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The branching fraction for a previously unobserved decay D∗+s → D+s e+e− is pre-

dicted theoretically in this dissertation to be 0.65% of the branching fraction for

the decay D∗+s → D+s γ. We conduct a search for the D∗+s → D+s e+e− in 586 pb−1

of e+e− collision data collected with the CLEO-c detector at the Cornell Elec-

tron Storage Ring (CESR) operating at a center of mass energy of 4170 MeV

and observe it with a significance of 6.4 σ over estimated backgrounds. The

ratio of branching fractions B(D∗+s → D+s e+e−)/B(D∗+s → D+s γ) is measured to be

(0.72 ± 0.14(stat) ± 0.06(syst))%, which is within one standard deviation of un-

certainty from the predicted value.
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CHAPTER 1

INTRODUCTION
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What is the world made of?

What holds it together?

The tale of human civilization is a testament to the gullibility of a pattern

seeking social species, challenged perhaps only by its insatiable curiosity. Con-

temporary particle physics represents the culmination and cutting-edge of our

most organized and ambitious attempt at answering some of our biggest ques-

tions, becoming at once a signature of and remedy to this curiosity. Recorded

history is littered with attempts at coming to an understanding of what the

world is made of, from the ancient patterns of classification of the world into

fundamental elements to the atomic hypotheses of the Ionian Greeks and the

Vaisheshika and Jain schools of India in the 5th century BC. However, it is dif-

ficult to associate the thrust of empiricism and the scientific method with any

atomic understanding of the fundamental constituents of matter prior to the

works of John Dalton between 1800 and 1805, which in turn paved the way for

the periodic table of elements. The patterns in the properties of the elements

compiled by Dmitri Mendeleev in the late 1860s was a powerful suggestion of

sub-atomic structure. Thereafter, a series of experiments and insights lead not

only to our archetypical image of the atom with a nucleus at the center and elec-

trons in orbit, but also to some understanding of the nature of the electron and

the nucleus itself.

A similar train of events occurred in the 1960s. A menagerie of new and

short-lived particles were discovered by experiments on cosmic rays and with

particle accelerators designed to probe the sub-nuclear structure of matter. The

first sense of order emerged with the realization that there are two distinct types

of matter. There are particles like the electron that do not experience the strong
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nuclear force; they were named leptons from the Greek for lightweight. There

exist 6 of them and they appear to be truly fundamental. Then there are hadrons

(Greek for bulky) that do feel the strong nuclear force, and we have discov-

ered well over 200 of them. Hadrons may be usefully divided into baryons and

mesons. Baryons are particles of spin 1/2 that are unstable and decay, ultimately

returning to a proton. Mesons are particles with integer spin that ultimately

decay to electrons, photons and neutrinos. This proliferation of hadrons even-

tually gave hint of an underlying pattern called the Eightfold Way. Identification

of such patterns lead to the proposal that hadrons are not fundamental but are

composed of at least three varieties of quarks; the up (u), the down (d) and the

strange (s).

This served to explain most thus far observed hadronic phenomena except

for a few, among which was the observed rate of K0
L → µ+µ− that was lower

than expected. Introducing a fourth quark, the charm c, within the Glashow-

Iliopoulos-Maiani (GIM) mechanism produced the required interference with

the u being exchanged between the d and s quarks of the K0
L meson to lower the

theoretical rate [13]. The mass of the charm quark required to lower this theoret-

ical rate to the observed value was calculated to be in the range of a few GeVs.

Bound states of the charm quark were subsequently discovered, the almost si-

multaneous discovery of the J/ψ (cc̄) meson at SLAC and BNL in November

1974 being among the most prominent. This was followed by discoveries of the

D0(cū) and the D+(cd̄). The D+s (cs̄) bound state was discovered at CLEO in 1983

[8].

A D+s meson is the 0− (L=0, S =0) bound state of a charm and strange quark

system, while a D∗+s is the 1− (L=0, S =1) excited state of the same. While the

3



Table 1.1: Branching fractions of the known decays of the D∗+s .

Mode Branching Fraction

B(D∗+s → D+s γ) (94.2 ± 0.7)%

B(D∗+s → D+s π0) (5.8 ± 0.7)%

D+s decays via the weak interaction into a rich spectrum of particles, the D∗+s is

known to decay via an electromagnetic and an isospin-suppressed strong decay

as recorded by the Review of Particle Physics 2008 [4] and listed in Table 1.1.

It is important to note that the branching fractions listed in the table are

derived from the ratio

Γ(D∗+s → D+s π0)
Γ(D∗+s → D+s γ) = 0.062 ± 0.008

assuming that the branching fractions of D∗+s → D+s γ and D∗+s → D+s π0 decays

sum to 100% [5].

In this dissertation, we propose a new electromagnetic decay of the D∗+s , the

D∗+s → D+s e+e−, and search for it using data collected by the CLEO-c detector.

Since this decay does not violate any rigorous or semi-rigorous conservation

principle, it is expected to occur at the rate of D∗+s → D+s γ suppressed by ap-

proximately a factor of the electromagnetic structure constant, α. Such decays

where a virtual photon is internally converted to a e+e− pair are known in high

energy physics as Dalitz decays [11]. Dalitz decays have not been observed in

the electromagnetic decays of mesons containing the heavy charm or bottom

quark. This dissertation documents the first observation of such a decay.

A theoretical derivation of the ratio of branching fractions

B(D∗+s → D+s e+e−)
B(D∗+s → D+s γ) (1.1)
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is presented in Chapter 2. Chapter 3 presents a description of the components

of the CLEO-c detector relevant for following the analysis technique outlined

in Chapter 4 towards making an observation of the D∗+s → D+s e+e− decay and

measuring the ratio of branching fractions in Eq. 1.1. An observation of this

decay and a measurement of the ratio of branching fractions would lead to a

re-evaluation of the fractions listed in Table 1.1.
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CHAPTER 2

A THEORETICAL PREDICTION FOR THE RATIO OF BRANCHING

FRACTIONS B(D∗+s → D+s e+e−)/B(D∗+s → D+s γ)

6



The electromagnetic decay D∗+s → D+s γ supercedes the strong decay D∗+s →

D+s π0 in rate because the latter is suppressed by isospin violation of the strong

interaction. The currently known branching fractions of the D∗+s are listed in Ta-

ble 1.1 of the Introduction. In this section, we propose the existence of a hitherto

unobserved electromagnetic decay, the D∗+s → D+s e+e−. It is separated from the

D∗+s → D+s γ process by one vertex of the electromagnetic interaction, as can be

seen by comparing Fig. 2.1 and 2.2, and does not violate any known symmetry.

In this section, we estimate the ratio of branching fractions B(D∗+s →

D+s e+e−)/B(D∗+s → D+s γ) through a prediction of the ratio of rates for the D∗+s →

D+s e+e− and D∗+s → D+s γ processes.

B(D∗+s → D+s e+e−)
B(D∗+s → D+s γ) =

Γ(D∗+s → D+s e+e−)
Γ(D∗+s → D+s γ) (2.1)

With reference to Fig. 2.1, the quantum mechanical amplitude for the D∗+s →

D+s γ decay may be written schematically as

M(D∗+s → D+s γ) = εµD∗sε
∗ν
γ Tµν(P, k), (2.2)

where εµD∗s is the polarization vector of the decaying D∗+s meson with three de-

grees of freedom indexed by µ, ε∗νγ is the polarization vector of the photon with

two degrees of freedom indexed by ν, P is the four-momentum of the D∗+s , k is

the four-momentum of the photon and Tµν(P, k) encodes the coupling between

the meson and the photon.

Tµν(P, k) may be expressed, most generally, in the form:

Tµν(P, k) = Agµν + BkµPν + CεµναβPαkβ. (2.3)

The D∗+s meson has JP
= 1−, the D+s has JP

= 0− and the emitted γ has spin

7



s = 1 with intrinsic odd parity. The angular momentum of the D+s γ state, L,

could be 0, 1 or 2 depending on the projection of the spin of the photon on the

Jz of the D∗+s . If sz = Jz, then L = 0. If sz = 0 then L = 1, Lz = Jz. And if sz = −Jz,

then L = 2, Lz = 2Jz. However, in order to conserve the odd parity of the initial

state, given P = −1 for both the D+s and the γ, L must be equal to 1. This narrows

down the kind of terms that may constitute Tµν(P, k) to

Tµν(P, k) = CεµναβPαkβ, (2.4)

where α and β keep track of the four-momentum components of the D∗+s and

photon respectively. We consider C to be a constant as the range of k2 is small

compared to the ρ mass.

In order to model the D∗+s → D+s e+e− process, we change the final state photon

to a virtual photon and couple it to a e+e− pair as depicted in Fig. 2.2. We may

then write the invariant amplitude as

M(D∗+s → D+s e+e−) = εµD∗s Tµν(P, k)−igνα
k2 〈ū(p)|ieγα|v(p′)〉, (2.5)

where u(p) and v(p′) are the spinors of the electron and positron respectively as

functions of their four-momenta, k is the four-momentum of the virtual photon

and gνα is the metric tensor of flat spacetime.

2.1 Rate for D∗+s → D+s γ

D∗+s

D+s

γ

ie

Figure 2.1: A Feynman diagram for the D∗+s → D+s γ process.
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We now proceed to express the rate for D∗+s → D+s γ in terms of the normal-

ization constant C used to express Tµν(P, k) in Eq. 2.4 and other constants in this

process such as the masses of the D∗+s and D+s which we denote by mD∗+s and mD+s

respectively.

Inserting the expression for the coupling in Eq. 2.4 into the expression for

the invariant amplitude in Eq. 2.2, we may write

M = εµD∗sε
∗ν
γ CεµναβPαkβ. (2.6)

This may be squared to get

|M2| = |C2|εµD∗sε
∗ν
γ εµναβPαkβε∗µ

′

D∗s
εν
′

γ εµ′ν′α′β′Pα′kβ′ , (2.7)

where µ′, ν′, α′ and β′ are indices of four momentum distinguished from their

un-primed cousins.

We now sum over final state polarizations and average over initial state po-

larizations, recalling for photons that

∑

λ=1,2
ε∗νγλε

ν′

γλ
= −gνν′ , (2.8)

and for massive vector bosons that

1
3

∑

λ=1,3
ε∗νD∗sλε

ν′

D∗sλ =
1
3















−gνν′ + PµPµ′

m2
D∗s















. (2.9)

Thus, we get

|M2| = |C
2|

3 gνν′














gµµ′ − PµPµ′

m2
D∗s















εµναβPαkβεµ′ν′α′β′Pα′kβ′ (2.10)

which may be simplified to

|M2| = 2|C2|
3 (P · k)2

=
2|C2|

3 m2
D∗s E

2
γ (2.11)
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where we have used the tensorial relationship ε
µν

αβ
εµνα′β′ = −2gαα′gββ′ + 2gαβ′gα′β′

and Eγ is the energy component of the photon in the rest frame of the D∗+s .

For a two-body decay, we may write the differential decay rate as

dΓ = 1
32π2 |M2|

Eγ

m2
D∗s

dΩ (2.12)

where dΩ is the differential element of the solid angle subtended from the point

of decay of the D∗+s in its rest frame. Since the invariant amplitude in the simpli-

fied expression of Eq. 2.11 does not have any angular dependence, our expres-

sion for the rate of D∗+s → D+s γ simplifies to

Γ =
|C2|
12π

E3
γ. (2.13)

2.2 Rate for D∗+s → D+s e+e−

γ
D∗+s

D+s

e+
e−

Figure 2.2: A Feynman diagram for the D∗+s → D+s e+e− process.

The rate for the D∗+s → D+s e+e− is a bit more involved as it is a three-body

decay. The amplitude for this process may be expressed by what we had for

D∗+s → D+s e+e− except now with the photon coupled to a e+e− pair. We express it

as presented in Eq. 2.14.

M(D∗+s → D+s e+e−) = εµD∗sCεµναβP
αkβ−igνρ

k2 ū(p)ieγρv(p′). (2.14)
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We square this to get:

|M2| = |C2|εµD∗sε
∗µ′
D∗s εµναβP

αkβεµ′ν′α′β′Pα′kβ′ g
νρgν′ρ′

k4 ū(p)eγρv(p′)v̄(p′)eγρ′u(p). (2.15)

Summing over final state spins of the e+e− and averaging over initial state

polarizations of the D∗+s , we may write

|M2| = −4e2|C2|
3k4 ε

µ

ναβ
εµν′α′β′PαkβPα′kβ′

[

pνp′ν′ + p′νpν′ − gνν′(p · p′ + m2)
]

(2.16)

which may then be expressed succinctly as

|M2| = 4e2|C2|
3k4

[

k2(P · k)2
+ 2X2 − m2

D∗s k
4
]

, (2.17)

where

Xµ ≡ εµ
ναβ

Pαp′βpν

Using the following contraction of the Levi Civita tensor,

εµαβγεµα′β′γ′ = −gαα′g
β

β′g
γ

γ′ − gαβ′g
β

γ′g
γ

α′ − gαγ′g
β

α′g
γ

β′ (2.18)

+gαα′g
β

γ′g
γ

β′ + gαγ′g
β

β′g
γ

α′ + gαβ′g
β

α′g
γ

γ′ ,

X2 evaluates to

X2
= −k2(P · p′)(P · p) + m2

D∗s

(

k4

4 − k2m2
)

+
m2

4
(

m2
D∗s − m2

Ds
+ k2

)2
, (2.19)

where m represents the mass of the electron, mDs the mass of the D+s meson and

mD∗s the mass of the D∗+s . The physical relationships

p · p′ = k2

2
− m2 (2.20)

and

P · k =
(m2

D∗s − m2
Ds
+ k2)

2
. (2.21)

have also been used to obtain the aforementioned expression for X2.
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Now, P·p′ and P·p may be expressed in a more convenient form for the phase

space integral by boosting our inertial frame of reference to the rest frame of the

center of mass of the e+e−. Quantities marked by an asterix (∗) in the following

equations are those evaluated in the e+e− center of mass frame. We define θ∗

to be the angle that the electron makes with the direction of the D+s in the e+e−

center of mass frame. Thus, we may write:

P · p = P∗ · p∗ = E∗D∗s E
∗
e − |P∗D∗s ||p

∗
e | cos θ∗, (2.22)

P · p′ = P∗ · p′∗ = E∗D∗s E
∗
e + |P∗D∗s ||p

∗
e | cos θ∗. (2.23)

The energies of the D+s and e− in the center of mass frame of the e+e− may

be expressed simply by recognizing that in this frame, kµ =
(√

k2, 0, 0, 0
)

. Thus,

they are

E∗D∗s =
P · k
√

k2
(2.24)

E∗e =
p · k
√

k2
. (2.25)

Using this and

p · k = k2

2
, (2.26)

we may rewrite Eq. 2.22 and 2.23 as follows.

P · p =
P · k

2 +

√

(P · k)2

k2 − m2
D∗s

√

k2

4 − m2 cos θ∗ (2.27)

P · p′ = P · k
2
−

√

(P · k)2

k2 − m2
D∗s

√

k2

4
− m2 cos θ∗. (2.28)

and thus arrive at the expression for (P · p)(P · p′):

(P · p)(P · p′) = (P · k)2

4 −
(

(P · k)2

k2 − m2
D∗s

) (

k2

4 − m2
)

cos2 θ∗. (2.29)

We may insert this into the expression for X in Eq. 2.19 to obtain:

X2
= −k2 (P · k)2

4 +

(

(P · k)2 − k2m2
D∗s

)

(

k2

4 − m2
)

cos2 θ∗ + m2
D∗s

(

k4

4 − k2m2
)

(2.30)
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+
m2

4
(

m2
D∗s − m2

Ds
+ k2

)2
.

This may be inserted into the expression for the invariant amplitude |M|2

obtained in Eq. 2.16 to give us

|M2| = 4e2|C2|
3k4

[

A2k2

8 − m2
D∗s

(

k4

2 + 2k2m2
)

+
m2

2 A2
+

(

A2

4 − k2m2
D∗s

) (

k2

2 − 2m2
)

cos2 θ∗
]

,

(2.31)

which can be simplified to

|M2| = 4e2|C2|
3k4

[{

A2

4
− k2m2

D∗s

}{

k2

2
(

1 + cos2 θ∗
)

+ 2m2
(

1 − cos2 θ∗
)

}]

(2.32)

where we define

A ≡ m2
D∗s − m2

Ds
+ k2. (2.33)

Having thus obtained the averaged invariant amplitude for our process, we

must now set up the integral over the available phase space. This being a three-

body decay, we may write the decay rate in terms of the |M|2 thus:

dΓ = 1
(2π)3

1
16m2

D∗s

|M2|dEedk2. (2.34)

where dEe is evaluated in the rest frame of the D∗s.

Now we need to express the differential of the energy of the electron, dEe, in

terms of d(cos θ∗). Using the relationship expressed in Eq. 2.22 and recognizing

that P · p = mD∗s Ee− in the rest frame of the D∗s, we may write

Ee =
P · p
mD∗s

=

E∗D∗s E
∗
e

mD∗s
−
|P∗D∗s ||p

∗
e |

mD∗s
cos θ∗. (2.35)

We note that the quantities E∗D∗s , E∗e , |P∗D∗s |, and |p∗e | depend only on k2 and not on

cos θ∗. Therefore, we can differentiate the above expression to obtain

dEe = −
|P∗D∗s ||p

∗
e |

mD∗s
d(cos θ∗). (2.36)
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In the center of mass frame of the e+e−, P ·k = E∗D∗s k
∗
0. Therefore, we may write

E∗D∗s =
P · k
k∗0
=

P · k
2E∗e

. (2.37)

Using this expression for the energy of the D∗s in the center of mass frame of the

e+e−, we may write its momentum thus:

|P∗D∗s | =
√

E∗2D∗s − m2
D∗s =

√

(P · k)2

4E∗2e
− m2

D∗s . (2.38)

Thus we may simplify the Jacobian of the differential,
|P∗D∗s ||p

∗
e |

mD∗s
=

|P∗D∗s |E
∗
e

mD∗s

√

1 − 4m2

k2 (2.39)

=

√

(P · k)2

4m2
D∗s

− E∗2e

√

1 − 4m2

k2 (2.40)

=
1
2

√

k2
0 − k2

√

1 − 4m2

k2 (2.41)

=
|PDs |

2

√

1 − 4m2

k2 (2.42)

Using this in Eq. 2.36, we arrive at a simple expression for dEe:

dEe =
|PDs |

2

√

1 − 4m2

k2 d(cos θ∗). (2.43)

Now we substitute our expression for |M|2 in Eq. 2.32 and dEe in Eq. 2.43

into Eq. 2.34 and integrate over d(cos θ∗) from -1 to +1 to obtain the differential

rate of decay

dΓ
dk2 =

|PDs |α|C2|
144π2m2

D∗s k
4

(

A2 − 4k2m2
D∗s

) (

k2
+ 2m2

)

√

1 − 4m2

k2 (2.44)

where A is defined in Eq. 2.33. α is the fine structure constant.

We integrate this numerically with k2 ranging from 4m2 to
(

mD∗+s − mD+s

)2
to

obtain our prediction for the ratio of branching fractions:

Γ(D∗+s → D+s e+e−)
Γ(D∗+s → D+s γ) =

B(D∗+s → D+s e+e−)
B(D∗+s → D+s γ) = 0.89α = 0.65%. (2.45)
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The following chapters deal with an experimental observation of the D∗+s →

D+s e+e− process and a measurement of this ratio at the CLEO-c experiment.
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CHAPTER 3

THE CLEO-C DETECTOR
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Figure 3.1: Cutaway schematic of the CLEO-c detector.

CLEO-c was the last upgrade to CLEO, a general purpose particle detec-

tor for high energy physics used to collect data on electron-positron collisions

at the Cornell Electron Storage Ring (CESR) facility. The name CLEO is not

an acronym and was derived from Cleopatra, to go with CESR which is pro-

nounced as Caesar. The iteration of the collider used for studying the charm

quark was called CESR-c. Counter-rotating beams of positrons and electrons in

CESR-c were made to collide at the center of the CLEO-c detector with center of

mass energies between 3 and 5 GeV that are required for studies of the charm

quark. The nearly hermetic CLEO-c detector with several layers of subdetectors

tracked and measured the energy and momenta of particles produced at these

collisions.
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Figure 3.2: Quarter-view schematic of the CLEO-c detector.

A cutaway schematic of the CLEO-c detector is presented in Fig. 3.1. The

sub-detectors closest to the interaction point were the inner drift chamber and

the main drift chamber which were used together to reconstruct the 3 dimen-

sional trajectories of charged particles. A solenoidal magnetic field of 1 T in the

direction of the beampipe curved these trajectories and enabled us to deduce

the momenta and charges of these particles. Outside the drift chamber lay the

Ring Imaging Cerenkov (RICH) subdetector dedicated to particle identification.

It used the Cerenkov radiation left in the wake of a charged particle traveling

through a medium of high refractive index (LiF) to measure the velocity of the

particle. This velocity combined with the momentum measured by the drift

chambers allowed us to determine the mass, and hence the identity of the par-

ticle. Surrounding the RICH was the electromagnetic calorimeter made out of
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CsI crystals arranged in the central barrel region and endcap regions flanking

the drift chamber. It measured the energy of electromagnetic showers, thus al-

lowing the reconstruction of photons and the identification of electrons. The

superconducting solenoid used to maintain the 1 T magnetic field was located

external to these subdetectors. All of this was encased in iron yokes to return

the magnetic field, also known as the magnet iron. Interlaced within the magnet

iron lay the muon drift chambers.

The following sections describe the sub-detectors that were used in the anal-

ysis presented in this dissertation.
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Figure 3.3: The inner drift chamber.
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Figure 3.4: Stereo angles in the outer drift chamber.
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3.1 The Tracking System

The CLEO-c tracking system consisted of two cylindrical, concentric drift cham-

bers – an inner drift chamber between the radii of 5.3 cm and 10.5 cm, and an

outer drift chamber between 12 cm and 82 cm. Longitudinally, they extended

to cover the region in polar angle | cos θ| < 0.93 subtended from the interaction

point as depicted in Fig. 3.2. A 3:2 mixture of He and C3H8 gas, chosen for

its long radiation length, filled the volume of the detector. Tens of thousands

of wires were strung along the length of the sub-detector as shown in Fig. 3.2,

arranged in 6 layers within the inner chamber and 47 layers in the outer cham-

ber. Sense wires were maintained at a 2,000 V positive electric potential relative

to the field wires which were grounded. The sense wires were 20 µm in diam-

eter made of gold-plated tungsten. The field wires were 130 µm in diameter

and made of gold-plated aluminum. The minimum distance between sense and

field wires were 5 mm for the inner chamber and 7 mm for the outer chamber.

A detailed physical description of the tracking system may be found in Sections

2.1.1 and 2.2.2 of the Yellow Book [9].

An energetic charged particle traversing the chamber would ionize a track of

gas and electrons liberated thus would be accelerated towards the sense wires.

In the vicinity of the sense wires, the electrons would be energetic enough to

induce local ionization in the gas, thereby releasing more electrons and ampli-

fying the total charge deposited on the wires. The precise time of each such

deposition event and the total charge collected would be recorded by the appa-

ratus.

The temporal information was used to measure the distance of closest ap-
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proach of the energetic particle to each sense wire. This could be done because

the exact time of the electron-positron collisions at the center of CLEO-c was

well known from the CESR-c machine and the drift velocities of the liberated

electrons well understood. The distances of closest approach from multiple

sense wires were fitted with a minimum χ2-fit as well as Kalman-fits encod-

ing physical models of various particles in a 1 T magnetic field to reconstruct

the particle’s 3-dimensional trajectory through the sub-detector. The curvature

of the fitted track in the magnetic field allowed us to measure the momentum of

the charged particle. This procedure is especially relevant for our analysis be-

cause we rely on an accurate reconstruction of electron-positron pairs that test

the low-energy limits of this procedure. CLEO-c had decided not to store tracks

reconstructed using the physical model of electrons, under the assumption that

electron tracks reconstructed using the physical model of charged pions would

do fine for most analyses and the fact that doing so would save some disk-space.

As described in our analysis, the accuracy of pion-fitted tracks did not suffice

and a campaign to reconstruct tracks to the physical model of electrons had to

be undertaken.

