quasi-stationary mode amplitudes). This curve

has one maximum. Initially, the heating is much faster than accretion or gravita-

tional spin-down and dominates the cooling. The star heats at constant angular

velocity until it either reaches this H = C curve or, if there is no thermal equilib-

rium temperature for that angular velocity (the initial angular velocity is above

ΩH=C max), it continues heating. The latter case corresponds to a fast runaway:

the r-mode amplitude grows above several parametric instability thresholds,

more inertial modes are excited and need to be included to correctly model the

evolution. If the H = C curve is reached, there are several possible trajectories:

(1) cyclic evolution, (2) steady state and (3) slow runaway.

In a cyclic evolution, the star spins down in thermal equilibrium until the

H = C curve intersects the r-mode stability curve (i.e., the curve on which grav-

itational driving = viscous dissipation). Once this happens, the mode ampli-
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tudes damp to zero and the star cools at constant angular velocity until the

nuclear heating stops the cooling. The star then spins up in thermal equilibrium

until it intersects the stability curve again and the cycle is repeated. The cy-

cles we observe are narrow with changes in the spin frequency of less that 10%.

In principle, this would make gravitational wave searches easier by enabling

long coherent observations and maybe even targeted searches for neutron stars

for which we know the spin frequency from X-ray or radio observations. For

a steady state evolution, the gravitational spin-down is balanced by accretion.

This happens only for low initial spin frequencies and hence low gravitational

driving or when hyperon bulk viscosity is important at early temperatures. The

slow runaway scenario occurs for low initial spin and slow cooling. In this case,

the accretional spin-up dominates gravitational spin-down and the star spins

up the H = C curve. It eventually goes over the maximum of the curve and

exits thermal equilibrium. Beyond this point the heating dominates the cooling

again, the star heats at constant angular velocity, and the r-mode passes the sec-

ond parametric instability threshold exciting more modes in the process. As in

the fast runaway scenario, at this point more inertial modes need to be included

to model the rest of the evolution accurately.

Since the fastest observed millisecond pulsar spins at 716 Hz, our low spin

scenarios (steady states and slow runaways) are most likely ruled out by ob-

servations. Unfortunately, in cyclic evolutions, fast rotation requires large dis-

sipation, which in turn leads to fast viscous heating and a short time for which

the r-mode is unstable. In our model, neutron stars with νmax ∼ 800 Hz lead

to instability timescales of at most 1000 yr, which is about 10−3 shorter than the

accretion timescale and this would mean that only about 1 in 1000 LMXB in our

galaxy would have active r-modes.
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In the newborn neutron star case, the evolution is more dynamic. We start

with a hot neutron star with a temperature Tinitial ∼ 1010 K that spins with a

frequency close to the Kepler break-up frequency. The neutrino cooling is fast

(direct URCA cooling ∝ T 6) and dominates viscous heating. At high tempera-

tures hyperon bulk viscosity dominates other forms of viscosity, assuming the

star is dense enough for hyperons to appear.

Unlike in the accreting neutron star case, this evolution depends on the ini-

tial values of the mode amplitudes. At first, neutrino cooling dominates the

viscous heating and is much faster than the gravitational radiation spin-down.

So, the star cools at roughly constant angular velocity until the cooling is bal-

anced by viscous heating. The point at which this happens depends on whether

the r-mode has grown enough to excite other modes in the system before the r-

mode stability curve is reached. This leads to a competition between the growth

of the r-mode amplitude and cooling. When the viscous dissipation due to the

excited modes balances the cooling, the star starts spinning down. However,

the viscosity changes with spin-frequency and so the balance between heating

and cooling is disturbed. The star oscillates around thermal equilibrium states

as it spins down. The inertial modes that comprise the lowest parametric insta-

bility threshold change with angular velocity as well. We are using an effective

three mode system with typical values of coupling coefficient and detuning.

Although the details of the evolution will change as more modes are included

in the calculation, we expect that we have a qualitatively correct picture of the

spin-down process.