The charge collected by the sense wire at each deposition event corresponds

to the energy lost by the charged particle in ionizing a segment of the track, the

dE/dx. We know from the Bethe-Bloch equation that this dE/dx varies with the

mass and momentum of the incident particle. Thus, informed with the track’s

momentum and dE/dx we may deduce the particle’s mass and hence its identity.

If the wires of the drift chamber were all aligned strictly parallel to the beam-

axis, only dimensions of the track perpendicular to this axis, i.e. the azimuthal

and radial directions, could be reconstructed. To enable reconstruction of the
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longitudinal dimension, all 6 layers of sense wires in the inner drift chamber

and 16 out of the 47 layers in the outer drift chamber were oriented at a small

“stereo” angle to the beam-axis. The 16 layers were divided into groups of 4

and alternated in stereo angle. The timing pattern from such wires staggered

in stereo angle allowed us to determine the longitudinal parameters of tracks.

This afforded the tracker a spatial resolution of 85 µm for 2.5 GeV tracks in

the dimensions perpendicular to the beam-axis and 5-7 mm in the dimension

parallel.
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3.2 The Calorimeter

The CLEO-c calorimeter, located outside the drift chambers and the RICH, was

divided into a barrel section and two encap sections together covering 95%

of the solid angle subtended from the interaction point. Thallium-doped ce-

sium iodide crystals were used for showering and scintillation material in this

calorimeter. CsI (Tl) crystals have a density of 4, 510 kg/m3, a radiation length χ0

of 1.83 cm and a Moliere radius of 3.8 cm, and this provided excellent shower-

ing material for the experiment. Each crystal was 30 cm (16.4 radiation lengths)

long in the direction away from interaction point with a 5 cm × 5 cm face point-

ing inwards. Four photodiodes mounted at the back of each crystal measured

the scintillation light.

The barrel consisted of an array of 6,144 CsI crystals, 128 along the azimuthal

direction and 48 along the longitudinal. The crystals were tilted to point a few

centimeters away from the interaction point so as to minimize the loss of par-

ticles in the cracks between crystals. The barrel calorimeter extended from a

radius of 1.02 m to 1.32 m, and was 3.26 m long at the inner radius. This covers

the region in polar angle | cos θ| < 0.85.

The two endcaps consisted of 820 crystals each, aligned parallel to the beam-

pipe. The front faces of each endcap lay 1.308 m along the beam-line from the

interaction point, and the back faces extended to 1.748 m. Each endcap extended

from 43.3 cm to 95.8 cm in radius. Together, they covered the region in polar

angle 0.83 < | cos θ| < 0.95.

The energy of a typical electromagnetic shower produced by a photon, as

used in our analysis, is spread over multiple adjacent crystals. Interpolating the
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“center-of-mass” of this energy deposit offers us a much better resolution for

the shower position and hence the direction of the photon than could be naively

expected from the 5 cm face width of an individual crystal. A small fraction of

crystals are known to be noisy and their contributions have been ignored in this

analysis. The pattern of energy deposits in the crystals was used to distinguish

between showers from electrons, hadrons and photons.
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CHAPTER 4

ANALYSIS METHOD TO SEARCH FOR THE D∗+s → D+s e+e− AND

MEASURE THE RATIO OF BRANCHING FRACTIONS

B(D∗+s → D+s e+e−)/B(D∗+s → D+s γ)
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As described in the Introduction, this chapter documents a search for and

observation of the decay D∗+s → D+s e+e− along with a measurement of the ratio

of branching fractions
B(D∗+s → D+s e+e−)

B(D∗+s → D+s γ)

at the CLEO-c experiment. We choose to measure and present this ratio of

branching fractions instead of an absolute branching fraction for the D∗+s →

D+s e+e− in order to minimize systematic uncertainties arising from the recon-

struction and selection of D+s mesons. When we refer to the positively charged

D∗+s or the D+s in this document, we imply the negatively charged particle or the

charge-conjugate process unless otherwise specified. This search and measure-

ment was conducted in 586 pb−1 of e+e− collision data collected by the CLEO-c

experiment at a center of mass energy of 4,170 MeV. At this energy, the total

charm cross section is known to be ' 9 nb, of which about 10% produces D±s D∗∓s

events. More accurately, the cross section for producing D±s D∗∓s at this energy

has been experimentally measured in two papers, [10] and [3], that we average

to quote 948 ± 36 pb. How we arrive at this number is covered in more detail in

Section 4.4 where we discuss the datasets used. Using the quoted values of inte-

grated luminosity and production cross section we conclude that approximately

556 thousand events were at our disposal for this analysis.

In our search and measurement we employ a blind-analysis technique to

search for our signal process, the D∗+s → D+s e+e−, where we reconstruct the D∗+s

through the D+s on the same side as the D∗+s and the soft e+e− pair. The D+s is

reconstructed exclusively through the nine hadronic decay channels outlined

in Eqs. 4.1 - 4.9. Selection criteria are optimized, their efficiencies noted and

the background levels estimated from data outside the signal region before we

proceed to unblind data within the signal region.
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Figure 4.1: A schematic showing a e+e− collision producing a D∗+s D−s pair
where the D∗+s decays to a D+s and a e+e− via the decay we are
searching for in this dissertation.

D+s → K+K−π+ (4.1)

D+s → KS K+ (4.2)

D+s → ηπ+; η→ γγ (4.3)

D+s → η′π+; η′ → π+π−η; η→ γγ (4.4)

D+s → K+K−π+π0 (4.5)

D+s → K∗+K∗0; K∗+ → K0
S π
+,K∗0 → K−π+ (4.6)

D+s → π+π−π+ (4.7)

D+s → ηρ+; η→ γγ; ρ+ → π+π0 (4.8)

D+s → η′π+; η′ → ρ0γ (4.9)

Selection criteria on the reconstructed D∗+s , D+s and soft e+e− candidates are

designed to reject background events described in Section 4.1. These selection
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criteria are described in Section 4.2. Of note are the criteria on the helix pa-

rameters of the soft e+e− tracks that are used to discriminate our signal against

backgrounds that come from D∗+s → D+s γ where the γ converted to an e+e− pair

in material. These selection criteria are optimized for each of the nine hadronic

decay modes of the D+s using Monte Carlo simulations of the signal and back-

grounds as described in Section 4.7.

The e+e− pair from the D∗+s decay share ∼ 144 MeV of energy and are hence

anticipated to be very soft. The Kalman-filter based track fitter used in CLEO-c

did not, by default, store track fits with the electron mass hypothesis, storing

tracks fitted to the charged pion mass hypothesis instead. Section 4.7 that doc-

uments our effort to converge on optimal sets of parameters for our selection

criteria also documents our realization that tracks fitted to the electron mass

hypothesis offers us considerably higher signal significances for observing the

D∗+s → D+s e+e− than tracks fitted to the pion mass hypothesis. Therefore, a cam-

paign to reprocess several datasets to include track fits with the electron mass

hypothesis was launched and this is described in Section 4.5. Henceforth, the

analysis focuses on data with electron tracks fitted to the electron mass hypoth-

esis in searching for the D∗+s → D+s e+e−.

Having narrowed down on a signal region for each of the hadronic decay

modes of the D+s in the course of our optimization procedure, we estimate the

expected number of background events within this region for each mode by ex-

trapolating Monte Carlo simulation and data points from the sideband regions.

This is described in Section 4.9. Before we unblind data within the signal re-

gions, we establish that our predicted signal and estimated background levels

are adequate to obtain maximal signal significance if we are to unblind data in
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all the modes.

Thereafter, we measure the efficiencies of our selection criteria for D∗+s →

D+s e+e− reconstruction in each of the hadronic decay channels in Section 4.8. We

could at this point proceed to unblind data and use the number of observed

events in conjunction with the selection efficiencies to present a measurement

for the absolute branching fraction of D∗+s → D+s e+e−. Such a measurement, how-

ever, would have large unquantified systematic errors from the reconstruction

of the D+s and we choose not to present such a measurement.

Using criteria similar to those used to select D∗+s → D+s e+e− events, except

without the track helix criteria for the e+e− and including criteria on the photon

from the D∗+s , we reconstruct D∗+s → D+s γ events where the D+s decays through

the hadronic modes specified in Eq. 4.1 - 4.9. The efficiency of our selection

criteria is noted, as is our signal yield for each of the channels. This is described

in Section 4.10.

We then unblind data in the signal regions of the D∗+s → D+s e+e− reconstruc-

tion in each of the chosen decay modes of the D+s taking into account the back-

ground for each mode estimated in Section 4.9. Using the numbers of observed

signal events, the efficiencies for our selection criteria and the signal yields and

efficiencies for the D∗+s → D+s γ reconstruction, we proceed to compute the ratio

of branching fractions we set out to measure. This is described in Section 4.11

of the document. Also motivated in this section is the requirement for quanti-

fying systematic uncertainties in the selection efficiencies that stem from devi-

ations between data and Monte Carlo in the reconstruction of soft e+e− pairs in

D∗+s → D+s e+e− and the photon in D∗+s → D+s γ.
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The systematic uncertainties associated with the selection and reconstruc-

tion efficiencies of soft e+e− pairs in D∗+s → D+s e+e− and the photon in D∗+s → D+s γ

is measured in Section 4.12. We estimate the systematic deviation between re-

construction efficiencies in Monte Carlo simulation and data by measuring the

ratio of the numbers of events where one of the π0 Dalitz decays to γe+e− to the

number of events where both π0 decay to γγ and comparing this to the ratio ex-

pected from currently accepted branching fractions for π0 → γe+e− and π0 → γγ.

This uncertainty is propagated into the ratio of branching fractions reported in

Section 4.11.

4.1 Backgrounds for D∗+s → D+s e+e−

A significant background to the observation of this decay is expected from

D∗+s → D+s γ events where the γ converts in the material of the apparatus or

the beam-pipe to form an e+e− pair. The material of the beam-pipe is known to

have been approximately 1% of a radiation length thick for photons incident on

it closest to the interaction region and higher for photons incident at steeper an-

gles. If we accept the theoretical estimate of the rate of the D∗+s → D+s e+e− process

with respect to the D∗+s → D+s γ as described in Section 2, we conclude that this

conversion process occurred at roughly the same rate as the signal. This back-

ground is called the conversion background in this document. The electrons from

such conversions will have the same range of energies as those from signal pro-

cesses. However, their tracks would appear to originate at a distance away from

the primary interaction point. Selection criteria for selecting and reconstructing

the D∗+s → D+s e+e− are designed to exploit this fact.
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Another source of background, also seen to be significant from Monte Carlo

simulation studies, arises from π0 mesons that were produced at the primary

interaction point which then decayed through the Dalitz channel: π0 → γe+e−

[11]. Such e+e− pairs would typically have had the same range of energies as

those expected from the signal process and their tracks would seem to have

originated from the primary interaction point. Though the rate of Dalitz decays

of the π0 is ∼ 1.2% [4], the prodigious production of π0 mesons makes this a sig-

nificant background to our rare signal. We recognize that such a combinatorial

background would not peak in the variables of any of our selection criteria and

estimate the frequency of its occurrence from the sidebands of the signal region

in our data. We call this the Dalitz decay background in the rest of the document.

Combinatorial backgrounds necessarily result from combining candidate

daughters of the D+s and candidate e−s and e+s. Such backgrounds are not ex-

pected to be structured in the kinematic variables used to select signal events

and we estimate them from the sidebands around the signal region in our data.

We also account for backgrounds that arise from light quark (u, d, s) produc-

tion at the interaction point. These backgrounds are seen, from Monte Carlo

simulations, to dominate, though not peak, in the π+π−π+ and η′π+; η′ → ρ0γ

decay channels of the D+s after applying our selection criteria. Therefore, we

choose to estimate their contributions from the sidebands of the signal region in

our data. They are collectively called the continuum background in the rest of this

document.
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4.2 Selection Criteria for Reconstructing D∗+s → D+s e+e−

The entities directly measured by the CLEO-c detector that is relevant for our

analysis are charged tracks and electromagnetic showers. The sub-detectors

used for their detection have been described in Sections 3.1 and 3.2 respectively.

Relatively stable particles like the soft e+ and e− in the final state of our signal

process or the π+, K+ and γ from decays of the D+s could be detected directly

by the detector. Short-lived particles like the D+s and the D∗+s must be recon-

structed by analyzing the signatures of their decays into particles that left tracks

or shower in the detector. As we have mentioned earlier, we choose to recon-

struct the D+s through 9 hadronic final states as listed in Eq. 4.1 - 4.9, and the D∗+s
through the D+s and the soft e+e− pair.

We construct three kinematic variables from reconstructed D+s and D∗+s candi-

dates based on which we select events most likely to contain our signal. We also

construct two combinations of track parameters of the e+ and e− which gives us

criteria to powerfully reject conversion backgrounds.

4.2.1 Track Quality Requirements for the Soft e+e− Pair

Quality requirements are imposed on the soft e+e− tracks in order to reject poorly

reconstructed tracks and tracks that cannot correspond to our signal process.

These tracks are required to fit hits in the drift chambers with χ2 less than

100,000. The measured energy, which is derived from the momentum, that in

turn is inferred from the curvature of the track’s helix in the 1 T magnetic field, is

required to be between 10 MeV and 150 MeV. The upper limit is set by consider-
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ing the mass difference between the D∗+s and D+s mesons, which is approximately

144 MeV. A single electron cannot carry more than that amount of energy. Be-

low 10 MeV, electron tracks curl in a way that cannot be well reconstructed by

the drift chamber. Next, we require tracks to pass within 5 cm of the interaction

point in the dimension parallel to the beam-axis and within 5 mm of the beam-

axis in the transverse dimensions. Finally, in order to reject particles that are not

electrons, we require the dE/dx as computed from the track fit to be within 3σ

of that expected for electrons.

These criteria remain identical for all the hadronic decay modes of the D+s as

the e+e− pair is independent of the D+s .

4.2.2 Mass of the D+s Meson, mD+s

The D+s meson is reconstructed using the tight Ds-tagging criteria outlined in the

document “Developments in D(s)-Tagging” [18]. We select events which con-

tain D+s candidates with invariant mass within tens of MeV from 1.969 GeV.

The current world standard for the D+s mass as recorded in the Review of Par-

ticle Physics 2008 is 1.96849 ± 0.00034 GeV [4]. This criterion rejects most false

combinations of D+s daughters. The exact width of this criterion was optimized

individually for each mode.

4.2.3 Beam Constrained Mass of the D∗+s Meson, mBC

The energy of a D∗+s meson produced from the e+e− collisions in CESR may be

determined with higher precision from the measured energy of the beam than
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from the sum of the energies of its decay constituents as measured by the CLEO-

c detector. It may be calculated from:

ED∗+s (beam) =
4s − m2

D+s
(RPP) + m2

D∗+s
(RPP)

4
√

s
, (4.10)

where ED∗+s (beam) is the energy of the D∗+s we calculate from the beam energy,

s is the square of the center of mass energy of the beam, and mD+s (RPP) and

mD∗+s (RPP) are the current world standards for the D+s and D∗+s masses respec-

tively as recorded in the Review of Particle Physics 2008 [4].

Having thus calculated the energy of the D∗+s meson, we can now define a

more precise variant of the invariant mass of the D∗+s as follows:

mBC =
√

E2
D∗+s

(beam) − p2
D∗+s

(constituents) (4.11)

where pD∗+s (constituents) is the momentum of the D∗+s calculated from the mo-

menta of the daughters of its decay. mBC is called the beam constrained mass in

CLEO literature.

For this selection criterion, we accept events with candidates having mBC

within tens of MeV from 2.112 GeV. The current world standard for the D∗+s
mass as recorded in the Review of Particle Physics 2008 is 2.1123 ± 0.0005 GeV

[4]. This criterion is meant to reject most false combinations of D∗+s daughters.

4.2.4 Mass Difference between the D∗+s and the D+s Mesons, δm

We define δm as the mass difference between the reconstructed D∗+s and D+s
mesons.

δm = mD∗+s − mD+s (4.12)
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This mass difference is known to be 143.8 MeV [4]. By accepting events with

δm within a narrow range of these values around 143.8 MeV we reject most

combinations where the e− or e+ that are used to reconstruct the D∗+s did not, in

fact, come from decays of the D∗+s .

4.2.5 ∆d0 between the e+ and e− Tracks

In CLEO, the d0 of a track is defined as the distance of closest approach of the

track to the z-axis. It is a signed quantity, whose sign depends on the charge of

the track (inferred from the sense of the track helix) and whether the origin of

the x − y plane falls within the circle made by the track in that plane. For more

details, one may see Section 6 of the “How and Why Wonder Book of CLEO

Tracking Conventions” [14].

Now, for e+ and e− tracks that come from the origin, as they do for our signal,

it may be seen from Fig. 4.2 that de−
0 − de+

0 is 0. Hence, in data, our signal will

have ∆d0 centered around 0.

However, for e+ and e− tracks that come from a point away from the origin,

as they do for the conversion background, it is clear from Fig. 4.2 that de−
0 − de+

0

will be negative.

For our selection criterion, we define:

∆d0 = de−
0 − de+

0 (4.13)

and require ∆d0 to be greater than -5 mm. This criterion efficiently rejects con-

version background events.
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Figure 4.2: An illustration of ∆d0 between the soft e+e− tracks of the signal
and conversion events.

4.2.6 ∆φ0 between the e+ and e− Tracks

The azimuthal angle of the e+ and e− tracks measured at the point of closest

approach of the track to the z-axis, denoted by φ0, appears to be very effective in

rejecting conversion background events.

For events where the e+ and e− tracks come from the origin, as they do for

our signal, it may be noted from Fig. 4.3 that if we define:

∆φ0 = φ
e−
0 − φe+

0 , (4.14)

∆φ0 will be centered around 0 for the signal. However, for conversion events

where the tracks do not emanate from the origin, it may be inferred from Fig.

4.3 that ∆φ0 will always be positive.

Requiring ∆φ0 to be less than 0.12 in this selection criterion rejects a signifi-

cant portion of our conversion background events.
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Figure 4.3: An illustration of ∆φ0 between the soft e+e− tracks of the signal
and conversion events.

4.3 Selection Criteria for Reconstructing D∗+s → D+s γ

As mentioned earlier, we seek to measure the ratio of branching fractions

B(D∗+s → D+s e+e−)/B(D∗+s → D+s γ) in order to minimize systematics arising from

the reconstructing of D+s mesons, and therefore we must have a way to measure

yields and efficiencies for a B(D∗+s → D+s γ) measurement. We do this, again,

by reconstructing the D∗+s through the D+s and the γ. The D+s is reconstructed

exclusively through the nine hadronic decay channels listed in Eq. 4.1 - 4.9.

Selection criteria used to separate the D∗+s → D+s γ signal from backgrounds

are similar to those used for the D∗+s → D+s e+e−. The kinematic variables mD+s ,

mBC and δm retain their definitions from the previous section, except the four-

momenta of the e+e− pair is replaced by that of the γ. Selection criteria on the

e+e− pair are obviously inapplicable and are replaced by criteria on the γ. These

are described in the following section. Furthermore, we plot the distribution

of mBC after applying all other criteria, and the large rate of this channel that
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translates to a large number of data points allows us to compute the signal yields

and efficiencies from a fit instead of cutting and counting within a range. The

procedure is described in detail for the K+K−π+ decay mode of the D+s in Section

4.10.

4.3.1 Shower Criteria for the Photon

As described briefly in Section 3.2, photons are reconstructed from electromag-

netic showers in the calorimeter that distribute their energies over multiple crys-

tals. The direction of the photon is determined by interpolating between crystals

and the total energy is determined by summing the energy deposited in the re-

gion identified as part of an electromagnetic shower. The shower is required

to have total energy between 10 MeV and 2 GeV. No part of the shower may

deposit its energy in a known noisy, i.e. “hot”, crystal or an under-performing

one. The shower may not lie in the path of a track since such a shower would

almost certainly have been produced by a charged particle and therefore can-

not be a photon candidate. Electromagnetic showers tend to deposit a narrower

distribution of energy than a hadronic shower. The collimation of energy depo-

sition is measured by a quantity known as E9/E25. It is the ratio of energy in

the 3 × 3 block of crystal surrounding the cluster-center of the shower energy

to the energy deposited in the 5 × 5 block. E9/E25 is required to be close to 1

for a photon shower. We also require that energies in this 5 × 5 block that are

associated with any other photon be subtracted. We select on a range for this

unfolded E9/E25 variable, limited by 1, such that 99% of showers are accepted.

And finally, the shower is required to be from a region of the barrel or endcap

calorimeter known to be good.
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Table 4.1: Integrated luminosity corresponding to the CLEO-c datasets
used in this analysis. The statistical uncertainties are added
in quadrature, while the systematic uncertainties are added lin-
early. Thereafter, these two forms of uncertainties are added in
quadrature to give us the total uncertainty we use for the analy-
sis and the remainder of this document.

Dataset Integrated Luminosity ± stat ± syst (pb−1)

39 55.1 ± 0.03 ± 0.56

40 123.9 ± 0.05 ± 1.3

41 119.1 ± 0.05 ± 1.3

47 109.8 ± 0.05 ± 1.1

48 178.3 ± 0.06 ± 1.9

Total 586.2 ± 0.11 ± 6.1

4.4 Datasets Used

Data taken by the CLEO-c detector at e+e− center of mass collision energy of

4,170 MeV that is used for this analysis correspond to the datasets enumerated

in Table 4.1. The center of mass collision energy is usually represented in high

energy physics as
√

s. We add the integrated luminosities of each of the datasets

to converge on the value of 586 ± 6 pb−1 as the total luminosity of our data. This

value is used for the rest of this dissertation.

Electron-positron collisions at a center of mass energy of √s= 4,170 MeV

have been measured to produce D±s D∗∓s pairs with a cross section of 916 ± 11(sta-

tistical) ± 49(systematic) pb in [10] and 983 ± 46(statistical) ± 21(systematics of

measurement) ± 10 (systematics of luminosity) in [3]. These being independent

measurements, we use the uncertainty-weighted average value of 948 ± 36 pb

for the cross section in this analysis.
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Dataset 42 containing 48.1 pb−1 of data collected at the ψ(2S ) resonance en-

ergy was used to measure the systematic uncertainty in the reconstruction effi-

ciencies of soft e+e− and γ in this analysis.

Monte Carlo samples modeling known physical processes expected in these

datasets had been produced and are available as the Generic and Continuum

samples described in the following sections.

4.4.1 Generic Monte Carlo

By Generic Monte Carlo, we mean a Monte Carlo (MC) simulation of all known

physics processes that follow from the production of charm quarks at 4,170 MeV

e+e− collisions. The D∗+s → D+s e+e− process which we are searching for, conse-

quently, is not a part of this simulation. In order to decrease statistical uncer-

tainties, the Generic MC was created with approximately 20 events for every 1

event of data. This scale factor of 20 was aimed for, but not necessarily achieved

due to computational errors. We re-evaluate the scale factor achieved as follows:

According to

https://www.lepp.cornell.edu/˜c3mc/private/genmc_decs/20080404_MCGEN_1/ddmix_4170_isr.dec

which is the EVTGEN decay file used to set the branching fractions of the vari-

ous charm quark states possible at 4,170 MeV, the branching fraction of produc-

ing D±s D∗∓s is 0.1014. Also, from the “Samples” section of

https://wiki.lepp.cornell.edu/lepp/bin/view/CLEO/Private/SW/CLEOcMCstatus

we see that the total number of produced events is 105.2 million. Therefore, we

may write:

(586 ± 3)pb−1 × (948 ± 36)pb
0.1014 × scale = (105.2 ± 0.1) × 106 (4.15)
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From this, we deduce that the achieved scale factor for the Generic MC sample

has been 19.2 ± 0.8. The uncertainty in the luminosity contributes most to the

uncertainty in this scale. Since we will be mostly dividing the number of events

in Generic MC by this scale factor, it is useful to record the inverse of this scale:

0.052 ± 0.002.