The analysis presented in this thesis could be extended in many ways. Here

we include a few possible future directions. In this work we use the zero-
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eccentricity values for coupling coefficients and frequencies. A first extension

would be to include second order rotational effects in the frequency computa-

tion and also take into account the change of coupling coefficients with eccen-

tricity. Additionally, including multiple triplets of modes would allow model-

ing of mode changes in the lowest parametric instability threshold, and follow-

ing the spin-down of the star more accurately. Our evolutions are inadequate to

follow what happens when the system runs away. Including additional mode-

mode couplings is important to accurately model these scenarios. For accreting

neutron stars our predictions are made only for fast, steady accretors with Ṁ

close to the Eddington limit. Most neutron stars in Low Mass X-ray binaries in

our galaxy are transient and accrete at much slower rates. Modeling slower ac-

cretors, which would have smaller core temperatures and also higher boundary

layer and shear viscosity, could be interesting. Other extensions could include

making the model more realistic by adding effects such as those due to com-

pressibility and multifluid composition.

Although there are many ways to improve our calculation, it is important to

reiterate that some of the features we observe should be generic. More general

treatments are still expected to find a dense set of modes confined to a narrow

frequency range that will always exhibit near resonances and low parametric

instability thresholds. Once a parametric instability threshold is passed inertial

modes are excited, and the evolutions should still be determined by compe-

titions between neutrino cooling and viscous heating, dissipation and gravita-

tional driving. Some variation of the behaviors we find - (1) cycles, steady states,

slow and fast runways for accreting neutron stars and (2) dynamic evolution

with spin-down in different regions delimited by the r-mode stability curve and

thermal oscillations around equilibrium for young neutron star - should follow.
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APPENDIX A

APPENDICES TO CHAPTER 2

A.1 Equations of Motion

This appendix will sketch the derivation of Eqs. (2.1) from the Lagrangian den-

sity. We follow closely Appendix A in Schenk et al., which contains the deriva-

tion of the equations of motion for constant Ω.

The Lagrangian density as given by Eq. (A1) in Schenk et al. [54] is

L =
1
2
ξ̇ · ξ̇ +

1
2
ξ̇ · B · ξ −

1
2
ξ · C · ξ + aext(t) · ξ, (A.1)

where the operators B · ξ = 2Ω × ξ and

ρ(C · ξ)i = −∇i(Γ1 p∇ jξ
j) + ∇i p∇ jξ

j + ρ∇iδφ (A.2)

− ∇ j p∇iξ
j + ρξ j∇ j∇iφ + ρξ j∇ j∇iφrot

with φrot = −(1/2)(Ω×x)2. We are interested in a situation where the uniform an-

gular velocity of the star changes slowly on the timescale of the rotation period

itself. In order to remove the time dependence we define the new displacement

and time variables

ξ =
ξ̃
√

Ω
, dτ = Ωdt. (A.3)

In terms of these new variables the Lagrangian density can be written as

L̃ =
1
2
ξ̃′ · ξ̃′ +

1
2
ξ̃′ · (B̃ · ξ̃) +

(
√

Ω)′′

2
√

Ω
|ξ̃|2 (A.4)

−
1
2
ξ̃ · C̃ · ξ̃ +

aext(t)
Ω3/2 · ξ̃,
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where the primes denote derivatives with respect to τ, B̃ = Ω−1B and C̃ = Ω−2C.

The momentum canonically conjugate to ξ̃ is

π̃ =
∂L

∂ξ̃′
= ξ̃′ + Ω̂ × ξ̃. (A.5)

The associated Hamiltonian density is

H =
1
2

∣∣∣∣∣π̃ − 1
2

B̃ · ξ̃
∣∣∣∣∣2 − (

√
Ω)′′

2
√

Ω
|ξ̃|2 +

1
2
ξ̃ · C̃ · ξ̃ −

aext

Ω3/2 · ξ̃. (A.6)

Hamilton’s equations of motions can be written as

ζ̃′ = T · ζ̃ + F(τ), (A.7)

where

ζ =

 ξ̃π̃
 ,

the operator T is T = T0 + T1 with

T0 =

 −1
2B̃ 1

1
4B̃2 − C̃ −1

2B̃


and

T1 =

 0 0

(
√

Ω)′′
√

Ω
0

 ,
and

F(τ) =

 0

aext
Ω3/2

 .
We assume solutions of the form ζ̃(τ, x) = eiω̃tζ̃(x). Specializing to the case of no

forcing term aext = 0 leads to the eigenvalue equation

(T0 − iω̃)ζ̃(x) = 0. (A.8)

Since the operator T0 is not Hermitian it will have distinct right and left eigen-

vectors. Similar to Schenk et al. [54] we label the right eigenvectors of T as ζ̃A,

91



and the associated eigenfrequencies as ω̃A = ωA/Ω, and the eigenvalue equation

above becomes

(T0 − iω̃A)ζ̃A(x) = 0. (A.9)

The left eigenvectors χA satisfy

(T †0 − iω̃?
A)χ̃A = 0, (A.10)

where

T †0 =


1
2B̃ 1

4B̃2 − C̃

1 1
2B̃


For simplicity, in this appendix we specialize to the case of no Jordan chains

when the set of right eigenvectors forms a complete basis. The orthonormality

relation between right and left eigenvectors is

〈
χ̃A, ζ̃B

〉
=

∫
d3xρ(x)χ̃†A · ζ̃B = δAB. (A.11)

We can expand ζ(τ, x) in this basis as

ζ(τ, x) =
∑

A

CA(τ)ζA(x), (A.12)

where the coefficients CA are given by the inverse of this mode expansion

CA(τ) =
〈
χ̃A, ζ̃(τ, x)

〉
. (A.13)

Using Eqs. (B-2,A.9,A.11) in Eq. (A.7) leads to the equations of motion for the

mode amplitudes

C′A − iω̃ACA = g(τ)
∑

B

C?
B

〈
χ̃A,

 0

ξ̃B


〉

(A.14)

+ 〈χ̃A, F(τ)〉 ,

where g(τ) = (
√

Ω)′′/
√

Ω. Following Sec. IV of Schenk et al. [54] we replace

the externally applied acceleration by the nonlinear acceleration given by Eq.
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(4.2) of Ref. [54]. The inner product can be written in terms of the displacement

variable ξ̃. The left eigenvectors are

χ̃A =

 σ̃A

τ̃A

 ,
where τ̃A can be chosen to be proportional to ξ̃A because they satisfy the same

matrix equation.

τ̃A = −iξ̃A/b̃A, (A.15)

which corresponds to Eq. (A-45) in Schenk et al. [54] with the proportionality

constant b̃A = Ω−1bA = MR2/ω̃A (also given by Eq. (2.36) of Ref. [54]).

The equations of motion for the mode amplitudes become

C′A − iω̃ACA =
ig(τ)
b̃A

∑
B

CB

∫
d3xξ̃?A · ξ̃B (A.16)

+
iMR2

b̃A

∑
BC

κ̃?ABCC?
BC?

C ,

where the nonlinear coupling κ̃ABC = κABC/(MR2Ω2) and κABC is explicitly give by

Eq. (4.20) of Ref. [54]. The g(τ) integral mixes only modes with mA = mB because

of the eimφ dependence of the displacement eigenvectors ξ̃. (
∫ 2π

0
dφei(mA−mB)φ = 0

if mA , mB.) So, this term will be zero for our mode triplet. Also, in the case of

a single mode triplet there is only one coupling and Eqs. (A.16) take the form of

Eqs. (2.1).
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A.2 Stability Around Equilibrium at Constant Angular Veloc-

ity

In this appendix we study the behavior of the mode amplitudes and tempera-

ture near equilibrium assuming constant angular velocity. We are performing

a first order expansion of Eqs. (2.5) and (2.18). Each of the five variables is ex-

panded about its equilibrium (X j)e as follows

X j(τ̃) = {|C̄α|, |C̄β|, |C̄γ|, φ,T8} = (X j)e[1 + ζ j(τ̃)] (B-1)

where the perturbation |ζ j| << 1 and j = α, β, γ, T . The expansion leads to a first

order differential equation for each ζ j

dζα
dτ̃

=
(γ̃α)e

Ω̃|δω̃|

[
ζα − ζβ − ζγ −

(
φ

tan φ

)
e
ζφ (B-2)