4.4.2 Continuum Monte Carlo

By Continuum Monte Carlo, we mean a Monte Carlo simulation of all physics

processes that follow from the production of up, down and strange quarks at
√

s = 4,170 MeV e+e− collisions. The scale factor for this MC sample is read off

as 5 from the website:

https://wiki.lepp.cornell.edu/lepp/bin/view/CLEO/Private/SW/CLEOcMCstatus
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4.5 Reprocessing Data to Fit Tracks with the Electron Mass Hy-

pothesis

Tracks in CLEO-c are fitted to various particle mass hypotheses with a Kalman

filter as described in [20]. In order to conserve disk-space, however, CLEO-c

had chosen to not store track fits made with the electron mass hypothesis in

the reconstruction process. Electrons tracks were stored with fits made with the

charged pion mass hypothesis. This is found to work fine for energies above a

few hundred MeVs, but not in our analysis which deals with average electron

energies of 70 MeV and goes down to 40 MeV. A plot of the difference between

the reconstructed and generated electron energy as a function of the generated

energy for electron tracks fitted with the pion mass hypothesis is presented in

Fig. 4.4(Left). We find a systematic and significant over-estimation of the elec-

tron energy with lower generated energies. This is directly related to the signif-

icantly larger mass of the charged pion being used to model the energy loss for

an electron in the Kalman filter used to fit the tracks.

This systematic deviation disappears when we switch to the electron mass

hypothesis for our track fits as presented in Fig. 4.4(Right). Simply re-

parameterizing the energy of the tracks using a fit to Fig. 4.4(Left) was found to

not improve our results as significantly as reconstructing tracks with the elec-

tron mass fit.

All datasets listed in Table 4.1 and dataset 42, which is used for comput-

ing systematic uncertainties in the low-energy electron tracking efficiency, were

reprocessed to have events with D+s candidates decaying to one of the nine

hadronic modes specified in Eq. 4.1 - 4.9 also contain tracks fitted to the electron
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Figure 4.4: (Left) The difference between the reconstructed and Monte
Carlo generated electron energy plotted against the generated
electron energy when the electrons have been fitted to tracks
using the pion mass hypothesis. (Right) The difference when
the electrons are fitted to tracks using the electron mass hy-
pothesis.

mass hypothesis. The execution of this procedure was a major technical chal-

lenge, given the sheer volume of data that had to be sifted through, and failed to

reproduce 0.2% of the D+s candidates while producing 0.1% new D+s candidates

in the reprocessed datasets. This was attributed to virtually intractable changes

in software since the first processing of this data and is incorporated in our final

measurement as a source of uncertainty.
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4.6 Monte Carlo Generation and Validation

In order to calibrate our selection criteria for selecting D∗+s → D+s e+e− and D∗+s →

D+s γ events over background processes, we produce Monte Carlo simulations of

these events. Monte Carlo simulations also help us estimate the efficiencies for

our thus tuned selection criteria in retaining such events in data.

These simulations begin by modeling the physics of e+e− collisions which

produces intermediate particles, which in turn decay to D∗+s D−s pairs and ul-

timately down to known stable particles. The invariant quantum mechanical

amplitude which captures the essential dynamics of this process is programmed

into the EvtGen [15] software package. The package uses this information along

with the Lorentz-invariant phase space factor which encodes the kinematics of

the process to populate the available phase space. Thus, distributions of final

state particles in momenta are generated. The behavior and detection of these fi-

nal state particles in CLEO-c are computed by another software package known

as GEANT [12]. It accounts for the decay of short lived particles in flight, the

interaction of particles with the material of the detector and energy loss due to

bremsstrahlung.

The decay of a vector boson (D∗+s ) to a scalar boson (D+s and two leptons (e+e−)

had not previously been modeled in the EvtGen package. A software plug-in

to accomplish this within EvtGen, based on the invariant amplitude computed

in Eq. 2.14, was implemented. This was used to generate signal Monte Carlo

samples for the D∗+s → D+s e+e− process, and this included accounting for all

angular correlations. However, it remained for us to ensure that the form for

dΓ/dk2 of the D∗+s → D+s e+e− process which we arrived at analytically in Eq.
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2.44 that was used in the computation of Γ(D∗+s → D+s e+e−)/Γ(D∗+s → D+s γ) in Eq.

2.45 matched with that produced by the Monte Carlo simulation of EvtGen. k2

represents the invariant mass squared of the e+e− pair as it did in Chapter 2.

To do this, we plotted the dΓ/dk2 as a function of k2 that was written down in

Eq. 2.44 overlaid with an appropriately normalized histogram of the k2 from

EvtGen as presented in Fig. 4.5. The match is found to be satisfactory with

discrepancies well beyond the capacity for our detector to resolve.
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Figure 4.5: (a) The analytical expression for the distribution of k2 overlaid
with the distribution of the corrected m2

ee from the Monte Carlo.
(b) A zoom into the region betweeen 0 GeV and 20m2

e to illus-
trate the close match near the peak.

Monte Carlo samples were generated for both D∗+s → D+s e+e− and D∗+s → D+s γ

processes. The former served as the signal sample for the D∗+s → D+s e+e−

reconstruction. The latter served as one of the background samples for the

D∗+s → D+s e+e− reconstruction (where the γ converted to e+e− pairs in the material

of the detector) and as the signal sample for reconstruction of the D∗+s → D+s γ

itself. Separate samples were generated for the D+s decaying to each of the 9

hadronic decay modes listed between Eq. 4.1 and 4.9.
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4.7 Optimization of Selection Criteria for the D∗+s → D+s e+e−

In this section, we describe our method of calibrating the selection criteria out-

lined in Section 4.2 to optimally select D∗+s → D+s e+e− events in data while re-

jecting background events. This is done using Monte Carlo samples for both

the signal and background events. The various kinds of expected background

events, as described in Section 4.1, had been simulated as part of the Generic

and Continuum Monte Carlo samples accompanying each dataset as described

in Section 4.4. A crude measure of signal significance, defined as:

σcrude =
s
√

b
(4.16)

where s and b are the numbers of signal and background events observed after

all selection criteria have been applied, is maximized in the course of our op-

timization effort. We optimize the selection criteria for each of the 9 hadronic

decay modes of the D+s separately using Monte Carlo samples that contain elec-

tron tracks fitted to both the charged pion and electron mass hypotheses. Im-

provements in the signal yields (observed number of signal events after selec-

tion criteria) and significances (as defined crudely above) are noted as we go

from the pion-fitted to the electron-fitted samples, and this is summarized in

Tables 4.2 and 4.3. They are a compilation of results obtained in the following

sub-sections that deals with the optimization of the modes individually. The

numbers in these tables are not used as final expectations of the background in

data. A data driven method is used to achieve that in Section 4.9 and summa-

rized in Section 4.9.12. The numbers here are merely representative and were

used to converge on an optimized set of parameters for our selection criteria.

A problem arises in making optimization plots for the electron-fitted sam-

ples because the generic and the continuum Monte Carlo samples do not contain
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tracks that are electron-fitted. To get around this, we recognize that electron-

fitting tracks is most important for separating conversion events from signal. It

does not change distributions of the Dalitz decay or other combinatoric back-

grounds appreciably for the purposes of this analysis. Therefore, we privately

produce electron-fitted Monte Carlo samples of D∗+s → D+s γ events where the D+s

decays generically, and use them in place of Generic Monte Carlo events which

have D∗+s → D+s γ excluded at the generator (EvtGen) level.

To create the plots for optimization in the following sub-sections for each

hadronic decay of the D+s , it is assumed that D±s D∗∓s pairs are produced at
√

s= 4170 MeV with a cross section of 948 ± 36 pb, the branching fraction of

D∗+s → D+s γ is 94.2%, the branching fraction of D∗+s → D+s e+e− is 0.65%, the scale

of generic Monte Carlo is 1/19.2, and the scale of continuum Monte Caro is 1/5.

The plots for a particular selection criterion are made having applied all other

selection criteria. This allows us to assess the performance of a particular crite-

rion when applied in conjunction with all other criteria. We may take the set of

plots in Fig. 4.6 as an illustration of our procedure. We plot the distribution of

the variable that we are selecting on, the mass of the D+s in this example, for the

signal on the top left plot in each set of plots. The plot on the right in the same

row graphs the increase in accepted signal as we increase the width of our se-

lection criterion in mD+s . The number of produced signal events are normalized

to what we expect in 586 pb−1 of data. The second row displays the same for

a generic MC sample. The third row displays the same for the continuum MC

sample. They too are normalized to a luminosity of 586 pb−1. The first column

on the last row plots the crude significance as defined in Eq. 4.16 against an

increasing acceptance of the selection criterion. The second column on the last

row plots a crude precision, as defined in Eq. 4.17 against an increasing accep-
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tance of the selection criterion. For each selection criterion we try to maximize

the crude significance while ensuring that we are not too far from the maximum

in the crude precision.

pcrude =
s

√
s + b

(4.17)

Optimization of the selection criteria for each hadronic decay mode of the D+s
is described separately in the following sub-sections. In the interest of reading

clarity, the plots used to converge on optimized parameters are only presented

for the D+s → K+K−π+ mode in this section. Plots for all other modes are rele-

gated to Appendix A. The parameters converged upon for the selection criteria

and their performances against signal and background Monte Carlo samples,

however, are presented in the sub-sections corresponding to each of the modes.

Table 4.2: Numbers of signal and background events retained by opti-
mized selection criteria in signal and background Monte Carlo
simulations where electron tracks have been fitted to the pion
mass hypothesis. The numbers are normalized to 586 pb−1 of
integrated luminosity.

Mode Signal Generic Background Continuum Background Total Background s/
√

b

K+K−π+ 11.7 2.03 0.00 2.03 8.2

KS K+ 3.12 0.78 0.00 0.78 3.5

ηπ+ 1.57 0.21 0.20 0.41 6.3

η′π+; η′ → π+π−η 1.02 0.47 0.00 0.47 1.5

K+K−π+π0 4.62 3.49 0.40 3.89 2.3

π+π−π+ 2.99 0.73 0.60 1.33 2.6

K∗+K∗0 1.78 1.35 0.00 1.35 1.5

ηρ+ 5.54 2.40 3.60 6.00 2.3

η′π+; η′ → ρ0γ 2.17 0.83 1.60 2.43 1.4

Total 36.94 12.29 6.4 18.69 8.6
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Table 4.3: Numbers of signal and background events retained by opti-
mized selection criteria in signal and background Monte Carlo
simulations where electron tracks have been fitted to the elec-
tron mass hypothesis. The numbers are normalized to 586 pb−1

of integrated luminosity.

Mode Signal Conversion Background Generic Background Continuum Background Total Background s/
√

b

Conversions Vetoed

K+K−π+ 13.36 1.04 0.42 0.00 1.45 11.1

KS K+ 3.05 0.34 0.21 0.00 0.54 4.13

ηπ+ 1.79 0.17 0.10 0.20 0.47 6.6

η′π+; η′ → π+π−η 0.74 0.00 0.00 0.00 0.00 ∞

K+K−π+π0 4.86 0.63 1.46 0.20 2.29 3.2

π+π−π+ 3.67 0.28 0.21 1.60 2.09 2.5

K∗+K∗0 2.02 0.23 0.63 0.20 1.05 2.0

ηρ+ 5.71 0.85 0.99 1.00 2.84 3.4

η′π+; η′ → ρ0γ 2.41 0.34 0.21 1.80 2.35 1.6

Total 40.36 3.88 4.23 5.00 13.08 11.2

4.7.1 D+s → K+K−π+

Given that the branching fraction of D+s → K+K−π+ is 0.055 ± 0.0028 [3, 4], we

study the plots in 4.6, 4.7, 4.8, 4.9 and 4.10 to arrive at the selection criteria for

data with electron tracks fitted to the pion mass hypothesis, and the plots in 4.11,

4.12, 4.13, 4.14 and 4.15 to arrive at the selection criteria for data with electron

tracks fitted to the electron mass hypothesis. These are summarized in Table

4.4. The optimization plots for any given selection criteria are produced after

having applied all other criteria on the simulated samples. All plots correspond

to 586 pb−1 of integrated luminosity.

When the selection criteria outlined in Table 4.4 are applied to Monte Carlo

simulation samples corresponding to 586 pb−1 of integrated luminosity, with the

pion mass hypothesis and the electron mass hypothesis for electron tracks, we

are left with signal and background yields as presented in Table 4.5.

50



 (GeV)±
SD m

1.94 1.95 1.96 1.97 1.98 1.99 2

 #
 E

ve
nt

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 Signal Sample±
SDm h_dsPlusM_signal

Entries  1377
Mean    1.968
RMS    0.005849

 Signal Sample±
SDm

 Cut Width (GeV)
0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

 #
 E

ve
nt

s

0

2

4

6

8

10

12

 Signal Sample vs Cut Width±
SDm h_dsPlusM_signal_range

Entries  20167
Mean   0.01104
RMS    0.004838

 Signal Sample vs Cut Width±
SDm

 (GeV)±
SD m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

 #
 E

ve
nt

s

0

0.05

0.1

0.15

0.2

0.25

0.3

 Generic MC Background Sample±
SDm h_dsPlusM_generic

Entries  115
Mean    1.969
RMS    0.03579

 Generic MC Background Sample±
SDm

 GeV±
SD m0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

 #
 E

ve
nt

s

0
0.2
0.4
0.6
0.8

1
1.2
1.4

1.6
1.8

2
2.2
2.4

 Generic MC Background Sample vs Cut Width±
SDm h_dsPlusM_generic_range

Entries  606
Mean   0.01149
RMS    0.004725

 Generic MC Background Sample vs Cut Width±
SDm

 (GeV)±
SD m

1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

 #
 E

ve
nt

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

 Continuum MC Background Sample±
SDm h_dsPlusM_continu

Entries  5
Mean    1.999
RMS    0.03948

 Continuum MC Background Sample±
SDm

 Cut Width GeV
0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

 #
 E

ve
nt

s

-1

-0.5

0

0.5

1

 Continuum MC Background Sample vs Cut Width±
SDm h_dsPlusM_continu_range

Entries  0
Mean        0
RMS         0

 Continuum MC Background Sample vs Cut Width±
SDm

 Cut Width (GeV)
0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

σ 

0

1

2

3

4

5

6

7

8

 Signal Significance vs Cut Width±
SDm h_dsPlusM_significance

Entries  20
Mean   0.0101
RMS    0.005191

 Signal Significance vs Cut Width±
SDm

 Cut Width (GeV)
0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.020

0.5

1

1.5

2

2.5

3

 Signal Precision vs Cut Width±
SDm h_dsPlusM_precision

Entries  20
Mean   0.01038
RMS    0.005128

 Signal Precision vs Cut Width±
SDm

Figure 4.6: Optimization plots for the mD+s selection criterion in the D+s →
K+K−π+ mode using pion-fitted tracks in the simulated sam-
ples. The top left plot is the distribution of mD+s in the signal
Monte Carlo sample. The top right plot graphs the number of
signal MC sample events accepted by the criterion as we in-
crease the cut width plotted on the x-axis. The plots in the
second and third rows correspond to the generic and contin-
uum MC samples. The bottom left shows the significance of
the signal over background. The bottom right plot shows the
precision of the signal.
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Figure 4.7: Optimization plots for the mBC selection criterion in the D+s →
K+K−π+ mode using pion-fitted tracks in the simulated sam-
ples. The top left plot is the distribution of mBC in the signal
Monte Carlo sample. The top right plot graphs the number of
signal MC sample events accepted by the criterion as we in-
crease the cut width plotted on the x-axis. The plots in the
second and third rows correspond to the generic and contin-
uum MC samples. The bottom left shows the significance of
the signal over background. The bottom right plot shows the
precision of the signal.

52



m (GeV)δ 
0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16

 #
 E

ve
nt

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45
m Signal Sampleδ h_DeltaM_signal

Entries  1559
Mean   0.1533
RMS    0.004902

m Signal Sampleδ

 Cut Width (GeV)
0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

 #
 E

ve
nt

s

0

2

4

6

8

10

12

14

m Signal Sample vs Cut Widthδ h_DeltaM_signal_range

Entries  20937
Mean   0.01143
RMS    0.004705

m Signal Sample vs Cut Widthδ

m (GeV)δ 
0.08 0.1 0.12 0.14 0.16 0.18 0.2

 #
 E

ve
nt

s

0

0.05

0.1

0.15

0.2

0.25

0.3

m Generic MC Background Sampleδ h_DeltaM_generic

Entries  229
Mean   0.1577
RMS    0.02595

m Generic MC Background Sampleδ

 Cut Width (GeV)
0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

 #
 E

ve
nt

s

0

0.5

1

1.5

2

2.5

3

3.5

m Generic MC Background vs Cut Widthδ h_DeltaM_generic_range

Entries  707
Mean   0.01256
RMS    0.004341

m Generic MC Background vs Cut Widthδ

m (GeV)δ 
0.08 0.1 0.12 0.14 0.16 0.18 0.2

 #
 E

ve
nt

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

m Contiuum MC Background Sampleδ h_DeltaM_continu

Entries  10
Mean   0.1876
RMS    0.009965

m Contiuum MC Background Sampleδ

 Cut Width (GeV)
0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

 #
 E

ve
nt

s

-1

-0.5

0

0.5

1

m Continuum MC Background vs Cut Widthδ h_DeltaM_continu_range

Entries  0
Mean        0
RMS         0

m Continuum MC Background vs Cut Widthδ

 Cut Width (GeV)
0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

 #
 E

ve
nt

s

0

1

2

3

4

5

6

7

8

9

m Signal Significance vs Cut Widthδ h_DeltaM_significance

Entries  19
Mean   0.009921
RMS    0.005119

m Signal Significance vs Cut Widthδ

 Cut Width (GeV)
0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

 #
 E

ve
nt

s

0

0.5

1

1.5

2

2.5

3

3.5

m Signal Precision vs Cut Widthδ h_DeltaM_precision

Entries  19
Mean   0.01057
RMS    0.005059

m Signal Precision vs Cut Widthδ

Figure 4.8: Optimization plots for the δm selection criterion in the D+s →
K+K−π+ mode using pion-fitted tracks in the simulated sam-
ples. The top left plot is the distribution of δm in the signal
Monte Carlo sample. The top right plot graphs the number of
signal MC sample events accepted by the criterion as we in-
crease the cut width plotted on the x-axis. The plots in the
second and third rows correspond to the generic and contin-
uum MC samples. The bottom left shows the significance of
the signal over background. The bottom right plot shows the
precision of the signal.
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Figure 4.9: Optimization plots for the ∆d0 selection criterion in the D+s →
K+K−π+ mode using pion-fitted tracks in the simulated sam-
ples. The top left plot is the distribution of ∆d0 between the
e+e− tracks in the signal Monte Carlo sample. The top right
plot graphs the number of signal MC sample events accepted
by the criterion as we vary the cut on the x-axis. The plots in
the second and third rows correspond to the generic and con-
tinuum MC samples. The bottom left shows the significance of
the signal over background. The bottom right plot shows the
precision of the signal.
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Figure 4.10: Optimization plots for the ∆φ0 selection criterion in the D+s →
K+K−π+ mode using pion-fitted tracks in the simulated sam-
ples. The top left plot is the distribution of ∆φ0 between the
e+e− tracks in the signal Monte Carlo sample. The top right
plot graphs the number of signal MC sample events accepted
by the criterion as we vary the cut on the x-axis. The plots in
the second and third rows correspond to the generic and con-
tinuum MC samples. The bottom left shows the significance
of the signal over background. The bottom right plot shows
the precision of the signal.
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Figure 4.11: Optimization plots for the mD+s selection criterion in the D+s →
K+K−π+ mode using electron-fitted tracks in the simulated
samples. The top left plot is the distribution of mD+s in the
signal Monte Carlo sample. The top right plot graphs the
number of signal MC sample events accepted by the crite-
rion as we increase the cut width plotted on the x-axis. The
plots in the second, third and fourth rows correspond to the
D∗+s → D+s γ, generic and continuum MC samples. The bottom
left shows the significance of the signal over background. The
bottom right plot shows the precision of the signal.
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Figure 4.12: Optimization plots for the mBC selection criterion in the D+s →
K+K−π+ mode using electron-fitted tracks in the simulated
samples. The top left plot is the distribution of mBC in the
signal Monte Carlo sample. The top right plot graphs the
number of signal MC sample events accepted by the crite-
rion as we increase the cut width plotted on the x-axis. The
plots in the second, third and fourth rows correspond to the
D∗+s → D+s γ, generic and continuum MC samples. The bottom
left shows the significance of the signal over background. The
bottom right plot shows the precision of the signal.
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Figure 4.13: Optimization plots for the δm selection criterion in the D+s →
K+K−π+ mode using electron-fitted tracks in the simulated
samples. The top left plot is the distribution of δm in the signal
Monte Carlo sample. The top right plot graphs the number of
signal MC sample events accepted by the criterion as we in-
crease the cut width plotted on the x-axis. The plots in the
second, third and fourth rows correspond to the D∗+s → D+s γ,
generic and continuum MC samples. The bottom left shows
the significance of the signal over background. The bottom
right plot shows the precision of the signal.
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Figure 4.14: Optimization plots for the ∆d0 selection criterion in the D+s →
K+K−π+ mode using electron-fitted tracks in the simulated
samples. The top left plot is the distribution of ∆d0 between
the e+e− tracks in the signal Monte Carlo sample. The top
right plot graphs the number of signal MC sample events ac-
cepted by the criterion as we vary the cut on the x-axis. The
plots in the second, third and fourth rows correspond to the
D∗+s → D+s γ, generic and continuum MC samples. The bottom
left shows the significance of the signal over background. The
bottom right plot shows the precision of the signal.
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Figure 4.15: Optimization plots for the ∆φ0 selection criterion in the D+s →
K+K−π+ mode using electron-fitted tracks in the simulated
samples. The top left plot is the distribution of ∆φ0 between
the e+e− tracks in the signal Monte Carlo sample. The top
right plot graphs the number of signal MC sample events ac-
cepted by the criterion as we vary the cut on the x-axis. The
plots in the second, third and fourth rows correspond to the
D∗+s → D+s γ, generic and continuum MC samples. The bottom
left shows the significance of the signal over background. The
bottom right plot shows the precision of the signal.
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Table 4.4: Selection criteria for data with electron tracks fitted to the pion
and electron mass hypotheses in the D+s → K+K−π+ decay mode.

Selection Criterion Pion-Fitted Data Electron-Fitted Data

Cut Center ±Width Cut Center ±Width

mD+s 1.969 ± 0.011 GeV 1.969 ± 0.011 GeV

mBC 2.112 ± 0.005 GeV 2.112 ± 0.004 GeV

δm 0.155 ± 0.009 GeV 0.144 ± 0.006 GeV

∆d0 -0.002 m -0.006 m

∆φ0 0.06 0.1

Table 4.5: Numbers of signal and background events left in 586 pb−1 of
pion and electron-fitted simulation samples in the D+s → K+K−π+
decay mode.

Expected Number of Pion-Fitted Samples Electron-Fitted Samples

Events in 586 pb−1 and Criteria and Criteria

Signal (s) 11.7 13.36

Conversion Background - 1.04

Generic Background (without Conversions in e-fit) 2.03 0.42

Continuum Background 0.00 0.00

Total Background (b) 2.03 1.45

s/
√

b 8.2 11.1
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4.7.2 D+s → KS K+

The optimization plots for this decay mode may be found in Appendix A.1.

Given that the branching fraction of D+s → KS K+ is 0.0149 ± 0.0009 [3, 4], we

study the plots in A.1, A.3, A.5, A.7 and A.9 to arrive at the selection criteria

for data with electron tracks fitted to the pion mass hypothesis, and the plots

in A.2, A.4, A.6, A.8 and A.10 to arrive at the selection criteria for data with

electron tracks fitted to the electron mass hypothesis. These are summarized in

Table 4.6.

Table 4.6: Selection criteria for data with electron tracks fitted to the pion
and electron mass hypotheses in the D+s → KS K+ decay mode.

Selection Criterion Pion-Fitted Data Electron-Fitted Data

Cut Center ±Width Cut Center ±Width

mD+s 1.969 ± 0.012 GeV 1.969 ± 0.008 GeV

mBC 2.112 ± 0.006 GeV 2.112 ± 0.007 GeV

δm 0.158 ± 0.010 GeV 0.144 ± 0.006 GeV

∆d0 -0.002 m -0.004 m

∆φ0 0.09 0.14

When the selection criteria outlined in Table 4.6 are applied to Monte Carlo

simulation samples corresponding to 586 pb−1 of integrated luminosity, with the

pion mass hypothesis and the electron mass hypothesis for electron tracks, we

are left with signal and background yields as presented in Table 4.7.
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Table 4.7: Numbers of signal and background events expected in pion and
electron-fitted data in the D+s → KS K+ decay mode.