−

(
T8

γ̃α

)
e

(
∂γ̃α
∂T8

)
e
ζT

]
,

dζβ
dτ̃

=
(γ̃β)e

Ω̃|δω̃|

[
ζα − ζβ + ζγ +

(
φ

tan φ

)
e
ζφ

−

(
T8

γ̃β

)
e

(
∂γ̃β

∂T8

)
e
ζT

]
,

dζγ
dτ̃

=
(γ̃γ)e

Ω̃|δω̃|

[
ζα + ζβ − ζγ +

(
φ

tan φ

)
e
ζφ

−

(
T8

γ̃γ

)
e

(
∂γ̃γ

∂T8

)
e
ζT

]
,

dζφ
dτ̃

=
1

φe tan φe

(
ζα
γ̃α + γ̃β + γ̃γ

Ω̃|δω̃|
+ ζβ
−γ̃α − γ̃β + γ̃γ

Ω̃|δω̃|

+ ζγ
−γ̃α + γ̃β − γ̃γ

Ω̃|δω̃|

)
e

+
(γ̃α − γ̃β − γ̃γ)e

Ω̃|δω̃|
ζφ,

dζT

dτ̃
=

MR2Ω2
c γ̃αγ̃βγ̃γ

2κ̃2ω̃αω̃βω̃γΩ̃|δω̃|C(Te)T8e

(
1 +

1
tan φ2

e

)
×

[
2
(
ω̃α

γ̃α v

γ̃α
ζα + ω̃βζβ + ω̃γζγ

)
+ T8e

(
ω̃α

1
γ̃α

∂γ̃α
∂T8

+ ω̃β

1
γ̃β

∂γ̃β

∂T8
+ ω̃γ

1
γ̃γ

∂γ̃γ

∂T8

)
e

ζT

]
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−

(
dLν
dT8

)
e

1
ΩcΩ̃|δω̃|C(Te)

ζT ,

where the equilibrium amplitudes |C j|e have been written in terms of the corre-

sponding driving and damping rates using Eqs. (2.6). Eq. (B-2) can be written

in matrix form as
dζ j

dτ̃
= Ai jζi. (B-3)

Let ζ j ∝ exp(λτ̃). The determinant ||Ai j−λδi j|| = 0 leads to the eigenvalue equation

λ5 + a4λ
4 + a3λ

3 + a2λ
2 + a1λ + a0 = 0. (B-4)

The coefficients a j with j = 0, 4 are

a4 = 2 tan φe =
γ̃β + γ̃γ − γ̃α

Ω̃|δω̃|
, (B-5)

a3 ≈
2

tan φ2
e

γ̃2
β + γ̃2

γ + γ̃2
α

(Ω̃|δω̃|)2
+ tan φ2

e − 1,

a2 ≈
γ̃αγ̃βγ̃γ

(Ω̃|δω̃|)3

(
12

tan φ2
e

+ 1
)
,

a1 ≈
4γ̃αγ̃βγ̃γ
(Ω̃|δω̃|)3

(
1

tan φe
+ tan φ

)
,

a0 ≈
2MR2Ω2

c

κ̃2ω̃αω̃βω̃γC(Te)
(γ̃αγ̃βγ̃γ)2

(Ω̃|δω̃|)4

1
tan φe

(
1 +

1
tan φ2

e

)
×

[
ω̃α

γ̃α

(
∂γ̃α
∂T8

)
e

+
ω̃β

γ̃β

(
∂γ̃β

∂T8

)
e

+
ω̃γ

γ̃γ

(
∂γ̃γ

∂T8

)
e

]
−

4γ̃αγ̃βγ̃γ
(Ω̃|δω̃|)3

1
tan φe

1
Ω̃|δω̃|C(Te)

(
dLν
dT8

)
e
.

The eigenvalues can be approximated as

λ1,2 ≈ −
a4

2
− ε ± i

√
a1

ε2 + w2 −

(a4

2
+ ε

)2
, (B-6)

λ3,4 ≈ ε ± iw,

λ5 ≈ −
a0

a1
,

where ε = (a2−a3a4)/a4 and w =
√

a1/a3. The system is unstable when a2−a3a4 >

0 or a0 < 0. The first two eigenvalues will have a negative real part as long as
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γ̃β+γ̃γ > γ̃α. If the heating compensates the cooling of the star a0 ≈ 0 and becomes

negative if the star can not reach thermal equilibrium. The other critical stability

condition a2 − a3a4 = 0 can be written as(
γ̃α

Ω̃|δω̃|

)3

[1 + Γβ + Γγ − (Γ2
β + Γ2

γ) − (Γβ − Γγ)2(Γβ + Γγ)] = 0, (B-7)

where Γβ = γβ/γα and Γγ = γγ/γα. Note that we have ignored the smaller terms

of order O([γ̃α/(Ω̃|δω̃|)]5). This condition can be rewritten by defining variables

D1 = Γβ + Γγ and D2 = Γβ − Γγ

2 + 2D1 − D2
1 − D2

2 − 2D2
2D1 = 0. (B-8)

If D2 = 0 then the equation has one solution D1 = 1 +
√

3 for D1 > 2, which

corresponds to Γ = Γβ = Γγ = 1.37 and matches the result of Wersinger et al. [56].

For the viscosity we consider (see Sec. 2.2.4) a2 − a3a4 < 0.
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APPENDIX B

APPENDICES TO CHAPTER 3

B.1 Changes in Mode Frequencies due to Magnetic Fields

In this appendix we follow Morsink and Rezania [35] to obtain the frequency

corrections due to the presence of a magnetic field. These corrections are added

perturbatively.

They define a dimensionless magnetic coupling

κAB = M−1 < ξA, ρ
−1FB >, (B-1)

where F is the Lorentz force created by the fluid motion. The coefficients can be

thought of as the ratio of the work done by the perturbed Lorentz force to the

total magnetic energy stored in the equilibrium star.

The dominant part of the magnetic coupling coefficients is

κ(1)
AB =

∫
∇ × (ξ?A × B) · ∇ × (ξB × B)d3x (B-2)

Assuming the off-diagonal entries are small [35], the frequency corrections are

given by

ωnew = ωold

(
1 −
M

2T
κAA

)
, (B-3)

where the ratio of magnetic field energy to rotational kinetic energy

T = ε = MR2Ω2

.
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Assuming a constant magnetic field of the form

Bx = B0 sinα (B-4)

By = 0

Bz = B0 cosα.

For an n = m + 1 r-mode

|κAA| =

∫
d3x sin2 α{cos2 φ(|∂$ξ$|2 + |∂$ξ

φ|2 + |∂$ξz|
2) (B-5)

+ (sin2 φ/$2)[(1 + m2)(|ξ$|2 + |ξφ|2) + m2|ξz|2 − 4m|ξφ||ξ$|]}

+ cos2 α(|∂zξ
z|2 + |∂zξ

$|2 + |∂zξ
φ|2)

Using an incompressible stellar model (we use Eq. (3.18) together with the

recursion relations Eq. (A.1-5) in [73]).) we obtain

|κAA| =
4π(m + 1)(2m + 3)

12

(
1 + sin2 α

m2 + m − 3
2

)
. (B-6)

B.2 Bulk Viscosity Integrals and Viscous Damping Timescales

The two sets of daughter modes at the two lowest zero-viscosity parametric

instability thresholds have: j = 414 (n = 13, m = −3) and j = 538 (n = 14, m = 1)

for the lowest threshold and j = 494 (n = 14, m = −5) and j = 592 (n = 15, m = 3)

for the second lowest threshold.

The mode number j is a way of labeling hybrid inertial modes so that each

mode is given a unique number that is a function of principal Legendre index

n (n : 2 → ∞), azimuthal number m (m : 0 → n − 1) and frequency index k
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(k : 1→ n − m if m , 0 and 1→ n − m − 1 if m = 0).

j =
(n − 1)n(n + 1)

6
+

(n − m − 1)(n − m)
2

+ k − 1 (B-7)

The bulk viscosity integral for inertial modes is computed using Eq. (3.6):

I414 ≈ 2π × 50.3, I538 ≈ 2π × 100.1, (B-8)

I494 ≈ 2π × 142.4, I592 ≈ 2π × 103.1.