Expected Number of Pion-Fitted Samples Electron-Fitted Samples

Events in 586 pb−1 and Criteria and Criteria

Signal (s) 3.12 3.05

Conversion Background - 0.34

Generic Background (without Conversions in e-fit) 0.78 0.21

Continuum Background 0.00 0.00

Total Background (b) 0.78 0.54

s/
√

b 3.5 4.13
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4.7.3 D+s → ηπ+; η→ γγ

The optimization plots for this decay mode may be found in Appendix A.2.

Given that the branching fraction of D+s → ηπ+ is 0.0158±0.0021 [3, 4] and η→ γγ

is 0.3931± 0.0020 [1, 16, 4], we study the plots in A.11, A.13, A.15, A.17 and A.19

to arrive at the selection criteria for data with electron tracks fitted to the pion

mass hypothesis, and the plots in A.12, A.14, A.16, A.18 and A.20 to arrive at

the selection criteria for data with electron tracks fitted to the electron mass

hypothesis. These are summarized in Table 4.8.

Table 4.8: Selection criteria for data with electron tracks fitted to the pion
and electron mass hypotheses in the D+s → ηπ+; η → γγ decay
mode.

Selection Criterion Pion-Fitted Data Electron-Fitted Data

Cut Center ±Width Cut Center ±Width

mD+s 1.969 ± 0.015 GeV 1.969 ± 0.016 GeV

mBC 2.112 ± 0.007 GeV 2.112 ± 0.008 GeV

δm 0.155 ± 0.013 GeV 0.144 ± 0.008 GeV

∆d0 -0.007 m -0.004 m

∆φ0 0.07 0.12

When the selection criteria outlined in Table 4.8 are applied to Monte Carlo

simulation samples corresponding to 586 pb−1 of integrated luminosity, with the

pion mass hypothesis and the electron mass hypothesis for electron tracks, we

are left with signal and background yields as presented in Table 4.9.
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Table 4.9: Numbers of signal and background events expected in pion and
electron-fitted data in the D+s → ηπ+; η→ γγ decay mode.

Expected Number of Pion-Fitted Samples Electron-Fitted Samples

Events in 586 pb−1 and Criteria and Criteria

Signal (s) 1.57 1.79

Conversion Background - 0.17

Generic Background (without Conversions in e-fit) 0.21 0.10

Continuum Background 0.20 0.20

Total Background (b) 0.41 0.47

s/
√

b 6.3 6.6
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4.7.4 D+s → η′π+; η′ → π+π−η; η→ γγ

The optimization plots for this decay mode may be found in Appendix A.3.

Given that the branching fraction of D+s → η′π+ is 0.038± 0.004 [3, 4], the branch-

ing fraction of η′ → π+π−η is 0.446 ± 0.0014 [19, 4], and the branching fraction of

η→ γγ is 0.3931± 0.0020 [1, 16, 4], we studied the plots in A.21, A.23, A.25, A.27

and A.29 to arrive at the selection criteria for data with electron tracks fitted to

the pion mass hypothesis, and the plots in A.22, A.24, A.26, A.28 and A.30 to

arrive at the selection criteria for data with electron tracks fitted to the electron

mass hypothesis. These are tabulated in Table 4.10

Table 4.10: Selection criteria for data with electron tracks fitted to the
pion and electron mass hypotheses in the D+s → η′π+; η′ →
π+π−η; η→ γγ decay mode.

Selection Criterion Pion-Fitted Data Electron-Fitted Data

Cut Center ±Width Cut Center ±Width

mD+s 1.969 ± 0.011 GeV 1.969 ± 0.008 GeV

mBC 2.112 ± 0.011 GeV 2.112 ± 0.004 GeV

δm 0.155 ± 0.013 GeV 0.144 ± 0.008 GeV

∆d0 -0.003 m -0.004 m

∆φ0 0.07 0.1

When the selection criteria outlined in Table 4.10 are applied to Monte Carlo

simulation samples corresponding to 586 pb−1 of integrated luminosity, with the

pion mass hypothesis and the electron mass hypothesis for electron tracks, we

are left with signal and background yields as presented in Table 4.11.
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Table 4.11: Numbers of signal and background events expected in pion
and electron-fitted data in the D+s → η′π+; η′ → π+π−η; η → γγ

decay mode.

Expected Number of Pion-Fitted Samples Electron-Fitted Samples

Events in 586 pb−1 and Criteria and Criteria

Signal (s) 1.02 0.74

Conversion Background - 0.00

Generic Background (without Conversions in e-fit) 0.47 0.00

Continuum Background 0.00 0.00

Total Background (b) 0.47 0.00

s/
√

b 1.50 ∞
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4.7.5 D+s → K+K−π+π0

The optimization plots for this decay mode may be found in Appendix A.4.

Given that the branching fraction of D+s → K+K−π+π0 is 0.056 ± 0.005 [3, 4], we

study the plots in A.31, A.33, A.35, A.37 and A.39 to arrive at the selection cri-

teria for data with electron tracks fitted to the pion mass hypothesis, and the

plots in A.32, A.34, A.36, A.38 and A.40 to arrive at the selection criteria for data

with electron tracks fitted to the electron mass hypothesis. These are tabulated

in Table 4.12

Table 4.12: Selection criteria for data with electron tracks fitted to the pion
and electron mass hypotheses in the D+s → K+K−π+π0 decay
mode.

Selection Criterion Pion-Fitted Data Electron-Fitted Data

Cut Center ±Width Cut Center ±Width

mD+s 1.969 ± 0.009 GeV 1.969 ± 0.010 GeV

mBC 2.112 ± 0.007 GeV 2.112 ± 0.004 GeV

δm 0.155 ± 0.011 GeV 0.144 ± 0.006 GeV

∆d0 -0.002 m -0.006 m

∆φ0 0.07 0.12

When the selection criteria outlined in Table 4.12 are applied to Monte Carlo

simulation samples corresponding to 586 pb−1 of integrated luminosity, with the

pion mass hypothesis and the electron mass hypothesis for electron tracks, we

are left with signal and background yields as presented in Table 4.13.
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Table 4.13: Numbers of signal and background events expected in pion
and electron-fitted data in the D+s → K+K−π+π0 decay mode.

Expected Number of Pion-Fitted Samples Electron-Fitted Samples

Events in 586 pb−1 and Criteria and Criteria

Signal (s) 4.62 4.86

Conversion Background - 0.63

Generic Background (without Conversions in e-fit) 3.49 1.46

Continuum Background 0.40 0.20

Total Background (b) 3.89 2.29

s/
√

b 2.3 3.2
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4.7.6 D+s → π+π−π+

The optimization plots for this decay mode may be found in Appendix A.5.

Given that the branching fraction of D+s → π+π−π+ is 0.0111±0.0008 [4], we study

the plots in A.41, A.43, A.45, A.47 and A.49 to arrive at the selection criteria for

data with electron tracks fitted to the pion mass hypothesis, and the plots in

A.42, A.44, A.46, A.48 and A.50 to arrive at the selection criteria for data with

electron tracks fitted to the electron mass hypothesis. These are tabulated in

Table 4.14.

Table 4.14: Selection criteria for data with electron tracks fitted to the pion
and electron mass hypotheses in the D+s → π+π−π+ decay mode.

Selection Criterion Pion-Fitted Data Electron-Fitted Data

Cut Center ±Width Cut Center ±Width

mD+s 1.969 ± 0.013 GeV 1.969 ± 0.012 GeV

mBC 2.112 ± 0.005 GeV 2.112 ± 0.004 GeV

δm 0.155 ± 0.009 GeV 0.144 ± 0.006 GeV

∆d0 -0.001 m -0.006 m

∆φ0 0.06 0.1

When the selection criteria outlined in Table 4.14 are applied to Monte Carlo

simulation samples corresponding to 586 pb−1 of integrated luminosity, with the

pion mass hypothesis and the electron mass hypothesis for electron tracks, we

are left with signal and background yields as presented in Table 4.15.
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Table 4.15: Numbers of signal and background events expected in pion
and electron-fitted data in the D+s → π+π−π+ decay mode.

Expected Number of Pion-Fitted Samples Electron-Fitted Samples

Events in 586 pb−1 and Criteria and Criteria

Signal (s) 2.99 3.67

Conversion Background - 0.28

Generic Background (without Conversions in e-fit) 0.73 0.21

Continuum Background 0.60 1.60

Total Background (b) 1.33 2.09

s/
√

b 2.6 2.5
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4.7.7 D+s → K∗+K∗0; K∗+ → K0
Sπ
+,K∗0 → K−π+

The optimization plots for this decay mode may be found in Appendix A.6.

Given that the branching fraction of D+s → K∗+K∗0; K∗+ → K0
Sπ
+,K∗0 → K−π+

is 0.0164 ± 0.0012 [2, 4], we study the plots in A.51, A.53, A.55, A.57 and A.59

to arrive at the selection criteria for data with electron tracks fitted to the pion

mass hypothesis, and the plots in A.52, A.54, A.56, A.58 and A.60 to arrive at

the selection criteria for data with electron tracks fitted to the electron mass

hypothesis. These are tabulated in Table 4.16.

Table 4.16: Selection criteria for data with electron tracks fitted to the pion
and electron mass hypotheses in the D+s → K∗+K∗0 decay mode.

Selection Criterion Pion-Fitted Data Electron-Fitted Data

Cut Center ±Width Cut Center ±Width

mD+s 1.969 ± 0.007 GeV 1.969 ± 0.006 GeV

mBC 2.112 ± 0.007 GeV 2.112 ± 0.005 GeV

δm 0.155 ± 0.009 GeV 0.144 ± 0.008 GeV

∆d0 -0.004 m -0.005 m

∆φ0 0.07 0.13

When the selection criteria outlined in Table 4.16 are applied to Monte Carlo

simulation samples corresponding to 586 pb−1 of integrated luminosity, with the

pion mass hypothesis and the electron mass hypothesis for electron tracks, we

are left with signal and background yields as presented in Table 4.17.
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Table 4.17: Numbers of signal and background events expected in pion
and electron-fitted data in the D+s → K∗+K∗0 decay mode.

Expected Number of Pion-Fitted Samples Electron-Fitted Samples

Events in 586 pb−1 and Criteria and Criteria

Signal (s) 1.78 2.02

Conversion Background - 0.23

Generic Background (without Conversions in e-fit) 1.35 0.63

Continuum Background 0.00 0.20

Total Background (b) 1.35 1.05

s/
√

b 1.5 2.0
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4.7.8 D+s → ηρ+; η→ γγ; ρ+ → π+π0

The optimization plots for this decay mode may be found in Appendix A.7.

Given that the branching fraction of D+s → ηρ+ is 0.130 ± 0.022 [17, 4], and the

branching fraction of η → γγ is 0.3931 ± 0.0020 [1, 16, 4], we study the plots in

A.61, A.63, A.65, A.67 and A.69 to arrive at the selection criteria for data with

electron tracks fitted to the pion mass hypothesis, and the plots in A.62, A.64,

A.66, A.68 and A.70 to arrive at the selection criteria for data with electron tracks

fitted to the electron mass hypothesis. These are tabulated in Table 4.18.

Table 4.18: Selection criteria for data with electron tracks fitted to the pion
and electron mass hypotheses in the D+s → ηρ+; η → γγ; ρ+ →
π+π0 decay mode.

Selection Criterion Pion-Fitted Data Electron-Fitted Data

Cut Center ±Width Cut Center ±Width

mD+s 1.969 ± 0.014 GeV 1.969 ± 0.015 GeV

mBC 2.112 ± 0.006 GeV 2.112 ± 0.004 GeV

δm 0.155 ± 0.009 GeV 0.144 ± 0.005 GeV

∆d0 -0.003 m -0.007 m

∆φ0 0.07 0.13

When the selection criteria outlined in Table 4.18 are applied to Monte Carlo

simulation samples corresponding to 586 pb−1 of integrated luminosity, with the

pion mass hypothesis and the electron mass hypothesis for electron tracks, we

are left with signal and background yields as presented in Table 4.19.
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Table 4.19: Numbers of signal and background events expected in pion
and electron-fitted data in the D+s → ηρ+; η → γγ; ρ+ → π+π0

decay mode.

Expected Number of Pion-Fitted Samples Electron-Fitted Samples

Events in 586 pb−1 and Criteria and Criteria

Signal (s) 5.54 5.71

Conversion Background - 0.85

Generic Background (without Conversions in e-fit) 2.40 0.99

Continuum Background 3.60 1.00

Total Background (b) 6.00 2.84

s/
√

b 2.3 3.4
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4.7.9 D+s → η′π+; η′ → ρ0γ

The optimization plots for this decay mode may be found in Appendix A.8.

Given that the branching fraction of D+s → η′π+ is 0.038 ± 0.004 [3, 4], and the

branching fraction of η′ → ρ0γ is 0.294± 0.009 [19, 4], we study the plots in A.71,

A.73, A.75, A.77 and A.79 to arrive at the selection criteria for data with electron

tracks fitted to the pion mass hypothesis, and we studied the plots in A.72, A.74,

A.76, A.78 and A.80 to arrive at the selection criteria for data with electron tracks

fitted to the electron mass hypothesis. These are tabulated in Table 4.20.

Table 4.20: Selection criteria for data with electron tracks fitted to the pion
and electron mass hypotheses in the D+s → η′π+; η′ → ρ0γ decay
mode.

Selection Criterion Pion-Fitted Data Electron-Fitted Data

Cut Center ±Width Cut Center ±Width

mD+s 1.969 ± 0.018 GeV 1.969 ± 0.012 GeV

mBC 2.112 ± 0.004 GeV 2.112 ± 0.004 GeV

δm 0.155 ± 0.008 GeV 0.144 ± 0.007 GeV

∆d0 -0.004 m -0.006 m

∆φ0 0.09 0.11

When the selection criteria outlined in Table 4.20 are applied to Monte Carlo

simulation samples corresponding to 586 pb−1 of integrated luminosity, with the

pion mass hypothesis and the electron mass hypothesis for electron tracks, we

are left with signal and background yields as presented in Table 4.21.
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Table 4.21: Numbers of signal and background events expected in pion
and electron-fitted data in the D+s → η′π+; η′ → ρ0γ decay mode.

Expected Number of Pion-Fitted Samples Electron-Fitted Samples

Events in 586 pb−1 and Criteria and Criteria

Signal (s) 2.17 2.41

Conversion Background - 0.34

Generic Background (without Conversions in e-fit) 0.83 0.21

Continuum Background 1.60 1.80

Total Background (b) 2.43 2.35

s/
√

b 1.4 1.6
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Figure 4.16: Signal efficiency for reconstructing D∗+s → D+s e+e− in D+s →
K+K−π+ as represented in the mBC distribution.

4.8 Efficiency of Selection Criteria for the Reconstruction of

D∗+s → D+s e+e−

In order to estimate the ratio of branching fractions B(D∗+s → D+s e+e−)/B(D∗+s → D+s γ),

we need to measure the efficiencies of our selection criteria for accepting D∗+s →

D+s e+e− events for each hadronic decay mode of the D+s . This is determined by

applying our selection criteria on the Monte Carlo simulation samples of our

signal in each of the modes. The efficiency is calculated by dividing the num-

ber of events remaining within the signal region of the mBC distribution, having

applied all other criteria, by the number of produced sample events. Such dis-

tributions of the mBC for each mode with marked signal regions are presented

in Fig. 4.16 - 4.24. Measurements of these selection efficiencies are presented in

Table 4.22.
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Table 4.22: Selection efficiencies for reconstructing the D∗+s → D+s e+e− sig-
nal in each of the hadronic decay modes of the D+s that this
analysis deals with.

Mode Signal Selection Efficiency

K+K−π+ 0.0729 ± 0.0019

KS K+ 0.0597 ± 0.0017

ηπ+ 0.0855 ± 0.0021

η′π+; η′ → π+π−η, η→ γγ 0.0530 ± 0.0016

K+K−π+π0 0.0255 ± 0.0011

π+π−π+ 0.0992 ± 0.0022

K∗+K∗0 0.0356 ± 0.0013

ηρ+ 0.0316 ± 0.0013

η′π+; η′ → ρ0γ 0.0638 ± 0.0018
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Figure 4.17: Signal efficiency for reconstructing D∗+s → D+s e+e− in D+s →
KS K+ as represented in the mBC distribution.
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Figure 4.18: Signal efficiency for reconstructing D∗+s → D+s e+e− in D+s → ηπ+

as represented in the mBC distribution.
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Figure 4.19: Signal efficiency for reconstructing D∗+s → D+s e+e− in D+s →
η′π+; η′ → π+π−η; η → γγ as represented in the mBC distribu-
tion.
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Figure 4.20: Signal efficiency for reconstructing D∗+s → D+s e+e− in D+s →
K+K−π+π0 as represented in the mBC distribution.
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Figure 4.21: Signal efficiency for reconstructing D∗+s → D+s e+e− in D+s →
π+π−π+ as represented in the mBC distribution.
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Figure 4.22: Signal efficiency for reconstructing D∗+s → D+s e+e− in D+s →
K∗+K∗0 as represented in the mBC distribution.
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Figure 4.23: Signal efficiency for reconstructing D∗+s → D+s e+e− in D+s →
ηρ+; η→ γγ; ρ+ → π+π0 as represented in the mBC distribution.
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Figure 4.24: Signal efficiency for reconstructing D∗+s → D+s e+e− in D+s →
η′π+; η′ → ρ0γ as represented in the mBC distribution.
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4.9 Estimation of Background in the Signal Region of D∗+s →

D+s e+e−

In this section we estimate the number of background events expected in the sig-

nal region for each of the hadronic decay modes of the D+s . To do this, we study

the sidebands of the signal regions in the mBC and δm distributions of Monte

Carlo simulated backgrounds and data. When we refer to either of the kine-

matic distributions, we imply that all other selection criteria have been applied

before plotting the distribution.

The signal regions in the mBC and δm distributions are kept blinded in data

for this procedure. The regions in the distributions corresponding to values of

the mBC and δm greater than or less than the signal region are called the sideband

regions. The distributions of the mBC and δm in the sideband regions of data are

extrapolated into the signal region using two pre-determined shapes to estimate

the number of background events we expect there. The first shape is obtained

by fitting the distributions of mBC and δm in the simulated background Monte

Carlo. We refer to this as the “MC shape” in the rest of this section. The second

shape is determined by fitting the distributions of mBC and δm in the sideband

regions of data. This is referred to as the “data shape” in the rest of this section.

The backgrounds are estimated for each of the hadronic decay modes of the

D+s . However, there are not enough data and Monte Carlo simulation points at

the end our selection criteria in the distributions for each of the modes to make a

meaningful fit that may be normalized to extract a shape. Therefore, we add the

contributions from each mode to produce a summed distribution of mBC and a

summed distribution of δm. These distributions are used to determine the data
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and MC shapes for the mBC and δm distributions as described in Sections 4.9.1

and 4.9.2 respectively.

The data and MC shapes are then scaled to fit the sideband regions of data

in each of the individual modes, for both the mBC and δm distributions. This

is described, mode by mode, in the following sub-sections between 4.9.3 and

4.9.11. For each mode, we obtain four numbers for the estimated background

from our fits extrapolating into the signal region – one for the data shape in the

mBC distribution, one for the MC shape in the mBC distribution, one for the data

shape in the δm distribution and one for the MC shape in the δm distribution.

The average of the values and statistical uncertainties obtained from the the

data and MC shapes in the mBC distribution is used as the primary estimate

for the background in each mode. The difference between this value and the

average of the data and MC shape numbers for the δm distribution is quoted

as the systematic uncertainty of our method for each mode. These numbers are

summarized in Section 4.9.12.

Having thus obtained a summary of the background numbers expected for

each of the modes, we are in a position to quantify the signal significance that

can be achieved for a predicted number of signal events found in a given mode.

This is described in Section 4.9.13.
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Table 4.23: Maximum likelihood fit parameters for the MC shape in mBC
distribution.

Fit Parameters Value

p0 -3.91135e+02

p1 1.91233e+02

Table 4.24: Maximum likelihood fit parameters for the data shape in mBC
distribution.

Fit Parameters Value

p0 -2.79836e+02

p1 1.38607e+02

4.9.1 Determining the Shape of the mBC Distribution

The distributions of mBC in data and the Monte Carlo simulations are added up

for all modes and presented in Fig. 4.25. The Monte Carlo distribution is fitted

to the function given in Eq. 4.18 between 2.060 GeV and 2.155 GeV. It is depicted

in the figure as a black curve and shall be called the MC shape. The data is also

fitted to the same function, but between the disconnected domains of 2.060 to

2.100 GeV and 2.124 to 2.155 GeV. It is depicted in the figure as a magenta curve

and shall be referred to as the data shape. Each sideband region, it may be

noted, is separated from the signal region by half the width of the signal region.

This is done in order to avoid contaminating the sideband region with signal.

y = (p0 + p1x)
√

2.155 − x/GeV (4.18)

The maximum likelihood fit parameters of the MC shape and data shape are

tabulated in Tables 4.23 4.24, respectively.
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Figure 4.25: Distributions of mBC in Monte Carlo and data. The blue region
is distribution of mBC in Continuum MC. On top of that, in
green, is stacked the Generic MC with Conversion type events
excluded. The Conversion MC is stacked on top of that in
red. The black curve is fitted to the sum of the aforementioned
background distributions. The Signal MC is stacked on top of
the background MC to show roughly what expect to see when
we unblind data. Data points, blinded in the signal region, are
overlaid in magenta. The magenta curve is fitted to the data
in the sideband regions, as described in the text.
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Table 4.25: Maximum likelihood fit parameters for the MC shape in δm dis-
tribution.

Fit Parameters Value

p0 -2.45787e+03

p1 6.02306e+03

p2 -2.39666e+03

p3 1.65951e+03

4.9.2 Determining the Shape of the δm Distribution

As we have done in the case of the mBC distribution, the distributions of δm in

data and the Monte Carlo simulations are added up for all modes and presented

in Fig. 4.26. However, to further increase the sample sizes, the width of the mBC

criterion for each of the modes has been doubled. The Monte Carlo distribution

is fitted to the third order Chebyshev polynomial given in Eq. 4.19 between

0.100 GeV and 0.250 GeV. It is depicted in the figure as a black curve and shall

be called the MC shape. The data is also fitted to the same function, but between

the disconnected domains of 0.1000 to 0.1298 GeV and 0.1578 to 0.2500 GeV.

It is depicted in the figure as a magenta curve and shall be referred to as the

data shape. Each sideband region, it may be noted, is separated from the signal

region by half the width of the signal region.

y = p0 + p1T1 + p2T2 + p3T3 (4.19)

The maximum likelihood fit parameters of the MC shape and data shape are

tabulated in Tables 4.25 4.26, respectively.
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Figure 4.26: Distributions of δm in Monte Carlo and data. The blue re-
gion is distribution of δm in Continuum MC. On top of that, in
green, is stacked the Generic MC with Conversion type events
excluded. The Conversion MC is stacked on top of that in
red. The black curve is fitted to the sum of the aforementioned
background distributions. The Signal MC is stacked on top of
the background MC to show roughly what expect to see when
we unblind data. Data points, blinded in the signal region, are
overlaid in magenta. The magenta curve is fitted to the data
in the sideband regions, as described in the text.

Table 4.26: Maximum likelihood fit parameters for the Data shape in δm dis-
tribution.

Fit Parameters Value

p0 2.38215e+03

p1 -8.89072e+03

p2 2.35325e+03

p3 -2.76871e+03
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4.9.3 Estimating the Background in the D+s → K+K−π+ Mode

Having found the generic MC shape and data shape in the mBC distribution in

Section 4.9.1, we now proceed to scale these shapes to fit data in the sideband

regions of the D+s → K+K−π+ mode. The signal region is centered at 2.112 GeV

with a width of 0.008 GeV. The sideband regions are separated from the signal

region by half the width of the signal region. The sideband regions extend from

2.060 to 2.104 GeV and 2.120 to 2.155 GeV. The maximum likelihood fits are

displayed in Fig. 4.27 and the values for the scale parameters are presented in

Table 4.27.
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Figure 4.27: The various backgrounds and signal MC expected in the
vicinity of the signal region in mBC distribution of the D+s →
K+K−π+ mode. The data, blinded in the signal region, is over-
laid in magenta points. The black and magenta curves are MC
and data shapes scaled by maximum likelihood to the points of
data in the sideband regions.

Also, having found the generic MC and data shapes in the δm distribution

in Section 4.9.2, we can now scale those to fit data in the sideband regions of

δm in the D+s → K+K−π+ mode. The signal region is centered at 0.1438 GeV

with a width of 0.012 GeV. The sideband regions are separated from the signal
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Table 4.27: Maximum likelihood fit parameters to estimate background in
the D+s → K+K−π+ mode

Scale for Shape Value

mBC MC shape 1.03798e-01

δm MC shape 9.35684e-02

mBC data shape 7.75452e-02

δm data shape 6.54773e-02

region by half the width of the signal region. The sideband regions extend from

0.1000 to 0.1318 GeV and 0.1558 to 0.2500 GeV. The maximum likelihood fits are

displayed in Fig. 4.28 and the values for the scale parameters are presented in

Table 4.27.
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Figure 4.28: The various backgrounds and signal MC expected in the
vicinity of the signal region in δm distribution of the D+s →
K+K−π+ mode. The data, blinded in the signal region, is over-
laid in magenta points. The black and magenta curves are MC
and data shapes scaled by maximum likelihood to the points of
data in the sideband regions.

The four different fits give us four estimates of the background in the signal
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Table 4.28: Estimates of the background in the signal region of the D+s →
K+K−π+ mode using four fits outlined above.

Mode mBC δm

MC shape data shape MC shape data shape

K+K−π+ 1.10 ± 0.39 1.00 ± 0.35 2.06 ± 0.49 1.61 ± 0.38

region. These are tabulated in Table 4.28. The uncertainties noted in the table

are statistical and are estimated by assuming Poisson statistics on the number

of data points in the sidebands. It is calculated as given in Eq. 4.20 where b is

the estimated number of background events and Nside is the number of events

observed in the data sidebands.

∆b = b
√

Nside
(4.20)

92



4.9.4 Estimating the Background in the D+s → KS K+ Mode

The signal region in the mBC distribution of this mode is centered at 2.112 GeV

with a width of 0.014 GeV. The sideband regions extend from 2.060 to 2.098 GeV

and 2.126 to 2.155 GeV. The maximum likelihood fits are displayed in Fig. 4.29

and the values for the scale parameters are presented in Table 4.29.

The signal region in the δm distribution is centered at 0.1438 GeV with a

width of 0.012 GeV. The sideband regions extend from 0.1000 to 0.1318 GeV and

0.1558 to 0.2500 GeV. The maximum likelihood fits are displayed in Fig. 4.30

and the values for the scale parameters are presented in Table 4.29.
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Figure 4.29: The various backgrounds and signal MC expected in the
vicinity of the signal region in mBC distribution of the D+s →
KS K+ mode. The data, blinded in the signal region, is over-
laid in magenta points. The black and magenta curves are MC
and data shapes scaled by maximum likelihood to the points of
data in the sideband regions.

The four different fits give us four estimates of the background in the signal

region. These are tabulated in Table 4.30.
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Table 4.29: Maximum likelihood fit parameters to estimate background in
the D+s → KS K+ mode

Scale for Shape Value

mBC MC shape 4.86292e-02

δm MC shape 4.29587e-02

mBC data shape 5.25423e-03

δm data shape 4.28206e-03
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Figure 4.30: The various backgrounds and signal MC expected in the
vicinity of the signal region in δm distribution of the D+s →
KS K+ mode. The data, blinded in the signal region, is over-
laid in magenta points. The black and magenta curves are MC
and data shapes scaled by maximum likelihood to the points of
data in the sideband regions.

Table 4.30: Estimates of the background in the signal region of the D+s →
KS K+ mode using four fits outlined above.

Mode mBC δm

MC shape data shape MC shape data shape

KS K+ 0.90 ± 0.45 0.80 ± 0.40 0.12 ± 0.12 0.10 ± 0.10
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4.9.5 Estimating the Background in the D+s → ηπ+; η→ γγ Mode

The signal region in the mBC distribution of this mode is centered at 2.112 GeV

with a width of 0.016 GeV. The sideband regions extend from 2.060 to 2.096 GeV

and 2.128 to 2.155 GeV. The maximum likelihood fits are displayed in Fig. 4.31

and the values for the scale parameters are presented in Table 4.31.

The signal region in the δm distribution of this mode is centered at 0.1438

GeV with a width of 0.016 GeV. The sideband regions extend from 0.1000 to

0.1278 GeV and 0.1598 to 0.2500 GeV. The maximum likelihood fits are dis-

played in Fig. 4.32 and the values for the scale parameters are presented in

Table 4.31.

 (GeV)BCm
2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Nu
m

be
r o

f E
ve

nt
s 

/ 2
 M

eV

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 (GeV)BCm
2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Nu
m

be
r o

f E
ve

nt
s 

/ 2
 M

eV

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

γ γ → η, η ±π → ±
s Distributions in Mode DBCm

Signal MC: 2 Entries

Continuum MC: 4 Entries

Generic MC: 0 Entries

Continuum MC: 4 Entries

Data: 6 Entries

Figure 4.31: The various backgrounds and signal MC expected in the
vicinity of the signal region in mBC distribution of the D+s →
ηπ+; η → γγ mode. The data, blinded in the signal region, is
overlaid in magenta points. The black and magenta curves
are MC and data shapes scaled by maximum likelihood to the
points of data in the sideband regions.

The four different fits give us four estimates of the background in the signal

region. These are tabulated in Table 4.32.
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Table 4.31: Maximum likelihood fit parameters to estimate background in
the D+s → ηπ+; η→ γγ mode

Scale for Shape Value

mBC MC shape 7.05486e-02

δm MC shape 6.18039e-02

mBC data shape 3.33356e-02

δm data shape 2.68789e-02
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Figure 4.32: The various backgrounds and signal MC expected in the
vicinity of the signal region in δm distribution of the D+s →
ηπ+; η → γγ mode. The data, blinded in the signal region, is
overlaid in magenta points. The black and magenta curves
are MC and data shapes scaled by maximum likelihood to the
points of data in the sideband regions.

Table 4.32: Estimates of the background in the signal region of the D+s →
ηπ+; η→ γγ mode using four fits outlined above.

Mode mBC δm

MC shape data shape MC shape data shape

ηπ+ 1.48 ± 0.74 1.32 ± 0.66 1.02 ± 0.39 0.79 ± 0.30
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4.9.6 Estimating the Background in the D+s → η′π+; η′ →

π+π−η; η→ γγ Mode

The signal region in the mBC distribution of this mode is centered at 2.112 GeV

with a width of 0.022 GeV. The sideband regions extend from 2.060 to 2.090 GeV

and 2.134 to 2.155 GeV. The maximum likelihood fits are displayed in Fig. 4.33

and since no data point fell within our sideband region, no fit could be made.

The signal region in the δm distribution of this mode is centered at 0.1438

GeV with a width of 0.026 GeV. The sideband regions extend from 0.1000 to

0.1178 GeV and 0.1698 to 0.2500 GeV. The maximum likelihood fits are dis-

played in Fig. 4.34.
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Figure 4.33: The various backgrounds and signal MC expected in the
vicinity of the signal region in mBC distribution of the D+s →
η′π+; η′ → π+π−η; η→ γγ mode. The data, blinded in the signal
region, is overlaid in magenta points. The black and magenta
curves are MC and data shapes scaled by maximum likelihood
to the points of data in the sideband regions.

Not much could be estimated of the background expected in the signal re-

gion. This is tabulated in Table 4.33.
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Figure 4.34: The various backgrounds and signal MC expected in the
vicinity of the signal region in δm distribution of the D+s →
η′π+; η′ → π+π−η; η→ γγ mode. The data, blinded in the signal
region, is overlaid in magenta points. The black and magenta
curves are MC and data shapes scaled by maximum likelihood
to the points of data in the sideband regions.

Table 4.33: Estimates of the background in the signal region of the D+s →
η′π+; η′ → π+π−η; η→ γγ mode using four fits outlined above.

Mode mBC δm

MC shape data shape MC shape data shape

η′π+ 0.00 + 0.68 0.00 + 0.59 0.00 + 0.34 0.00 + 0.26
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Table 4.34: Maximum likelihood fit parameters to estimate background in
the D+s → K+K−π+π0 mode

Scale for Shape Value

mBC MC shape 1.68672e-01

δm MC shape 1.52049e-01

mBC data shape 1.10339e-01

δm data shape 8.99227e-02

4.9.7 Estimating the Background in the D+s → K+K−π+π0 Mode

The signal region in the mBC distribution of this mode is centered at 2.112 GeV

with a width of 0.008 GeV. The sideband regions extend from 2.060 to 2.104 GeV

and 2.120 to 2.155 GeV. The maximum likelihood fits are displayed in Fig. 4.35

and the values for the scale parameters are presented in Table 4.34.

The signal region in the δm distribution of this mode is centered at 0.1438

GeV with a width of 0.012 GeV. The sideband regions extend from 0.1000 to

0.1318 GeV and 0.1558 to 0.2500 GeV. The maximum likelihood fits are dis-

played in Fig. 4.36 and the values for the scale parameters are presented in

Table 4.34.

The four different fits give us four estimates of the background in the signal

region. These are tabulated in Table 4.35.

99



 (GeV)BCm
2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Nu
m

be
r o

f E
ve

nt
s 

/ 2
 M

eV

0

0.5

1

1.5

2

2.5

3

 (GeV)BCm
2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Nu
m

be
r o

f E
ve

nt
s 

/ 2
 M

eV

0

0.5

1

1.5

2

2.5

3

0π ±π - K+ K→ ±
s Distributions in Mode DBCm

Signal MC: 6 Entries

Continuum MC: 3 Entries

Generic MC: 19 Entries

Continuum MC: 3 Entries

Data: 21 Entries

Figure 4.35: The various backgrounds and signal MC expected in the
vicinity of the signal region in mBC distribution of the D+s →
K+K−π+π0 mode. The data, blinded in the signal region, is
overlaid in magenta points. The black and magenta curves
are MC and data shapes scaled by maximum likelihood to the
points of data in the sideband regions.

Table 4.35: Estimates of the background in the signal region of the D+s →
K+K−π+π0 mode using four fits outlined above.

Mode mBC δm

MC shape data shape MC shape data shape

K+K−π+π0 1.78 ± 0.49 1.63 ± 0.45 2.54 ± 0.54 1.99 ± 0.43
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Figure 4.36: The various backgrounds and signal MC expected in the
vicinity of the signal region in δm distribution of the D+s →
K+K−π+π0 mode. The data, blinded in the signal region, is
overlaid in magenta points. The black and magenta curves
are MC and data shapes scaled by maximum likelihood to the
points of data in the sideband regions.
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4.9.8 Estimating the Background in the D+s → π+π−π+ Mode

The signal region in the mBC distribution of this mode is centered at 2.112 GeV

with a width of 0.008 GeV. The sideband regions extend from 2.060 to 2.104 GeV

and 2.120 to 2.155 GeV. The maximum likelihood fits are displayed in Fig. 4.37

and the values for the scale parameters are presented in Table 4.36.

The signal region in the δm distribution of this mode is centered at 0.1438

GeV with a width of 0.012 GeV. The sideband regions extend from 0.1000 to

0.1318 GeV and 0.1558 to 0.2500 GeV. The maximum likelihood fits are dis-

played in Fig. 4.38 and the values for the scale parameters are presented in

Table 4.36.
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Figure 4.37: The various backgrounds and signal MC expected in the
vicinity of the signal region in mBC distribution of the D+s →
π+π−π+ mode. The data, blinded in the signal region, is over-
laid in magenta points. The black and magenta curves are MC
and data shapes scaled by maximum likelihood to the points of
data in the sideband regions.

The four different fits give us four estimates of the background in the signal

region. These are tabulated in Table 4.37.
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Table 4.36: Maximum likelihood fit parameters to estimate background in
the D+s → π+π−π+ mode

Scale for Shape Value

mBC MC shape 1.55698e-01

δm MC shape 1.40353e-01

mBC data shape 1.05085e-01

δm data shape 8.56409e-02
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Figure 4.38: The various backgrounds and signal MC expected in the
vicinity of the signal region in δm distribution of the D+s →
π+π−π+ mode. The data, blinded in the signal region, is over-
laid in magenta points. The black and magenta curves are MC
and data shapes scaled by maximum likelihood to the points of
data in the sideband regions.

Table 4.37: Estimates of the background in the signal region of the D+s →
π+π−π+ mode using four fits outlined above.

Mode mBC δm

MC shape data shape MC shape data shape

π+π−π+ 1.64 ± 0.48 1.50 ± 0.43 2.42 ± 0.53 1.90 ± 0.41
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4.9.9 Estimating the Background in the D+s → K∗+K∗0; K∗+ →

K0
Sπ
+; K∗0 → K−π+ Mode

The signal region in the mBC distribution of this mode is centered at 2.112 GeV

with a width of 0.010 GeV. The sideband regions extend from 2.060 to 2.102 GeV

and 2.122 to 2.155 GeV. The maximum likelihood fits are displayed in Fig. 4.39

and the values for the scale parameters are presented in Table 4.38.

The signal region in the δm distribution of this mode is centered at 0.1438

GeV with a width of 0.016 GeV. The sideband regions extend from 0.1000 to

0.1278 GeV and 0.1598 to 0.2500 GeV. The maximum likelihood fits are dis-

played in Fig. 4.40 and the values for the scale parameters are presented in

Table 4.38.
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Figure 4.39: The various backgrounds and signal MC expected in the
vicinity of the signal region in mBC distribution of the D+s →
K∗+K∗0 mode. The data, blinded in the signal region, is over-
laid in magenta points. The black and magenta curves are MC
and data shapes scaled by maximum likelihood to the points of
data in the sideband regions.

The four different fits give us four estimates of the background in the signal
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Table 4.38: Maximum likelihood fit parameters to estimate background in
the D+s → K∗+K∗0 mode

Scale for Shape Value

mBC MC shape 1.25192e-01

δm MC shape 1.12174e-01

mBC data shape 7.22271e-02

δm data shape 5.82375e-02
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Figure 4.40: The various backgrounds and signal MC expected in the
vicinity of the signal region in δm distribution of the D+s →
K∗+K∗0 mode. The data, blinded in the signal region, is over-
laid in magenta points. The black and magenta curves are MC
and data shapes scaled by maximum likelihood to the points of
data in the sideband regions.

region. These are tabulated in Table 4.39.
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Table 4.39: Estimates of the background in the signal region of the D+s →
K∗+K∗0 mode using four fits outlined above.

Mode mBC δm

MC shape data shape MC shape data shape

K∗+K∗0 1.65 ± 0.55 1.50 ± 0.50 2.21 ± 0.61 1.72 ± 0.48
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4.9.10 Estimating the Background in the D+s → ηρ+; η →

γγ; ρ+ → π+π0 Mode

The signal region in the mBC distribution of this mode is centered at 2.112 GeV

with a width of 0.008 GeV. The sideband regions extend from 2.060 to 2.104 GeV

and 2.120 to 2.155 GeV. The maximum likelihood fits are displayed in Fig. 4.41

and the values for the scale parameters are presented in Table 4.40.

The signal region in the δm distribution of this mode is centered at 0.1438

GeV with a width of 0.010 GeV. The sideband regions extend from 0.1000 to

0.1338 GeV and 0.1538 to 0.2500 GeV. The maximum likelihood fits are dis-

played in Fig. 4.42 and the values for the scale parameters are presented in

Table 4.40.
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Figure 4.41: The various backgrounds and signal MC expected in the
vicinity of the signal region in mBC distribution of the D+s →
ηρ+; η → γγ; ρ+ → π+π0 mode. The data, blinded in the signal
region, is overlaid in magenta points. The black and magenta
curves are MC and data shapes scaled by maximum likelihood
to the points of data in the sideband regions.

The four different fits give us four estimates of the background in the signal

107



Table 4.40: Maximum likelihood fit parameters to estimate background in
the D+s → ηρ+; η→ γγ; ρ+ → π+π0 mode

Scale for Shape Value

mBC MC shape 2.59496e-01

δm MC shape 2.33921e-01

mBC data shape 1.65995e-01

δm data shape 1.36454e-01
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Figure 4.42: The various backgrounds and signal MC expected in the
vicinity of the signal region in δm distribution of the D+s →
ηρ+; η → γγ; ρ+ → π+π0 mode. The data, blinded in the signal
region, is overlaid in magenta points. The black and magenta
curves are MC and data shapes scaled by maximum likelihood
to the points of data in the sideband regions.

region. These are tabulated in Table 4.41.
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Table 4.41: Estimates of the background in the signal region of the D+s →
ηρ+; η→ γγ; ρ+ → π+π0 mode using four fits outlined above.

Mode mBC δm

MC shape data shape MC shape data shape

ηρ+ 2.74 ± 0.61 2.50 ± 0.56 3.19 ± 0.54 2.52 ± 0.43
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4.9.11 Estimating the Background in the D+s → η′π+; η′ → ρ0γ

Mode

The signal region in the mBC distribution of this mode is centered at 2.112 GeV

with a width of 0.008 GeV. The sideband regions extend from 2.060 to 2.104 GeV

and 2.12 to 2.155 GeV. The maximum likelihood fits are displayed in Fig. 4.43

and the values for the scale parameters are presented in Table 4.42.

The signal region in the δm distribution of this mode is centered at 0.1438

GeV with a width of 0.014 GeV. The sideband regions extend from 0.1000 to

0.1298 GeV and 0.1578 to 0.2500 GeV. The maximum likelihood fits are dis-

played in Fig. 4.44 and the values for the scale parameters are presented in

Table 4.42.
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Figure 4.43: The various backgrounds and signal MC expected in the
vicinity of the signal region in mBC distribution of the D+s →
η′π+; η′ → ρ0γ mode. The data, blinded in the signal region,
is overlaid in magenta points. The black and magenta curves
are MC and data shapes scaled by maximum likelihood to the
points of data in the sideband regions.

The four different fits give us four estimates of the background in the signal

110



Table 4.42: Maximum likelihood fit parameters to estimate background in
the D+s → η′π+; η′ → ρ0γ mode

Scale for Shape Value

mBC MC shape 1.81647e-01

δm MC shape 1.63745e-01

mBC data shape 6.66708e-02

δm data shape 5.37577e-02
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Figure 4.44: The various backgrounds and signal MC expected in the
vicinity of the signal region in δm distribution of the D+s →
η′π+; η′ → ρ0γ mode. The data, blinded in the signal region,
is overlaid in magenta points. The black and magenta curves
are MC and data shapes scaled by maximum likelihood to the
points of data in the sideband regions.

region. These are tabulated in Table 4.43.
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Table 4.43: Estimates of the background in the signal region of the D+s →
η′π+; η′ → ρ0γ mode using four fits outlined above.

Mode mBC δm

MC shape data shape MC shape data shape

η′π+ 1.92 ± 0.51 1.75 ± 0.47 1.79 ± 0.52 1.39 ± 0.40
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4.9.12 Summary of Estimated Background in the Various

Modes

Given that we determined the shape of the mBC distribution in Section 4.9.1 with-

out loosening other cuts, that the distribution itself is less peaked, and that the

difference between the predictions of the MC shape and data shape is lower

than in the δm distribution, we choose to use the predictions of this distribution

as the primary estimate of the backgrounds in each mode.

For each mode, we quote the mean of the MC shape and data shape predic-

tions in the mBC distribution as the estimate of the background we expect in the

signal region for that mode. The statistical errors from these two predictions

are averaged to obtain the statistical error for this estimate. The absolute value

of the difference between this estimate and the mean of the predictions from

the two shapes in the δm distribution is quoted as the systematic error. This is

tabulated for each mode in Table 4.44

4.9.13 Predicted Signal Significances

It is clear from our optimization and background estimation studies that we do

not expect equally significant results from each of the hadronic decay modes

we are studying. For instance, it is clear that the D+s → K+K−π+ decay mode will

contribute more significantly than any other mode due to the marked excess

of expected signal yield over the estimated background in its signal region. It

therefore behooves us to establish a clear measure of signal significance over es-

timated background, calculate what signal significance we expect in each mode
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Table 4.44: Summary of the estimates for the background in the signal re-
gion for all the modes we have studied.

Mode mBC δm
Background ± (Stat) ± (Syst)

MC Shape Data Shape MC Shape Data Shape

K+K−π+ 1.10 ± 0.39 1.00 ± 0.35 2.06 ± 0.49 1.61 ± 0.38 1.05 ± 0.37 ± 0.79

KS K+ 0.90 ± 0.45 0.80 ± 0.40 0.12 ± 0.12 0.10 ± 0.10 0.85 ± 0.43 ± 0.74

ηπ+ 1.48 ± 0.74 1.32 ± 0.66 1.02 ± 0.39 0.79 ± 0.30 1.40 ± 0.70 ± 0.49

η′π+; η′ → π+π−η 0.00 + 0.68 0.00 + 0.59 0.00 + 0.34 0.00 + 0.26 0.00 + 0.63 + 0.00

K+K−π+π0 1.78 ± 0.49 1.63 ± 0.45 2.54 ± 0.54 1.99 ± 0.43 1.70 ± 0.47 ± 0.56

π+π−π+ 1.64 ± 0.48 1.50 ± 0.43 2.42 ± 0.53 1.90 ± 0.41 1.57 ± 0.45 ± 0.59

K∗+K∗0 1.65 ± 0.55 1.50 ± 0.50 2.21 ± 0.61 1.72 ± 0.48 1.58 ± 0.53 ± 0.40

ηρ+ 2.74 ± 0.61 2.50 ± 0.56 3.19 ± 0.54 2.52 ± 0.43 2.62 ± 0.59 ± 0.23

η′π+; η′ → ρ0γ 1.92 ± 0.51 1.75 ± 0.47 1.79 ± 0.52 1.39 ± 0.40 1.84 ± 0.49 ± 0.25

based on a Monte Carlo estimate of the signal and the background we’ve esti-

mated from data in section 4.9.12, and converge on a group of modes to unblind

together in order to achieve the most significant result.

In order to establish a measure of our signal significance, we assume that

the uncertainty in our estimated background is shaped as a Gaussian with a

standard deviation equal to the quadrature sum of the statistical and systematic

uncertainties in the estimated background. Then we calculate the Poisson prob-

ability of such a background fluctuating to higher than the number of events

we find in the signal region on unblinding. In effect, we convolute a Gaussian

smeared background with a Poisson distribution to model the probability of it

fluctuating to the yield we see in data. So, if we call the background estimate b

with a standard deviation of σ, and unblind our data to discover n events in the

signal region, we may estimate the probability for it to be a fluctuation of the

background as P given in Eq. 4.21. We may express this probability, P, in terms
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of the number of standard deviations in a Gaussian that one must go out to in

order to exclude a region of such probability, and we will use this number as a

measure of signal significance.

P(b, σ, n) =
∑i=∞

i=n
∫ x=∞

x=0
xi

i! e−[x+ 1
2 ( x−b

σ )2]dx
∫ x=∞

x=0 e− 1
2 ( x−b

σ
)2

dx
(4.21)

The signal significance projected for each individual hadronic decay mode of

the D+s is tabulated in Table 4.45. The uncertainty on the estimated background is

the quadrature sum of the statistical and systematic uncertainties. The projected

signal is estimated by Monte Carlo simulation. As expected, the D+s → K+K−π+

mode is projected to give us the highest signal significance among individual

modes of 5.40. However, we notice that summing all modes can give us a sig-

nificance of 6.39, which is higher than any of the individual mode. Therefore,

we choose to unblind data in all the modes in order to attain the highest signal

significance if we make an observation.
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Table 4.45: The projected signal significance expected for each individual
hadronic decay mode of the D+s , as well as modes combined.