The r-mode integral is computed using Eqs. (55-56) of Nayyar and Owen [48]

I4 = Iα = 0.211 (B-9)

Table B.1 compares the bulk viscosity timescales for several different inertial

modes of n = 1 polytrope computed by Lockitch and Friedman [75] with those

computed in this work using a incompressible model. The difference is small;

typically about a factor of two or less. For the computations in this table we

used n-p-e bulk viscosity with a bulk viscosity coefficient

ζ = 6 × 1025
(
Hz
ω

)2 (
ρ

1015 g cm−3

)2

T 6
9 g cm sec−1. (B-10)

B.3 Boundary Layer Viscosity Integrals

The mode integrals are calculated using Eq. (3.11).

For the r-mode this gives

Iincompressible
4 = 2π × 10.5, In=1 polytrope

4 ≈ 2π × 21.8, (B-11)

where we have used the incompressible (ρ = constant) value in this work.
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Table B.1: Bulk viscosity timescales computed using incompressible stellar
modes (τbulk n=0; used in this work with a different bulk viscosity coefficient) and
n = 1 polytrope (τbulk n=1) inertial modes for an n-p-e gas. The n = 1 polytrope
calculation was performed by Lockitch and Friedman [75]. Note that, mathe-
matically, the bulk viscosity damping rate is zero for incompressible stars. We
adopt the attitude that the dissipation timescale is computed to leading order in
Γ1 and take Γ1 = 2 (for incompressible stars Γ1 → ∞). The timescales for the two
models are roughly within a factor of 2 of each other.

j n m τbulk n=0 τbulk n=1

12 4 2 7.03 × 109 sec 3.32 × 109 sec
14 4 1 9.68 × 109 sec 5.86 × 109 sec
44 6 2 7.00 × 109 sec 4.79 × 109 sec
47 6 1 2.51 × 109 sec 2.57 × 109 sec
70 7 2 6.62 × 109 sec 5.32 × 109 sec

For the daughter modes at first two parametric instability thresholds the in-

tegrals are calculated also using the modes for an incompressible star

I414 ≈ 2π × 92.99, I538 ≈ 2π × 376.2, (B-12)

I494 ≈ 2π × 241.8, I592 ≈ 2π × 140.1.

B.4 Oscillations Around Thermal Equilibrium: One Mode

Evolution

Consider the one-mode evolution equations

d|Cα|
2

dt
= 2(γGR − γα v)|Cα|

2 (B-13)

C(T )
dT
dt

= 2MR2Ω|Cα|
2γα v − Lν(T ).

We expand each variable to first order around its equilibrium value

|Cα|
2 = |Cα|

2
e(1 + ζα) (B-14)

T = Te(1 + ζT ).
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This leads to the coupled equations

dζα
dt

= 2(γGR − γα v)eζα − 2Te

(
∂γα v

∂T

)
e
ζT , (B-15)

dζT

dt
=

2Eα eγα v(Ω,Te)
TeC(T )

ζα

+

[
2Eα e

C(T )

(
∂γα v

∂T

)
e
−

1
C(T )

(
dLν
dT

)
e

]
ζT ,

where Eα e = MR2Ω|Cα|
2
e . In equilibrium

γGR(Ω) − γα v(Ω,Te) = 0 (B-16)

2Eα eγα v(Ω,Te) = Lν(Te).

Using these the coupled equations simplify to

dζα
dt

= −2Te

(
∂γα v

∂T

)
e
ζT , (B-17)

dζT

dt
=

Lν(Te)
TeC(Te)

ζα

+

[
1

γα v e

(
∂γα v

∂T

)
e
−

1
Lν(Te)

(
∂Lν
∂T

)
e

]
Lν(Te)
C(Te)

ζT .

We can now write the second order eigenvalue equation for this system

λ2 − λ

(
∂ ln γα v

∂T
−
∂ ln Lν
∂T

)
e

Lν(Te)
C(Te)

+
2Lν(Te)
C(Te)

(
γα v

∂T

)
e

(B-18)

with solutions

λ1,2 =
γ0

2
±

1
2

√
γ2

0 −
8Lν(Te)
C(Te)

(
γα v

∂T

)
e
. (B-19)

Here

γe =

(
∂ ln γα v

∂T
−
∂ ln Lν
∂T

)
e

Lν(Te)
C(Te)

. (B-20)

Fixed points on the right side of the r-mode stability curve T > Tpeak have a vis-

cosity with negative slope (∂γα v/∂T )e < 0 and are always unstable (one eigen-

value is positive). While fixed points on the left side of the r-mode stability

curve T < Tpeak have (∂γα v/∂T )e > 0 are stable if γe < 0 and unstable if γe > 0.
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In order to gain a better understanding of the thermal cycles around the

stability curve we write the viscous heating U as fraction of the cooling and

subsequently study the evolution of f .

U = 2γα vEα = f (t)Lν(T ), (B-21)

where 0 ≤ f ≤ 1 and we have neglected the viscous heating due to the daugh-

ter modes as their amplitudes are much smaller that that of the r-mode in this

scenario. The thermal evolution of the system can now be written as

C(T )
dT
dt

= U − Lν(T ) = ( f − 1)Lν(T ). (B-22)

To find the evolution of f we take the time derivative of Eq. (B-21). We can then

write
1
f

d f
dt

=
1
U

dU
dt
−

( f − 1)
C(T )

∂Lν
∂T

(B-23)

and
1
U

dU
dt

=
1
γα v

∂γα v

∂T
( f − 1)Lν(T )

C(T )
+ 2(γGR − γα v). (B-24)

Plugging Eq. (B-24) in Eq. (B-23) we can write

1
f

d f
dt

=
( f − 1)Lν(T )

C(T )

(
1
γα v

∂γα v

∂T
−

1
Lν

∂Lν
∂T

)
+ 2(γGR − γα v). (B-25)

Labeling the term in parenthesis as γ we obtain

1
f

d f
dt

=
( f − 1)Lν(T )

C(T )
γ + 2(γGR − γα v), (B-26)

where

γ =
1
γα v

∂γα v

∂T
−

1
Lν

∂Lν
∂T

. (B-27)

Initially, the star is very hot T ∼ 1010 K and cools fast: γ < 0 (the slope of the

r-mode stability curve is negative for T > Tpeak), f << 1 and γGR > γα v. So, the

right hand side of Eq. (B-26) is positive and f grows exponentially. If the r-mode
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amplitude does not grow above its parametric instability threshold and is not

large enough for f = 1 (as fast cooling ∝ T 6 we do not observe evolutions for

which the viscous heating balances the cooling for T > Tpeak before parametric

instability; in the phase space we studied this balance occurs on the right side of

the r-mode stability curve only for r-mode amplitudes of order unity or greater),

then the star continues to cool at approximately constant angular velocity until

it crosses the r-mode stability curve. As discussed above all fixed points on the

T > Tpeak side of the r-mode stability curve are unstable. So, the star keeps cool-

ing through the stable regime until it crosses the r-mode stability curve again.

This time the slope of the curve is positive. The star then can find thermal equi-

librium f ≈ 1 in a one mode evolution only close to the r-mode stability curve

γGR ≈ γα v. Typically, f = 1 slightly off the stability curve for T > TCFS . Once this

happens, the right hand side of Eq. (B-26) becomes positive ( f = 1 and γGR > γα v)

and makes f increase (the star heats) again. The neutrino cooling (∝ T 6) even-

tually balances the heating as the temperature increases. This balance happens

in the stable region γGR < γα v. At this point ( f = 1 and γGR < γα v) the right hand

side of Eq. (B-26) is negative and f starts decreasing (the star cools). The star

enters the unstable region again and thermal oscillation repeats. In this time the

angular velocity of the star decreases slowly.

In other words, the thermal equilibrium points (fixed points) on the left side

of the r-mode stability curve (T < Tpeak; positive slope) are initially stable and the

r-mode stability curve acts as an attractor. The star exhibits thermal oscillations

at constant angular velocity around this curve with the oscillations becoming

smaller and smaller until the trajectory of the star coincides with the r-mode

stability curve. As the star spins down the viscosity decreases and the heating

is slower. If the thermal equilibrium becomes unstable, then the thermal oscilla-
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tions restart with growing amplitude until the return to thermal equilibrium is

no longer possible. The star cools until the daughter modes are excited and the

viscosity due to all three modes balances the cooling. Otherwise, the star con-

tinues cooling and spinning down on the r-mode stability curve. Eventually,

the star enters the stable regime again after boundary layer viscosity dominates

bulk viscosity and the slope of the r-mode stability curve changes.
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