Hadronic Decay Mode Estimated Background Projected Signal Signal Significance

K+K−π+ 1.05 ± 0.37 ± 0.79 13.65 5.40

KS K+ 0.85 ± 0.43 ± 0.74 3.02 1.95

ηπ+ 1.40 ± 0.70 ± 0.49 1.81 1.25

η′π+; η′ → π+π−η 0.00 + 0.63 + 0.00 1.20 0.98

K+K−π+π0 1.70 ± 0.47 ± 0.56 4.85 2.71

π+π−π+ 1.57 ± 0.45 ± 0.59 3.75 2.03

K∗+K∗0 1.58 ± 0.53 ± 0.40 1.99 1.65

ηρ+; η→ γγ 2.62 ± 0.59 ± 0.23 5.49 2.59

η′π+; η′ → ρ0γ 1.84 ± 0.49 ± 0.25 2.42 1.52

Combination of All Modes 12.60 ± 2.50 ± 1.08 38.18 6.39
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4.10 Signal Yields and Selection Efficiencies for D∗+s → D+s γ

In this section, we measure the selection efficiencies and yields for D∗+s → D+s γ

where the D+s decays through the 9 hadronic decays modes we have focused on

for this analysis. For all modes, we begin by generating a Monte Carlo sample of

D∗+s → D+s γ where the D+s is forced to decay through the mode we are investigat-

ing while the D−s is allowed to decay generically. Selection criteria very similar

to those used for the corresponding D∗+s → D+s e+e− analysis are used, though

with a wider δm selection criterion. The reason for this can be seen from the δm

distribution of the K+K−π+ channel as shown in Fig. 4.45. The low-end tail im-

plies that a loss in the reconstructed energy of photons is expected. This may not

be well modeled in Monte Carlo simulations, and to avoid possible discrepan-

cies between simulations and data in that region, a larger region containing the

peak is selected. Next, we study the mBC distribution of various backgrounds

where the D∗+s is incorrectly reconstructed using the D−s . These backgrounds are

accounted for in data before calculating the signal yield for each mode, as sum-

marized in Table 4.46 along with the signal selection efficiencies. A similar sum-

mary for the generic MC is presented in Table 4.47. Discrepancies between the

recovered branching fractions and the value for it programmed into the Generic

Monte Carlo simulation result from inconsistencies between the decay models

of the D+s in the Generic Monte Carlo and our signal Monte Carlo simulations.

The manner in which we measure our signal selection efficiency and evaluate

the various backgrounds before we estimate the signal yield is described in de-

tail for the K+K−π+ mode.

117



Table 4.46: Signal yields and efficiencies for D∗+s → D+s γ from all the modes
of decay of the D+s relevant for our measurement of the ratio
B(D∗+s → D+s e+e−)/B(D∗+s → D+s γ). B(D+s → i) is the known
branching fraction for D+s to decay via the ith hadronic mode
we are studying. ε i

Dsγ
is the efficiency of our selection criteria

for the mode. N i
Dsγ

is the signal yield observed for this mode.

i (Decay Mode of D+s ) B(D+s → i) ε i
Dsγ

N i
Dsγ
± (stat) ± (syst)

K+K−π+ 0.055 ± 0.0028 0.339 ± 0.002 9114 ± 110 ± 201

KS K+ 0.0149 ± 0.0009 0.2573 ± 0.0004 1902 ± 57 ± 45

D+s → ηπ+; η→ γγ 0.00621 ± 0.00083 0.3310 ± 0.0015 1037 ± 46 ± 37

D+s → η′π+; η′ → π+π−η; η→ γγ 0.00666 ± 0.00070 0.2101 ± 0.0013 691 ± 34 ± 40

D+s → K+K−π+π0 0.056 ± 0.005 0.1225 ± 0.0010 3592 ± 118 ± 72

D+s → π+π−π+ 0.0111 ± 0.0008 0.4583 ± 0.0018 2745 ± 93 ± 52

D+s → K∗+K∗0 0.0164 ± 0.0012 0.1913 ± 0.0012 1570 ± 74 ± 13

D+s → ηρ+; η→ γγ; ρ+ → π+π0 0.0348 ± 0.0031 0.1839 ± 0.0013 3170 ± 161 ± 313

D+s → η′π+; η′ → ρ0γ 0.0112 ± 0.0012 0.3171 ± 0.0015 1531 ± 80 ± 122
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Table 4.47: Signal yields and efficiencies for D∗+s → D+s γ from all the modes
of decay of the D+s relevant for our measurement of the ra-
tio B(D∗+s → D+s e+e−)/B(D∗+s → D+s γ) in Generic Monte Carlo.
B(D+s → i) is the known branching fraction for D+s to decay via
the ith hadronic mode we are studying. ε i

Dsγ
is the efficiency of

our selection criteria for the mode. N i
Dsγ

is the signal yield ob-
served for this mode. B(D∗+s → D+s γ) is the branching fraction
for D∗+s → D+s e+e− inferred from this mode. Error [1] on the
inferred branching fraction is the statistical error from the fi-
nal fit. Error [2] encapsulates the systematic uncertainties from
the signal efficiency and the uncertainty in the number of pro-
duced generic MC events as described in Section 4.4.1.

i (Mode) B(D+s → i) ε i
Dsγ

N i
Dsγ

B(D∗+s → D+s γ)

K+K−π+ 0.0537 0.339 ± 0.002 9364 ± 40 0.9259 ± 0.0040[1] ± 0.0043[2]

KS K+ 0.01465 0.25727 ± 0.00043 2006 ± 17 0.9581 ± 0.0083[1] ± 0.0018[2]

D+s → ηπ+; η→ γγ 0.0061 0.3310 ± 0.0015 998 ± 27 0.8933 ± 0.0240[1] ± 0.0043[2]

D+s → η′π+; η′ → π+π−η; η→ γγ 0.00633 0.2101 ± 0.0013 690 ± 11 0.9341 ± 0.0149[1] ± 0.0058[2]

D+s → K+K−π+π0 0.0525 0.1225 ± 0.0010 3178 ± 49 0.8894 ± 0.0138[1] ± 0.0073[2]

D+s → π+π−π+ 0.0103 0.4583 ± 0.0018 2706 ± 43 1.0327 ± 0.0162[1] ± 0.0041[2]

D+s → K∗+K∗0 0.01628 0.1913 ± 0.0012 1644 ± 22 0.9502 ± 0.0129[1] ± 0.0058[2]

D+s → ηρ+; η→ γγ; ρ+ → π+π0 0.0298 0.1839 ± 0.0013 2993 ± 87 0.9829 ± 0.0284[1] ± 0.0070[2]

D+s → η′π+; η′ → ρ0γ 0.0111 0.3171 ± 0.0015 1930 ± 45 0.9886 ± 0.0231[1] ± 0.0049[2]
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Table 4.48: Selection criteria for D∗+s → D+s γ events where D+s → K+K−π+.
The δm cut has been widened to accommodate the wider peak
for the signal in this distribution.

Selection Criterion Cut Center ±Width

mD+s 1.969 ± 0.011 GeV

δm 0.140 ± 0.02 GeV

γ Shower Energy 10 MeV to 2.0 GeV

γ Hot Crystals None

Tracks Matched to γ None

γ E9/E25 Unfolded 99 percentile

4.10.1 D+s → K+K−π+

We begin with a Monte Carlo signal sample of D∗+s → D+s γ events where D+s

decays to K+K−π+ and the D−s is allowed to decay generically. The selection

criteria applied are tabulated in Table 4.48. Instead of the cuts on ∆d0 and ∆φ0,

which are applicable to the soft e+e− pair, we have some selection criteria on

the γ that is kept common across all modes of decay of the D+s and shall not be

repeated in subsequent tables of this section. A plot of the δm distribution is

presented in Fig. 4.45.

To obtain the selection efficiency using the condition on mBC as our last se-

lection criterion, we produce a plot of the mBC distribution of the signal sample,

having applied all other criteria, as shown in Fig. 4.46. For a handle on the

shape of the peak in this plot, we produce one more plot – that of mBC where the

D+s and the photon are matched to their generated counterparts in the Monte

Carlo simulation. This plot, shown in Fig. 4.47, is fitted to a Crystal Ball func-

tion of the form given in Eq. 4.22 that has the power law shoulder on the higher
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Figure 4.45: Distribution of δm in the signal Monte Carlo sample of D∗+s →
D+s γ events where D+s → K+K−π+. The plot is normalized so as
to directly read out the efficiency of the δm selection criterion.

side of the central peak and also contains a wide Gaussian on this shoulder. The

shape of this peak is attenuated by a scaling factor and added to a background

shape modeled by Eq. 4.23 to fit the mBC distribution of the signal Monte Carlo

between 2.08 and 2.15 GeV as shown in 4.46. The signal efficiency of our selec-

tion criteria is read off from this plot as the integral of the fit to the data within

the marked region minus the background curve within that region.

f (x; x̄0, σ0, α, n,N0, x̄1, σ1,N1) = N1 exp
(

− (x − x̄1)2

2σ2
1

)

+ N0 ·























A ·
(

B + x−x̄0
σ0

)−n
, for α <

x−x̄0
σ0

exp
(

− (x−x̄0)2

2σ2
0

)

, for x−x̄0
σ0
≤ α










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
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(4.22)

where

A =
(n
α

)n
exp

(

−α
2

2

)

,

B = n
α
− α
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Figure 4.46: Distribution of mBC in the signal Monte Carlo sample of D∗+s →
D+s γ events where D+s → K+K−π+. The plot is normalized so as
to directly read out the efficiency of the mBC selection criterion.

f (x; x0, p,C0,C1,C2,C3) = (C0 + C1x + C2x2
+ C3x3)(x − x0)p, 0 < p < 1 (4.23)

The mBC distribution in data contains more features than just a signal peak.

A structured background emerges from events where our selection criteria re-

constructs the D∗+s incorrectly using the D−s and the γ. The D−s would then have

been reconstructed from its decay to K+K−π−. A Monte Carlo sample where the

D∗+s decays to D+s γ but only the D−s is forced to decay to K+K−π− is generated

to help us model this background in data. For reasons that will soon become

clear, this background is decomposed into two components. The first includes

cases where the D−s and the photon are matched to their generated counterparts

in Monte Carlo. The mBC distribution of these events is shown in Fig. 4.48. The

second component includes cases where the D−s has been matched but the pho-

ton failed to match the photon from the D∗+s decay at the generator level of the
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Figure 4.47: Distribution of mBC in the signal Monte Carlo sample of D∗+s →
D+s γ events where D+s → K+K−π+.

Monte Carlo simulation. These events have mBC distributed as shown in Fig.

4.49. These two components are cleft apart and fitted separately in data because

there is no reason for such combinatorial backgrounds to maintain the same

ratio to one another as modeled in our privately produced Monte Carlo.

Fig. 4.48 is fitted to a function that contains a Crystal Ball shape with the

power law on the high side, a wide Gaussian on the high side, and another

Gaussian on the lower side of the center of the Crystal Ball as described by Eq.

4.24. The fit is restricted to 2.08 GeV < mBC < 2.15 GeV.

f (x; x̄0, σ0, α, n,N0, x̄1, σ1,N1, x̄2, σ2,N2) = N1 exp
(
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1

)

+ N0 ·
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
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Figure 4.48: Combinatorial background structured in the mBC distribution
consisting of events where the D∗+s has been reconstructed out
of the D−s and the γ, and where both the D−s and the γ have
been matched to their generated counterparts in the Monte
Carlo simulation. This distribution has been fitted to a shape
described by Eq. 4.24.

+ N2 exp
(

− (x − x̄2)2

2σ2
2

)

(4.24)

where

A =
(n
α

)n
exp

(

−α
2

2

)

,

B = n
α
− α

Fig. 4.49 is fitted to a function that contains a Crystal Ball centered around

the higher edge of the trapezoidal shape with the power law on the higher side

of the Gaussian, and continued analytically on the lower side with a straight

line as described by Eq. 4.25. The fit is restricted to 2.08GeV < mBC < 2.15GeV
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Figure 4.49: Combinatorial background structured in the mBC distribution
consisting of events where the D∗+s has been reconstructed out
of the D−s and the γ, and the D−s has been matched to its gener-
ated counterpart but the γ has failed to match the photon from
the D∗+s decay at the generator level of the Monte Carlo simu-
lation. This distribution has been fitted to a shape described
by Eq. 4.25.
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Having established the shapes of the signal and various backgrounds, we

first study the mBC distribution of the Generic Monte Carlo sample to see how

well our fits fare in reproducing the branching fraction for B(D∗+s → D+s γ) that

had been programmed into the simulation. The plot of mBC and the fits of the

signal and various backgrounds to it are presented in Fig. 4.50. The lowest

curve is a function of the form given in Eq. 4.23 that models the continuum and

featureless combinatorial backgrounds. The curve above that is a scaled version

of the shape fitted to the plot in Fig. 4.48. Above that is a scaled version of

the shape fitted to the plot in Fig. 4.49. On top of these backgrounds lies the

signal peak, which is a scaled version of the shape fitted to Fig. 4.47. The fit is

restricted to the range 2.08 GeV < mBC < 2.15 GeV. The signal yield is measured

by the integral of the highest curve that includes the signal peak minus the in-

tegral of all the backgrounds between 2.08 and 2.15 GeV. This may be combined

with the efficiency of our selection criteria ε i
Dsγ

, the integrated luminosity of data

being used L, the cross section for producing D∗±s D∓s (values given in Section 4.4)

and the value for B(D+s → K+K−π+) programmed into the simulation to give us

an estimate for B(D∗+s → D+s γ) as tabulated in Table 4.49. We find the thus esti-

mated value for B(D∗+s → D+s γ) equal to 0.9259 ± 0.0058 to be 2.8σ away from the

programmed value of 0.942 in the Monte Carlo simulation.

We present the distribution of mBC in data in Fig. 4.51. It is fitted to the sig-

nal and background shapes as described in the previous paragraph. The ratio

of amplitudes for the signal peak shape to the shape for the incorrectly recon-

structed D∗+s with the photon strictly unmatched (second curve from the top) is

carried over as a constant from the fit to the generic MC. A systematic uncer-

tainty is evaluated by repeating this fit without such constraints on the ratio.

The signal yield is measured by subtracting the integral of all the backgrounds
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Figure 4.50: Distribution of mBC of D∗+s → D+s γ events where D+s → K+K−π+
in 586 pb−1 of Generic Monte Carlo.

Table 4.49: ε i
Dsγ

is the efficiency of our selection criteria for the mode. N i
Dsγ

is the signal yield observed in generic Monte Carlo for this
mode. B(D∗+s → D+s γ) is the branching fraction for D∗+s →
D+s e+e− inferred from this mode. Error [1] on the inferred
branching fraction is the statistical error from the final fit. Error
[2] encapsulates the systematic uncertainties from the signal ef-
ficiency and the uncertainty in the number of produced generic
MC events.

i (Decay Mode of D+s ) B(D+s → i) ε i
Dsγ

N i
Dsγ

B(D∗+s → D+s γ) Inferred

K+K−π+ 0.0537 0.339 ± 0.002 9364 ± 40 0.9259 ± 0.0040[1] ± 0.0043[2]

from the integral of the total fit between 2.08 and 2.15 GeV, as described earlier.

We do not present any calculation of the branching fraction B(D∗+s → D+s γ) as we

have no measure of the systematic uncertainty arising from the reconstruction

of the D+s . We expect this systematic uncertainty to cancel in our final calculation

of the ratio of branching fractions B(D∗+s → D+s e+e−)/B(D∗+s → D+s γ). Arriving at a

result for this ratio will only require us to report the signal yields and efficiencies

for D∗+s → D+s γ for each of the decay modes of the D+s .
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Figure 4.51: Distribution of mBC of D∗+s → D+s γ events where D+s → K+K−π+
in 586 pb−1 of data.

Table 4.50: ε i
Dsγ

is the efficiency of our selection criteria for the mode. N i
Dsγ

is the signal yield in data observed for this mode.

i (Decay Mode of D+s ) B(D+s → i) ε i
Dsγ

N i
Dsγ
± (stat) ± (syst)

K+K−π+ 0.055 ± 0.0028 0.339 ± 0.002 9114 ± 110 ± 201
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Table 4.51: Selection criteria for D∗+s → D+s γ events where D+s → KS K+. The
δm cut has been widened to accomodate the wider peak for the
signal in this distribution.

Selection Criterion Cut Center ±Width

mD+s 1.969 ± 0.008 GeV

δm 0.140 ± 0.02 GeV

4.10.2 D+s → KS K+

We begin with a Monte Carlo signal sample of D∗+s → D+s γ events where D+s →

KS K+ and the D−s is allowed to decay generically. The selection criteria applied

are tabulated in Table 4.51. Fig. 4.52 depicts the δm distribution of this signal

sample and the region selected by our criterion.

m (GeV)δ 
0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Ef
fic

ie
nc

y 
/ M

eV

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

± K0
S K→ ±

s, Dγ±
s D→

±*
sm Distribution in Signal Sample of Dδ

h_DeltaM_conver
Entries  1228275
Mean   0.1306
RMS    0.03036

± K0
S K→ ±

s, Dγ±
s D→

±*
sm Distribution in Signal Sample of Dδ

Figure 4.52: Distribution of δm in the signal Monte Carlo sample of D∗+s →
D+s γ events where D+s → KS K+. The plot is normalized so as to
directly read out the efficiency of the δm selection criterion.

To obtain the selection efficiency using the condition on mBC as our last se-

lection criterion, we produce a plot of the mBC distribution of the signal sample,
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having applied all other criteria, as shown in Fig. 4.53. We extract the shape

of the peak from the plot of mBC where the D+s and the photon are matched to

their generated counterparts in the Monte Carlo simulation as shown in Fig.

4.54. The equations that parameterize all fits and the range they are fitted in are

identical to those used in the K+K−π+ mode.
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Figure 4.53: Distribution of mBC in the signal Monte Carlo sample of D∗+s →
D+s γ events where D+s → KS K+. The plot is normalized so as to
directly read out the efficiency of the mBC selection criterion.

Structured backgrounds arising from incorrectly reconstructed D∗+s are sim-

ulated as done previously for the K+K−π+ mode. Fig. 4.55 shows the structure

of the D−s matched and photon matched background, and our fit to parameter-

ize this shape. The background with the D−s matched and a photon that failed

matching is shown in Fig. 4.56 along with our fit to parameterize the shape.

As a check on how well our background and signal estimation performs, we

present the overall fit to generic MC, as described for the K+K−π+ mode, in Fig.

4.57. Our measurement of the signal selection efficiency and the signal yield
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Figure 4.54: Distribution of mBC in the signal Monte Carlo sample of D∗+s →
D+s γ events where D+s → KS K+.

Table 4.52: ε i
Dsγ

is the efficiency of our selection criteria for the mode. N i
Dsγ

is the signal yield in generic Monte Carlo observed for this
mode. B(D∗+s → D+s γ) is the branching fraction for D∗+s →
D+s e+e− inferred from this mode. Error [1] on the inferred
branching fraction is the statistical error from the final fit. Error
[2] encapsulates the systematic uncertainties from the signal ef-
ficiency and the uncertainty in the number of produced generic
MC events.

i (Decay Mode of D+s ) B(D+s → i) ε i
Dsγ

N i
Dsγ

B(D∗+s → D+s γ) Inferred

KS K+ 0.01465 0.25727 ± 0.00043 2006 ± 17 0.9581 ± 0.0083[1] ± 0.0018[2]

is presented in Table 4.52. We find the thus estimated value for B(D∗+s → D+s γ)

equal to 0.9616 ± 0.0085 to be 2.3σ away from the programmed value of 0.942 in

the Monte Carlo simulation.

We present the distribution of mBC in data and our fits to estimate the signal

yield over the backgrounds, as described for the K+K−π+ mode, in Fig. 4.51. Our

measurements of the signal efficiency and signal yield are presented in Table
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Figure 4.55: Combinatorial background in the mBC distribution consisting
of events where the D∗+s has been reconstructed out of the D−s
and the γ, and where both the D−s and the γ have been matched
to their generated counterparts in the Monte Carlo simulation.
This distribution has been fitted to a shape described by Eq.
4.24.

Table 4.53: ε i
Dsγ

is the efficiency of our selection criteria for the mode. N i
Dsγ

is the signal yield in data observed for this mode.

i (Decay Mode of D+s ) B(D+s → i) ε i
Dsγ

N i
Dsγ

KS K+ 0.0149 ± 0.0009 0.2573 ± 0.0004 1902 ± 57 ± 45

4.53.
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Figure 4.56: Combinatorial background structured in the mBC distribution
consisting of events where the D∗+s has been reconstructed out
of the D−s and the γ, and the D−s has been matched to its gener-
ated counterpart but the γ has failed to match the photon from
the D∗+s decay at the generator level of the Monte Carlo simu-
lation. This distribution has been fitted to a shape described
by Eq. 4.25.
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586 pb−1 of Generic Monte Carlo.
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Table 4.54: Selection criteria for D∗+s → D+s γ events where D+s → ηπ+; η →
γγ. The δm cut has been widened to accomodate the wider peak
for the signal in this distribution.

Selection Criterion Cut Center ±Width

mD+s 1.969 ± 0.016 GeV

δm 0.140 ± 0.02 GeV

4.10.3 D+s → ηπ+; η→ γγ

We begin with a Monte Carlo signal sample of D∗+s → D+s γ events where D+s →

ηπ+; η → γγ and the D−s is allowed to decay generically. The selection criteria

applied are tabulated in Table 4.54. Fig. 4.59 depicts the δm distribution of this

signal sample and the region selected by our criterion.
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Figure 4.59: Distribution of δm in the signal Monte Carlo sample of D∗+s →
D+s γ events where D+s → ηπ+; η → γγ. The plot is normalized
so as to directly read out the efficiency of the δm selection cri-
terion.

To obtain the selection efficiency using the condition on mBC as our last se-
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lection criterion, we produce a plot of the mBC distribution of the signal sample,

having applied all other criteria, as shown in Fig. 4.60. We extract the shape

of the peak from the plot of mBC where the D+s and the photon are matched to

their generated counterparts in the Monte Carlo simulation as shown in Fig.

4.61. The equations that parameterize all fits and the range they are fitted in are

identical to those used in the K+K−π+ mode.
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Figure 4.60: Distribution of mBC in the signal Monte Carlo sample of D∗+s →
D+s γ events where D+s → ηπ+; η → γγ. The plot is normalized
so as to directly read out the efficiency of the mBC selection
criterion from the area under the fit within the signal region.

Structured backgrounds arising from incorrectly reconstructed D∗+s are sim-

ulated as done previously for the K+K−π+ mode. Fig. 4.62 shows the structure

of the D−s matched and photon matched background, and our fit to parameter-

ize this shape. The background with the D−s matched and a photon that failed

matching is shown in Fig. 4.63 along with our fit to parameterize the shape.

As a check on how well our background and signal estimation performs, we

present the overall fit to generic MC, as described for the K+K−π+ mode, in Fig.
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Figure 4.61: Distribution of mBC in the signal Monte Carlo sample of D∗+s →
D+s γ events where D+s → ηπ+; η→ γγ.

Table 4.55: ε i
Dsγ

is the efficiency of our selection criteria for the mode. N i
Dsγ

is the signal yield in generic Monte Carlo observed for this
mode. B(D∗+s → D+s γ) is the branching fraction for D∗+s →
D+s e+e− inferred from this mode. Error [1] on the inferred
branching fraction is the statistical error from the final fit. Er-
ror [2] encapsulates the systematic uncertainties from the signal
efficiency, the integrated luminosity and the production cross
section for D∗±s D∓s .

i (Decay Mode of D+s ) B(D+s → i) ε i
Dsγ

N i
Dsγ

B(D∗+s → D+s γ) Inferred

D+s → ηπ+; η→ γγ 0.0061 0.3310 ± 0.0015 998 ± 27 0.8933 ± 0.0240[1] ± 0.0043[2]

4.64. Our measurement of the signal selection efficiency and the signal yield

is presented in Table 4.55. We find the thus estimated value for B(D∗+s → D+s γ)

equal to 0.893 ± 0.024 to be 2σ away from the programmed value of 0.942 in the

Monte Carlo simulation.

We present the distribution of mBC in data and our fits to estimate the signal

yield over the backgrounds, as described for the K+K−π+ mode, in Fig. 4.65. Our
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Figure 4.62: Combinatorial background in the mBC distribution consisting
of events where the D∗+s has been reconstructed out of the D−s
and the γ, and where both the D−s and the γ have been matched
to their generated counterparts in the Monte Carlo simulation.
This distribution has been fitted to a shape described by Eq.
4.24.

measurements of the signal efficiency and signal yield are presented in Table

4.56.
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Figure 4.63: Combinatorial background structured in the mBC distribution
consisting of events where the D∗+s has been reconstructed out
of the D−s and the γ, and the D−s has been matched to its gener-
ated counterpart but the γ has failed to match the photon from
the D∗+s decay at the generator level of the Monte Carlo simu-
lation. This distribution has been fitted to a shape described
by Eq. 4.25.
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Figure 4.64: Distribution of mBC of D∗+s → D+s γ events where D+s → ηπ+; η→
γγ in 586 pb−1 of Generic Monte Carlo.
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Figure 4.65: Distribution of mBC of D∗+s → D+s γ events where D+s → ηπ+; η→
γγ in 586 pb−1 of data.

Table 4.56: ε i
Dsγ

is the efficiency of our selection criteria for the mode. N i
Dsγ

is the signal yield observed in data for this mode. B(D∗+s → D+s γ)
is the branching fraction for D∗+s → D+s e+e− inferred from this
mode. Error [1] on the inferred branching fraction is the statis-
tical error from the final fit. Error [2] arises from the uncertainty
in the branching fraction for D+s → i. Error [3] encapsulates
the systematic uncertainties from the signal efficiency, the inte-
grated luminosity and the production cross section for D∗±s D∓s .
Error [4] encapsulates the systematic error arising from the fit.

i (Decay Mode of D+s ) B(D+s → i) ε i
Dsγ

N i
Dsγ

D+s → ηπ+; η→ γγ 0.00621 ± 0.00083 0.3310 ± 0.0015 1037 ± 46 ± 37
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Table 4.57: Selection criteria for D∗+s → D+s γ events where D+s → η′π+; η′ →
π+π−η; η→ γγ. The δm cut has been widened to accomodate the
wider peak for the signal in this distribution.

Selection Criterion Cut Center ±Width

mD+s 1.969 ± 0.011 GeV

δm 0.140 ± 0.020 GeV

4.10.4 D+s → η′π+; η′ → π+π−η; η→ γγ

We begin with a Monte Carlo signal sample of D∗+s → D+s γ events where

D+s → η′π+; η′ → π+π−η; η → γγ and the D−s is allowed to decay generically.

The selection criteria applied are tabulated in Table 4.57. Fig. 4.66 depicts the

δm distribution of this signal sample and the region selected by our criterion.
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Figure 4.66: Distribution of δm in the signal Monte Carlo sample of D∗+s →
D+s γ events where D+s → η′π+; η′ → π+π−η; η → γγ. The plot is
normalized so as to directly read out the efficiency of the δm
selection criterion.

To obtain the selection efficiency using the condition on mBC as our last se-
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lection criterion, we produce a plot of the mBC distribution of the signal sample,

having applied all other criteria, as shown in Fig. 4.67. We extract the shape

of the peak from the plot of mBC where the D+s and the photon are matched to

their generated counterparts in the Monte Carlo simulation as shown in Fig.

4.68. The equations that parameterize all fits and the range they are fitted in are

identical to those used in the K+K−π+ mode.
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Figure 4.67: Distribution of mBC in the signal Monte Carlo sample of D∗+s →
D+s γ events where D+s → η′π+; η′ → π+π−η; η → γγ. The plot is
normalized so as to directly read out the efficiency of the mBC
selection criterion from the area under the fit within the signal
region.

Structured backgrounds arising from incorrectly reconstructed D∗+s are sim-

ulated as done previously for the K+K−π+ mode. Fig. 4.69 shows the structure

of the D−s matched and photon matched background, and our fit to parameter-

ize this shape. The background with the D−s matched and a photon that failed

matching is shown in Fig. 4.70 along with our fit to parameterize the shape.

As a check on how well our background and signal estimation performs, we
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Figure 4.68: Distribution of mBC in the signal Monte Carlo sample of D∗+s →
D+s γ events where D+s → η′π+; η′ → π+π−η; η→ γγ.

Table 4.58: ε i
Dsγ

is the efficiency of our selection criteria for the mode. N i
Dsγ

is the signal yield observed in generic Monte Carlo for this
mode. B(D∗+s → D+s γ) is the branching fraction for D∗+s →
D+s e+e− inferred from this mode. Error [1] on the inferred
branching fraction is the statistical error from the final fit. Er-
ror [2] encapsulates the systematic uncertainties from the signal
efficiency, the integrated luminosity and the production cross
section for D∗±s D∓s .

i (Decay Mode of D+s ) B(D+s → i) ε i
Dsγ

N i
Dsγ

B(D∗+s → D+s γ) Inferred

D+s → η′π+; η′ → π+π−η; η→ γγ 0.00633 0.2101 ± 0.0013 690 ± 11 0.9341 ± 0.0149[1] ± 0.0058[2]

present the overall fit to generic MC, as described for the K+K−π+ mode, in Fig.

4.71. Our measurement of the signal selection efficiency and the signal yield

is presented in Table 4.58. We find the thus estimated value for B(D∗+s → D+s γ)

equal to 0.934 ± 0.016 to be 0.5σ away from the programmed value of 0.942 in

the Monte Carlo simulation.

We present the distribution of mBC in data and our fits to estimate the signal
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Figure 4.69: Combinatorial background in the mBC distribution consisting
of events where the D∗+s has been reconstructed out of the D−s
and the γ, and where both the D−s and the γ have been matched
to their generated counterparts in the Monte Carlo simulation.
This distribution has been fitted to a shape described by Eq.
4.24.

yield over the backgrounds, as described for the K+K−π+ mode, in Fig. 4.72. Our

measurements of the signal efficiency and signal yield are presented in Table

4.59.
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Figure 4.70: Combinatorial background structured in the mBC distribution
consisting of events where the D∗+s has been reconstructed out
of the D−s and the γ, and the D−s has been matched to its gener-
ated counterpart but the γ has failed to match the photon from
the D∗+s decay at the generator level of the Monte Carlo simu-
lation. This distribution has been fitted to a shape described
by Eq. 4.25.

 (GeV)BCm
2.04 2.06 2.08 2.1 2.12 2.14 2.16

# 
Ev

en
ts

 / 
M

eV

0

20

40

60

80

100

120

γ γ → η, η -π +π →’ η’, η ±π → ±
s

, Dγ ±
s D→±*

s Distribution in generic for DBCm
h_MBC_generic
Entries  44473
Mean     2.11
RMS    0.02106

h_MBC_generic
Entries  44473
Mean     2.11
RMS    0.02106

γ γ → η, η -π +π →’ η’, η ±π → ±
s

, Dγ ±
s D→±*

s Distribution in generic for DBCm

Figure 4.71: Distribution of mBC of D∗+s → D+s γ events where D+s →
η′π+; η′ → π+π−η; η→ γγ in 586 pb−1 of Generic Monte Carlo.
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Figure 4.72: Distribution of mBC of D∗+s → D+s γ events where D+s →
η′π+; η′ → π+π−η; η→ γγ in 586 pb−1 of data.

Table 4.59: ε i
Dsγ

is the efficiency of our selection criteria for the mode. N i
Dsγ

is the signal yield in data observed for this mode. B(D∗+s → D+s γ)
is the branching fraction for D∗+s → D+s e+e− inferred from this
mode. Error [1] on the inferred branching fraction is the statis-
tical error from the final fit. Error [2] arises from the uncertainty
in the branching fraction for D+s → i. Error [3] encapsulates
the systematic uncertainties from the signal efficiency, the inte-
grated luminosity and the production cross section for D∗±s D∓s .
Error [4] encapsulates the systematic error arising from the fit.

i (Decay Mode of D+s ) B(D+s → i) ε i
Dsγ

N i
Dsγ

D+s → η′π+; η′ → π+π−η; η→ γγ 0.00666 ± 0.00070 0.2101 ± 0.0013 691 ± 34 ± 40
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Table 4.60: Selection criteria for D∗+s → D+s γ events where D+s → K+K−π+π0.
The δm cut has been widened to accomodate the wider peak for
the signal in this distribution.

Selection Criterion Cut Center ±Width

mD+s 1.969 ± 0.010 GeV

δm 0.140 ± 0.020 GeV

4.10.5 D+s → K+K−π+π0

We begin with a Monte Carlo signal sample of D∗+s → D+s γ events where

D+s → K+K−π+π0 and the D−s is allowed to decay generically. The selection crite-

ria applied are tabulated in Table 4.60. Fig. 4.73 depicts the δm distribution of

this signal sample and the region selected by our criterion.
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Figure 4.73: Distribution of δm in the signal Monte Carlo sample of D∗+s →
D+s γ events where D+s → K+K−π+π0. The plot is normalized so
as to directly read out the efficiency of the δm selection crite-
rion.

To obtain the selection efficiency using the condition on mBC as our last se-
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lection criterion, we produce a plot of the mBC distribution of the signal sample,

having applied all other criteria, as shown in Fig. 4.74. We extract the shape

of the peak from the plot of mBC where the D+s and the photon are matched to

their generated counterparts in the Monte Carlo simulation as shown in Fig.

4.75. The equations that parameterize all fits and the range they are fitted in are

identical to those used in the K+K−π+ mode.
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Figure 4.74: Distribution of mBC in the signal Monte Carlo sample of D∗+s →
D+s γ events where D+s → K+K−π+π0. The plot is normalized
so as to directly read out the efficiency of the mBC selection
criterion from the area under the fit within the signal region.

Structured backgrounds arising from incorrectly reconstructed D∗+s are sim-

ulated as done previously for the K+K−π+ mode. Fig. 4.76 shows the structure

of the D−s matched and photon matched background, and our fit to parameter-

ize this shape. The background with the D−s matched and a photon that failed

matching is shown in Fig. 4.77 along with our fit to parameterize the shape.

As a check on how well our background and signal estimation performs, we

present the overall fit to generic MC, as described for the K+K−π+ mode, in Fig.
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Figure 4.75: Distribution of mBC in the signal Monte Carlo sample of D∗+s →
D+s γ events where D+s → K+K−π+π0.

Table 4.61: ε i
Dsγ

is the efficiency of our selection criteria for the mode. N i
Dsγ

is the signal yield observed in generic Monte Carlo for this
mode. B(D∗+s → D+s γ) is the branching fraction for D∗+s →
D+s e+e− inferred from this mode. Error [1] on the inferred
branching fraction is the statistical error from the final fit. Er-
ror [2] encapsulates the systematic uncertainties from the signal
efficiency, the integrated luminosity and the production cross
section for D∗±s D∓s .

i (Decay Mode of D+s ) B(D+s → i) ε i
Dsγ

N i
Dsγ

B(D∗+s → D+s γ) Inferred

D+s → K+K−π+π0 0.0525 0.1225 ± 0.0010 3178 ± 49 0.8894 ± 0.0138[1] ± 0.0073[2]

4.78. Our measurement of the signal selection efficiency and the signal yield

is presented in Table 4.61. We find the thus estimated value for B(D∗+s → D+s γ)

equal to 0.889 ± 0.016 to be 3.3σ away from the programmed value of 0.942 in

the Monte Carlo simulation.

We present the distribution of mBC in data and our fits to estimate the signal

yield over the backgrounds, as described for the K+K−π+ mode, in Fig. 4.79. Our
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Figure 4.76: Combinatorial background in the mBC distribution consisting
of events where the D∗+s has been reconstructed out of the D−s
and the γ, and where both the D−s and the γ have been matched
to their generated counterparts in the Monte Carlo simulation.
This distribution has been fitted to a shape described by Eq.
4.24.

measurements of the signal efficiency and signal yield are presented in Table

4.62.
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Figure 4.77: Combinatorial background structured in the mBC distribution
consisting of events where the D∗+s has been reconstructed out
of the D−s and the γ, and the D−s has been matched to its gener-
ated counterpart but the γ has failed to match the photon from
the D∗+s decay at the generator level of the Monte Carlo simu-
lation. This distribution has been fitted to a shape described
by Eq. 4.25.
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Figure 4.78: Distribution of mBC of D∗+s → D+s γ events where D+s →
K+K−π+π0 in 586 pb−1 of Generic Monte Carlo.
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Figure 4.79: Distribution of mBC of D∗+s → D+s γ events where D+s →
K+K−π+π0 in 586 pb−1 of data.

Table 4.62: ε i
Dsγ

is the efficiency of our selection criteria for the mode. N i
Dsγ

is the signal yield observed in data for this mode. B(D∗+s → D+s γ)
is the branching fraction for D∗+s → D+s e+e− inferred from this
mode. Error [1] on the inferred branching fraction is the statis-
tical error from the final fit. Error [2] arises from the uncertainty
in the branching fraction for D+s → i. Error [3] encapsulates
the systematic uncertainties from the signal efficiency, the inte-
grated luminosity and the production cross section for D∗±s D∓s .
Error [4] encapsulates the systematic error arising from the fit.

i (Decay Mode of D+s ) B(D+s → i) ε i
Dsγ

N i
Dsγ

D+s → K+K−π+π0 0.056 ± 0.005 0.1225 ± 0.0010 3592 ± 118 ± 72
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Table 4.63: Selection criteria for D∗+s → D+s γ events where D+s → π+π−π+.
The δm cut has been widened to accomodate the wider peak
for the signal in this distribution.

Selection Criterion Cut Center ±Width

mD+s 1.969 ± 0.012 GeV

δm 0.140 ± 0.020 GeV

4.10.6 D+s → π+π−π+

We begin with a Monte Carlo signal sample of D∗+s → D+s γ events where D+s →

π+π−π+ and the D−s is allowed to decay generically. The selection criteria applied

are tabulated in Table 4.63. Fig. 4.80 depicts the δm distribution of this signal

sample and shows why the corresponding selection criterion had to be widened

relative to the D∗+s → D+s e+e− signal selection.
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Figure 4.80: Distribution of δm in the signal Monte Carlo sample of D∗+s →
D+s γ events where D+s → π+π−π+. The plot is normalized so as
to directly read out the efficiency of the δm selection criterion.

To obtain the selection efficiency using the condition on mBC as our last se-
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lection criterion, we produce a plot of the mBC distribution of the signal sample,

having applied all other criteria, as shown in Fig. 4.81. We extract the shape

of the peak from the plot of mBC where the D+s and the photon are matched to

their generated counterparts in the Monte Carlo simulation as shown in Fig.

4.82. The equations that parameterize all fits and the range they are fitted in are

identical to those used in the K+K−π+ mode.
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Figure 4.81: Distribution of mBC in the signal Monte Carlo sample of D∗+s →
D+s γ events where D+s → π+π−π+. The plot is normalized so as
to directly read out the efficiency of the mBC selection criterion
from the area under the fit within the signal region.

Structured backgrounds arising from incorrectly reconstructed D∗+s are sim-

ulated as done previously for the K+K−π+ mode. Fig. 4.83 shows the structure

of the D−s matched and photon matched background, and our fit to parameter-

ize this shape. The background with the D−s matched and a photon that failed

matching is shown in Fig. 4.84 along with our fit to parameterize the shape.

As a check on how well our background and signal estimation performs, we

present the overall fit to generic MC, as described for the K+K−π+ mode, in Fig.
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Figure 4.82: Distribution of mBC in the signal Monte Carlo sample of D∗+s →
D+s γ events where D+s → π+π−π+.

Table 4.64: ε i
Dsγ

is the efficiency of our selection criteria for the mode. N i
Dsγ

is the signal yield observed in generic Monte Carlo for this
mode. B(D∗+s → D+s γ) is the branching fraction for D∗+s →
D+s e+e− inferred from this mode. Error [1] on the inferred
branching fraction is the statistical error from the final fit. Er-
ror [2] encapsulates the systematic uncertainties from the signal
efficiency, the integrated luminosity and the production cross
section for D∗±s D∓s .

i (Decay Mode of D+s ) B(D+s → i) ε i
Dsγ

N i
Dsγ

B(D∗+s → D+s γ) Inferred

D+s → π+π−π+ 0.0103 0.4583 ± 0.0018 2706 ± 43 1.0327 ± 0.0162[1] ± 0.0041[2]

4.85. Our measurement of the signal selection efficiency and the signal yield

is presented in Table 4.64. We find the thus estimated value for B(D∗+s → D+s γ)

equal to 1.0327 ± 0.0167 to be 5.4σ away from the programmed value of 0.942 in

the Monte Carlo simulation.

We present the distribution of mBC in data and our fits to estimate the signal

yield over the backgrounds, as described for the K+K−π+ mode, in Fig. 4.86. Our
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Figure 4.83: Combinatorial background in the mBC distribution consisting
of events where the D∗+s has been reconstructed out of the D−s
and the γ, and where both the D−s and the γ have been matched
to their generated counterparts in the Monte Carlo simulation.
This distribution has been fitted to a shape described by Eq.
4.24.

measurements of the signal efficiency and signal yield are presented in Table

4.65.
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Figure 4.84: Combinatorial background structured in the mBC distribution
consisting of events where the D∗+s has been reconstructed out
of the D−s and the γ, and the D−s has been matched to its gener-
ated counterpart but the γ has failed to match the photon from
the D∗+s decay at the generator level of the Monte Carlo simu-
lation. This distribution has been fitted to a shape described
by Eq. 4.25.
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Figure 4.85: Distribution of mBC of D∗+s → D+s γ events where D+s → π+π−π+

in 586 pb−1 of Generic Monte Carlo.
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Figure 4.86: Distribution of mBC of D∗+s → D+s γ events where D+s → π+π−π+

in 586 pb−1 of data.

Table 4.65: ε i
Dsγ

is the efficiency of our selection criteria for the mode. N i
Dsγ

is the signal yield observed in data for this mode. B(D∗+s → D+s γ)
is the branching fraction for D∗+s → D+s e+e− inferred from this
mode. Error [1] on the inferred branching fraction is the statis-
tical error from the final fit. Error [2] arises from the uncertainty
in the branching fraction for D+s → i. Error [3] encapsulates
the systematic uncertainties from the signal efficiency, the inte-
grated luminosity and the production cross section for D∗±s D∓s .
Error [4] encapsulates the systematic error arising from the fit.

i (Decay Mode of D+s ) B(D+s → i) ε i
Dsγ

N i
Dsγ

D+s → π+π−π+ 0.0111 ± 0.0008 0.4583 ± 0.0018 2745 ± 93 ± 52
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Table 4.66: Selection criteria for D∗+s → D+s γ events where D+s → K∗+K∗0.
The δm cut has been widened to accomodate the wider peak
for the signal in this distribution.

Selection Criterion Cut Center ±Width

mD+s 1.969 ± 0.006 GeV

mBC 2.112 ± 0.005 GeV

δm 0.140 ± 0.020 GeV

4.10.7 D+s → K∗+K∗0; K∗+ → K0
Sπ
+; K∗0 → K−π+

We begin with a Monte Carlo signal sample of D∗+s → D+s γ events where D+s →

K∗+K∗0 and the D−s is allowed to decay generically. The selection criteria applied

are tabulated in Table 4.66. Fig. 4.87 depicts the δm distribution of this signal

sample and shows why the corresponding selection criterion had to be widened

relative to the D∗+s → D+s e+e− signal selection.
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Figure 4.87: Distribution of δm in the signal Monte Carlo sample of D∗+s →
D+s γ events where D+s → K∗+K∗0. The plot is normalized so as
to directly read out the efficiency of the δm selection criterion.
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To obtain the selection efficiency using the condition on mBC as our last se-

lection criterion, we produce a plot of the mBC distribution of the signal sample,

having applied all other criteria, as shown in Fig. 4.88. We extract the shape

of the peak from the plot of mBC where the D+s and the photon are matched to

their generated counterparts in the Monte Carlo simulation as shown in Fig.

4.89. The equations that parameterize all fits and the range they are fitted in are

identical to those used in the K+K−π+ mode.
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Figure 4.88: Distribution of mBC in the signal Monte Carlo sample of D∗+s →
D+s γ events where D+s → K∗+K∗0. The plot is normalized so as
to directly read out the efficiency of the mBC selection criterion
from the area under the fit within the signal region.

Structured backgrounds arising from incorrectly reconstructed D∗+s are sim-

ulated as done previously for the K+K−π+ mode. Fig. 4.90 shows the structure

of the D−s matched and photon matched background, and our fit to parameter-

ize this shape. The background with the D−s matched and a photon that failed

matching is shown in Fig. 4.91 along with our fit to parameterize the shape.

As a check on how well our background and signal estimation performs, we
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Figure 4.89: Distribution of mBC in the signal Monte Carlo sample of D∗+s →
D+s γ events where D+s → K∗+K∗0.

Table 4.67: ε i
Dsγ

is the efficiency of our selection criteria for the mode. N i
Dsγ

is the signal yield observed in generic Monte Carlo for this
mode. B(D∗+s → D+s γ) is the branching fraction for D∗+s →
D+s e+e− inferred from this mode. Error [1] on the inferred
branching fraction is the statistical error from the final fit. Er-
ror [2] encapsulates the systematic uncertainties from the signal
efficiency, the integrated luminosity and the production cross
section for D∗±s D∓s .

i (Decay Mode of D+s ) B(D+s → i) ε i
Dsγ

N i
Dsγ

B(D∗+s → D+s γ) Inferred

D+s → K∗+K∗0 0.01628 0.1913 ± 0.0012 1644 ± 22 0.9502 ± 0.0129[1] ± 0.0058[2]

present the overall fit to generic MC, as described for the K+K−π+ mode, in Fig.

4.92. Our measurement of the signal selection efficiency and the signal yield

is presented in Table 4.67. We find the thus estimated value for B(D∗+s → D+s γ)

equal to 0.950 ± 0.014 to be 0.6σ away from the programmed value of 0.942 in

the Monte Carlo simulation.

We present the distribution of mBC in data and our fits to estimate the signal
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Figure 4.90: Combinatorial background in the mBC distribution consisting
of events where the D∗+s has been reconstructed out of the D−s
and the γ, and where both the D−s and the γ have been matched
to their generated counterparts in the Monte Carlo simulation.
This distribution has been fitted to a shape described by Eq.
4.24.

yield over the backgrounds, as described for the K+K−π+ mode, in Fig. 4.93. Our

measurements of the signal efficiency and signal yield are presented in Table

4.68.
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Figure 4.91: Combinatorial background structured in the mBC distribution
consisting of events where the D∗+s has been reconstructed out
of the D−s and the γ, and the D−s has been matched to its gener-
ated counterpart but the γ has failed to match the photon from
the D∗+s decay at the generator level of the Monte Carlo simu-
lation. This distribution has been fitted to a shape described
by Eq. 4.25.
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Figure 4.92: Distribution of mBC of D∗+s → D+s γ events where D+s → K∗+K∗0
in 586 pb−1 of Generic Monte Carlo.
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Figure 4.93: Distribution of mBC of D∗+s → D+s γ events where D+s → K∗+K∗0
in 586 pb−1 of data.

Table 4.68: ε i
Dsγ

is the efficiency of our selection criteria for the mode. N i
Dsγ

is the signal yield observed in data for this mode. B(D∗+s → D+s γ)
is the branching fraction for D∗+s → D+s e+e− inferred from this
mode. Error [1] on the inferred branching fraction is the statis-
tical error from the final fit. Error [2] arises from the uncertainty
in the branching fraction for D+s → i. Error [3] encapsulates
the systematic uncertainties from the signal efficiency, the inte-
grated luminosity and the production cross section for D∗±s D∓s .
Error [4] encapsulates the systematic error arising from the fit.

i (Decay Mode of D+s ) B(D+s → i) ε i
Dsγ

N i
Dsγ

D+s → K∗+K∗0 0.0164 ± 0.0012 0.1913 ± 0.0012 1570 ± 74 ± 13
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Table 4.69: Selection criteria for D∗+s → D+s γ events where D+s → ηρ+. The
δm cut has been widened to accomodate the wider peak for the
signal in this distribution.

Selection Criterion Cut Center ±Width

mD+s 1.969 ± 0.015 GeV

δm 0.140 ± 0.020 GeV

4.10.8 D+s → ηρ+; η→ γγ; ρ+ → π+π0

We begin with a Monte Carlo signal sample of D∗+s → D+s γ events where D+s →

ηρ+; η→ γγ; ρ+ → π+π0 and the D−s is allowed to decay generically. The selection

criteria applied are tabulated in Table 4.69. Fig. 4.94 depicts the δm distribution

of this signal sample and shows why the corresponding selection criterion had

to be widened relative to the D∗+s → D+s e+e− signal selection.
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Figure 4.94: Distribution of δm in the signal Monte Carlo sample of D∗+s →
D+s γ events where D+s → ηρ+. The plot is normalized so as to
directly read out the efficiency of the δm selection criterion.

To obtain the selection efficiency using the condition on mBC as our last se-

165



lection criterion, we produce a plot of the mBC distribution of the signal sample,

having applied all other criteria, as shown in Fig. 4.95. We extract the shape

of the peak from the plot of mBC where the D+s and the photon are matched to

their generated counterparts in the Monte Carlo simulation as shown in Fig.

4.96. The equations that parameterize all fits and the range they are fitted in are

identical to those used in the K+K−π+ mode.
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Figure 4.95: Distribution of mBC in the signal Monte Carlo sample of D∗+s →
D+s γ events where D+s → ηρ+; η → γγ; ρ+ → π+π0. The plot is
normalized so as to directly read out the efficiency of the mBC
selection criterion from the area under the fit within the signal
region.

Structured backgrounds arising from incorrectly reconstructed D∗+s are sim-

ulated as done previously for the K+K−π+ mode. Fig. 4.97 shows the structure

of the D−s matched and photon matched background, and our fit to parameter-

ize this shape. The background with the D−s matched and a photon that failed

matching is shown in Fig. 4.98 along with our fit to parameterize the shape.

As a check on how well our background and signal estimation performs, we
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Figure 4.96: Distribution of mBC in the signal Monte Carlo sample of D∗+s →
D+s γ events where D∗+s → D+s γ events where D+s → ηρ+; η →
γγ; ρ+ → π+π0.

Table 4.70: ε i
Dsγ

is the efficiency of our selection criteria for the mode. N i
Dsγ

is the signal yield observed in generic Monte Carlo for this
mode. B(D∗+s → D+s γ) is the branching fraction for D∗+s →
D+s e+e− inferred from this mode. Error [1] on the inferred
branching fraction is the statistical error from the final fit. Er-
ror [2] encapsulates the systematic uncertainties from the signal
efficiency, the integrated luminosity and the production cross
section for D∗±s D∓s .

i (Decay Mode of D+s ) B(D+s → i) ε i
Dsγ

N i
Dsγ

B(D∗+s → D+s γ) Inferred

D+s → ηρ+; η→ γγ; ρ+ → π+π0 0.0298 0.1839 ± 0.0013 2993 ± 87 0.9829 ± 0.0284[1] ± 0.0070[2]

present the overall fit to generic MC, as described for the K+K−π+ mode, in Fig.

4.99. Our measurement of the signal selection efficiency and the signal yield

is presented in Table 4.70. We find the thus estimated value for B(D∗+s → D+s γ)

equal to 0.983 ± 0.029to be 1.4σ away from the programmed value of 0.942 in

the Monte Carlo simulation.
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Figure 4.97: Combinatorial background in the mBC distribution consisting
of events where the D∗+s has been reconstructed out of the D−s
and the γ, and where both the D−s and the γ have been matched
to their generated counterparts in the Monte Carlo simulation.
This distribution has been fitted to a shape described by Eq.
4.24.

We present the distribution of mBC in data and our fits to estimate the signal

yield over the backgrounds, as described for the K+K−π+ mode, in Fig. 4.100.

Our measurements of the signal efficiency and signal yield are presented in Ta-

ble 4.71.
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Figure 4.98: Combinatorial background structured in the mBC distribution
consisting of events where the D∗+s has been reconstructed out
of the D−s and the γ, and the D−s has been matched to its gener-
ated counterpart but the γ has failed to match the photon from
the D∗+s decay at the generator level of the Monte Carlo simu-
lation. This distribution has been fitted to a shape described
by Eq. 4.25.
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Figure 4.99: Distribution of mBC of D∗+s → D+s γ events where D+s → ηρ+; η→
γγ; ρ+ → π+π0 in 586 pb−1 of Generic Monte Carlo.
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Figure 4.100: Distribution of mBC of D∗+s → D+s γ events where D+s →
ηρ+; η→ γγ; ρ+ → π+π0 in 586 pb−1 of data.

Table 4.71: ε i
Dsγ

is the efficiency of our selection criteria for the mode. N i
Dsγ

is the signal yield observed in data for this mode. B(D∗+s → D+s γ)
is the branching fraction for D∗+s → D+s e+e− inferred from this
mode. Error [1] on the inferred branching fraction is the statis-
tical error from the final fit. Error [2] arises from the uncertainty
in the branching fraction for D+s → i. Error [3] encapsulates
the systematic uncertainties from the signal efficiency, the inte-
grated luminosity and the production cross section for D∗±s D∓s .
Error [4] encapsulates the systematic error arising from the fit.

i (Decay Mode of D+s ) B(D+s → i) ε i
Dsγ

N i
Dsγ

D+s → ηρ+; η→ γγ; ρ+ → π+π0 0.0348 ± 0.0031 0.1839 ± 0.0013 3170 ± 161 ± 313
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Table 4.72: Selection criteria for D∗+s → D+s γ events where D+s → η′π+; η′ →
ρ0γ. The δm cut has been widened to accomodate the wider
peak for the signal in this distribution.

Selection Criterion Cut Center ±Width

mD+s 1.969 ± 0.012 GeV

δm 0.140 ± 0.020 GeV

4.10.9 D+s → η′π+; η′ → ρ0γ

We begin with a Monte Carlo signal sample of D+s → η′π+; η′ → ρ0γ and the

D−s is allowed to decay generically. The selection criteria applied are tabulated

in Table 4.72. Fig. 4.101 depicts the δm distribution of this signal sample and

shows why the corresponding selection criterion had to be widened relative to

the D∗+s → D+s e+e− signal selection.
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Figure 4.101: Distribution of δm in the signal Monte Carlo sample of D∗+s →
D+s γ events where D+s → η′π+; η′ → ρ0γ. The plot is normal-
ized so as to directly read out the efficiency of the δm selec-
tion criterion.
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To obtain the selection efficiency using the condition on mBC as our last se-

lection criterion, we produce a plot of the mBC distribution of the signal sample,

having applied all other criteria, as shown in Fig. 4.102. We extract the shape

of the peak from the plot of mBC where the D+s and the photon are matched to

their generated counterparts in the Monte Carlo simulation as shown in Fig.

4.103. The equations that parameterize all fits and the range they are fitted in

are identical to those used in the K+K−π+ mode.
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Figure 4.102: Distribution of mBC in the signal Monte Carlo sample of
D∗+s → D+s γ events where D+s → η′π+; η′ → ρ0γ. The plot
is normalized so as to directly read out the efficiency of the
mBC selection criterion from the area under the fit within the
signal region.

Structured backgrounds arising from incorrectly reconstructed D∗+s are sim-

ulated as done previously for the K+K−π+ mode. Fig. 4.104 shows the structure

of the D−s matched and photon matched background, and our fit to parameter-

ize this shape. The background with the D−s matched and a photon that failed

matching is shown in Fig. 4.105 along with our fit to parameterize the shape.
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Figure 4.103: Distribution of mBC in the signal Monte Carlo sample of
D∗+s → D+s γ events where D∗+s → D+s γ events where D+s →
η′π+; η′ → ρ0γ.

Table 4.73: ε i
Dsγ

is the efficiency of our selection criteria for the mode. N i
Dsγ

is the signal yield observed in generic Monte Carlo for this
mode. B(D∗+s → D+s γ) is the branching fraction for D∗+s →
D+s e+e− inferred from this mode. Error [1] on the inferred
branching fraction is the statistical error from the final fit. Er-
ror [2] encapsulates the systematic uncertainties from the signal
efficiency, the integrated luminosity and the production cross
section for D∗±s D∓s .

i (Decay Mode of D+s ) B(D+s → i) ε i
Dsγ

N i
Dsγ

B(D∗+s → D+s γ) Inferred

D+s → η′π+; η′ → ρ0γ 0.0111 0.3171 ± 0.0015 1930 ± 45 0.9886 ± 0.0231[1] ± 0.0049[2]

As a check on how well our background and signal estimation performs, we

present the overall fit to generic MC, as described for the K+K−π+ mode, in Fig.

4.106. Our measurement of the signal selection efficiency and the signal yield

is presented in Table 4.73. We find the thus estimated value for B(D∗+s → D+s γ)

equal to 0.989 ± 0.024 to be about 2σ away from the programmed value of 0.942

in the Monte Carlo simulation.
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Figure 4.104: Combinatorial background in the mBC distribution consist-
ing of events where the D∗+s has been reconstructed out of
the D−s and the γ, and where both the D−s and the γ have been
matched to their generated counterparts in the Monte Carlo
simulation. This distribution has been fitted to a shape de-
scribed by Eq. 4.24.

We present the distribution of mBC in data and our fits to estimate the signal

yield over the backgrounds, as described for the K+K−π+ mode, in Fig. 4.107.

Our measurements of the signal efficiency and signal yield are presented in Ta-

ble 4.74.
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Figure 4.105: Combinatorial background structured in the mBC distribu-
tion consisting of events where the D∗+s has been recon-
structed out of the D−s and the γ, and the D−s has been
matched to its generated counterpart but the γ has failed to
match the photon from the D∗+s decay at the generator level
of the Monte Carlo simulation. This distribution has been
fitted to a shape described by Eq. 4.25.
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Figure 4.106: Distribution of mBC of D∗+s → D+s γ events where D+s →
η′π+; η′ → ρ0γ in 586 pb−1 of Generic Monte Carlo.
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Figure 4.107: Distribution of mBC of D∗+s → D+s γ events where D+s →
η′π+; η′ → ρ0γ in 586 pb−1 of data.

Table 4.74: ε i
Dsγ

is the efficiency of our selection criteria for the mode. N i
Dsγ

is the signal yield observed in data for this mode. B(D∗+s → D+s γ)
is the branching fraction for D∗+s → D+s e+e− inferred from this
mode. Error [1] on the inferred branching fraction is the statis-
tical error from the final fit. Error [2] arises from the uncertainty
in the branching fraction for D+s → i. Error [3] encapsulates
the systematic uncertainties from the signal efficiency, the inte-
grated luminosity and the production cross section for D∗±s D∓s .
Error [4] encapsulates the systematic error arising from the fit.

i (Decay Mode of D+s ) B(D+s → i) ε i
Dsγ

N i
Dsγ

D+s → η′π+; η′ → ρ0γ 0.0112 ± 0.0012 0.3171 ± 0.0015 1531 ± 80 ± 122
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4.11 Un-blinding Data and Results

Having estimated, for each decay mode of the D+s , the background levels in the

signal region for the reconstruction of D∗+s → D+s e+e− (Section 4.9), the efficiency

of our selection criteria in reconstructing the D∗+s → D+s e+e− (Section 4.8), and the

yields and efficiencies of our selection criteria in reconstructing the D∗+s → D+s γ

(Section 4.10), we are now in a position to unblind our data and observe the

yield in the signal region of D∗+s → D+s e+e−. We unblind our data in the mBC

kinematic variable, as that is the variable we obtained our primary estimate of

the background from. We count the yield in the signal region and subtract off

the estimated background to determine the background subtracted yield. This

is tabulated in Table 4.75, along with the significance of observing such a signal

over the background and the number of signal events expected from Monte

Carlo simulations. The unblinded distributions of mBC for the individual modes

are presented in the following sub-sections.

The statistical and systematic uncertainties in the estimated backgrounds

have been derived in Section 4.9. The systematic uncertainties from the esti-

mated backgrounds simply carry over as the systematic uncertainties in the es-

timated number of signal events. The statistical uncertainties in the estimated

number of signal events is the quadrature sum, denoted by the symbol ⊕, of the

statistical uncertainties in the estimated background and one standard devia-

tion of the Poisson distribution with mean equal to the yields. That is,

∆N i
e+e−(stat) = ∆Bi

e+e−(stat) ⊕ ∆Y i
e+e−

where i refers to a hadronic decay mode of the D+s , ∆Y i
e+e− =

√

Y i
e+e− is the sta-

tistical uncertainty in the signal yield of data found in the signal region for the

ith mode, ∆Bi
e+e−(stat) is the statistical uncertainty in the number of background
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Table 4.75: Data and estimated backgrounds in the signal region used to
estimate the numbers of signal events found in each mode and
the corresponding significance of the signal. Expected numbers
of signal events from Monte Carlo simulations also listed.

Mode Yield Found in the Estimated Background Subtracted Expected Signal Yield Signal

Signal Region Background Yield in Signal Region from Monte Carlo Significance

i Y i
e+e− Bi

e+e− N i
e+e−

± stat ± syst ± stat ± syst ± stat

K+K−π+ 14 1.05 ± 0.37 ± 0.79 12.95 ± 3.76 ± 0.79 13.65 ± 0.65 5.13

KS K+ 1 0.85 ± 0.43 ± 0.74 0.15 ± 1.09 ± 0.74 3.02 ± 0.15 0.73

ηπ+ 4 1.40 ± 0.70 ± 0.49 2.60 ± 2.12 ± 0.49 1.81 ± 0.08 1.66

η′π+; η′ → π+π−η 4 0.00 + 0.63 + 0.00 4.00 ± 2.10 ± 0.00 1.20 ± 0.06 2.68

K+K−π+π0 6 1.70 ± 0.47 ± 0.56 4.30 ± 2.49 ± 0.56 4.85 ± 0.29 2.34

π+π−π+ 7 1.57 ± 0.45 ± 0.59 5.43 ± 2.68 ± 0.59 3.75 ± 0.17 2.79

K∗+K∗0 4 1.58 ± 0.53 ± 0.40 2.42 ± 2.07 ± 0.40 1.99 ± 0.11 1.65

ηρ+ 7 2.62 ± 0.59 ± 0.23 4.38 ± 2.71 ± 0.23 5.49 ± 0.31 2.23

η′π+; η′ → ρ0γ 4 1.84 ± 0.49 ± 0.25 2.16 ± 2.06 ± 0.25 2.42 ± 0.12 1.52

Sum of all modes 51 12.61 ± 2.50 ± 1.08 38.39 ± 7.32 ± 1.53 38.18 ± 0.83 6.39

events to D∗+s → D+s e+e− we expected in the signal region for the ith mode, and

∆N i
e+e−(stat) is the statistical uncertainty in the background subtracted yield in

our signal region for the ith mode.

We tabulate the signal yields and efficiencies for D∗+s → D+s e+e− and D∗+s →

D+s γ in Table 4.76. In it we compute and tabulate the ratio of branching fractions

K =
B(D∗+s → D+s e+e−)

B(D∗+s → D+s γ)

for each mode using Eq. 4.26 and with all modes using Eq. 4.27.

K =
(N i

e+e−

N i
γ

)















ε i
D+s γ

ε i
D+s e+e−















(4.26)

K =
(∑

i N i
e+e−

∑

i N i
γ

)















∑

i ε
i
D+s γ

B(D+s → i)
∑

i ε
i
D+s e+e−B(D+s → i)















(4.27)
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where K is the aforementioned ratio of branching fractions we’re trying to

measure, N i
γ is the background subtracted yield of D∗+s → D+s γ events we find

in our signal region for the ith mode of D+s decay, and ε i
D+s γ

encodes the detection

and selection efficiency for the D∗+s → D+s γ selection criteria, for the ith mode of

D+s decay.

Uncertainties in the ratio of branching fractions, K, are calculated for each

mode using Eq. 4.28 and Eq. 4.29.

(

∆K(stat)
K

)2

=

(

∆N i
e+e−(stat)
N i

e+e−

)2

+













∆N i
γ(stat)
Nγ













2

(4.28)

(

∆K(syst)
K

)2

=

(

∆N i
e+e−(syst)
N i

e+e−

)2

+
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∆N i
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2
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(4.29)

Uncertainties in the ratio of branching fractions, K, are calculated using the

sum of all modes as follows. The statistical uncertainty depends solely on the

statistical uncertainties associated with the signal yields, N i
e+e− and N i

γ. These

statistical uncertainties for each mode are tabulated in Table 4.76. Therefore, the

statistical uncertainty in K is calculated using Eq. 4.30.

(

∆K(stat)
K

)2

=

∑

i(∆N i
e+e−(stat))2

(∑i N i
e+e−)2 +

∑

i(∆N i
γ)2

(
∑

i Nγ)2 (4.30)

For an estimate of the systematic error, we decompose Eq. 4.27 as

K =
(∑

i N i
e+e−

∑

i N i
γ

) (

εγ

εe+e−

)















∑

i ε
i
D+s

B(D+s → i)
∑

i ε
i
D+s

B(D+s → i)















(4.31)

where εγ and εe+e− are the reconstruction efficiencies for the photon and the e+e−

which are common to all modes of the D+s decay, and ε i
D+s

is the reconstruction
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Table 4.76: The ratio of branching fractions B(D∗+s → D+s e+e−)/B(D∗+s →
D+s γ) inferred from the signal yields and efficiencies of each and
all modes.

D+s Decay B(D+s → i) D∗+s → D+s e+e− D∗+s → D+s γ

K = B(D∗+s →D+s e+e−)
B(D∗+s →D+s γ)Mode Signal Events Selection Efficiency Signal Events Selection Efficiency

i N i
e+e− ε i

D+s e+e− N i
γ ε i

D+s γ

± stat ± syst ± stat ± syst ± stat ± syst

K+K−π+ 0.0550 ± 0.0028 12.95 ± 3.76 ± 0.79 0.0730 ± 0.0019 9114 ± 110 ± 201 0.339 ± 0.002 0.0066 ± 0.0019 ± 0.0005

KS K+ 0.0149 ± 0.0009 0.15 ± 1.09 ± 0.74 0.0597 ± 0.0017 1902 ± 57 ± 45 0.2573 ± 0.0004 0.0003 ± 0.0025 ± 0.0017

ηπ+; η→ γγ 0.0062 ± 0.0008 2.60 ± 2.12 ± 0.49 0.0855 ± 0.0021 1037 ± 46 ± 37 0.3310 ± 0.0015 0.0097 ± 0.0079 ± 0.0019

η′π+; η′ → π+π−η; η→ γγ 0.0067 ± 0.0007 4.00 ± 2.10 ± 0.00 0.0530 ± 0.0016 691 ± 34 ± 40 0.2101 ± 0.0013 0.023 ± 0.0123 ± 0.0015

K+K−π+π0 0.056 ± 0.005 4.30 ± 2.49 ± 0.56 0.0255 ± 0.0011 3592 ± 118 ± 72 0.1225 ± 0.0010 0.0058 ± 0.0033 ± 0.0008

π+π−π+ 0.0111 ± 0.0008 5.43 ± 2.68 ± 0.59 0.0992 ± 0.0022 2745 ± 93 ± 52 0.4583 ± 0.0018 0.0091 ± 0.0045 ± 0.0010

K∗+K∗0 0.0164 ± 0.0012 2.42 ± 2.07 ± 0.40 0.0356 ± 0.0013 1570 ± 74 ± 13 0.1913 ± 0.0012 0.0083 ± 0.0071 ± 0.0014

ηρ+; η→ γγ; ρ+ → π+π0 0.0298 ± 0.0051 4.38 ± 2.71 ± 0.23 0.0316 ± 0.0013 3170 ± 161 ± 313 0.1839 ± 0.0013 0.0080 ± 0.0050 ± 0.0010

η′π+; η′ → ρ0γ 0.0112 ± 0.0012 2.16 ± 2.06 ± 0.25 0.064 ± 0.0018 1531 ± 80 ± 122 0.3171 ± 0.0015 0.0070 ± 0.0067 ± 0.0010

Sum of all modes 38.39 ± 7.32 ± 1.53 25351.03 ± 280.93 0.0072 ± 0.0014 ± 0.0003
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efficiency for the D+s as it decays into the ith hadronic decay mode. This can be

simplified to

K =
(∑

i N i
e+e−

∑

i N i
γ

) (

εγ

εe+e−

)

(4.32)

Therefore, we may estimate the systematic uncertainty in K as given in Eq. 4.33.
(

∆K(syst)
K

)2

=

∑

i(∆N i
e+e−(syst))2

(∑i N i
e+e−)2 ⊕

∑

i(∆N i
γ(syst))2

(
∑

i N i
γ)2 ⊕

(

∆(εγ/εe+e−)
εγ/εe+e−

)2

(4.33)

A plot of the mBC and δm distributions in unblinded data summed over all

modes are presented in Fig. 4.108 and Fig. 4.109. The data points are marked

by magenta points with error bars. The data-driven estimated backgrounds

are marked by the black and magenta curves. The cyan histograms mark the

expected signal yield. The agreement with data is remarkable. Histograms of

unblinded data in each of the individual modes are presented in the following

subsections.

Table 4.75 summarizes the signal yield observed in all modes and their sig-

nificances. The total signal yield of 51 events carries a significance of 6.39 σ.

The signal yields and efficiencies for D∗+s → D+s e+e− that we just unblinded and

D∗+s → D+s γ discussed in Section 4.10 are tabulated together in Table 4.75. The

ratio of branching fractions B(D∗+s → D+s e+e−)/B(D∗+s → D+s γ) are calculated from

each mode and with all modes combined. The measurement of this ratio us-

ing the combination of all modes is given in Eq. 4.34. However, the systematic

uncertainty in K has been estimated only using the systematic uncertainties in

the signal yields for D∗+s → D+s e+e− and D∗+s → D+s γ. We must also include the

systematic uncertainty arising from the reconstruction of soft e+e− pairs and the

γ as indicated in Eq. 4.33 for a complete result.

K =
B(D∗+s → D+s e+e−)

B(D∗+s → D+s γ) = (0.72 ± 0.14(stat) ± 0.03(syst))% (4.34)
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This last source of systematic uncertainty is estimated in Section 4.12. There we

measure this fractional uncertainty to be 6.51%. 6.51% of 0.72% is 0.047% and

therefore, our final result stands to be:

K =
B(D∗+s → D+s e+e−)

B(D∗+s → D+s γ) = (0.72 ± 0.14(stat) ± 0.06(syst))% (4.35)

where

• (stat) is the statistical uncertainty arising from the limited signal yields of

D∗+s → D+s e+e− and D∗+s → D+s γ. Larger datasets will decrease this error.

• (syst) is the systematic uncertainty arising from systematic uncertainties in

the estimated background for the D∗+s → D+s e+e− signal, systematic uncer-

tainties in the signal yield for D∗+s → D+s γ, and the systematic uncertainty

arising from the e+e− and γ reconstruction efficiencies in the energy range

relevant for this analysis.
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Figure 4.108: Distribution of mBC in data after unblinding.
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Figure 4.109: Distribution of δm in data after unblinding.
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4.11.1 D+s → K+K−π+

The distributions of mBC and δm in data after unblinding are presented overlaid

with Monte Carlo in Fig. 4.110 and 4.111. A mean of 14.7 events were expected

from Monte Carlo simulations and 14 events were observed. The significance

for this observation is 5.13 σ.
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Figure 4.110: Distribution of mBC in data after unblinding overlaid with
prediction from Monte Carlo.
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Figure 4.111: Distribution of δm in data after unblinding overlaid with pre-
diction from Monte Carlo.
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4.11.2 D+s → KS K+

The distributions of mBC and δm in data after unblinding are presented overlaid

with Monte Carlo in Fig. 4.112 and 4.113. A mean of 3.87 events were expected

from Monte Carlo simulations and 1 events was observed. The significance for

this observation is 0.73 σ.
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Figure 4.112: Distribution of mBC in data after unblinding overlaid with
prediction from Monte Carlo.
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Figure 4.113: Distribution of δm in data after unblinding overlaid with pre-
diction from Monte Carlo.
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4.11.3 D+s → ηπ+; η→ γγ

The distributions of mBC and δm in data after unblinding are presented overlaid

with Monte Carlo in Fig. 4.114 and 4.115. A mean of 3.21 events were expected

from Monte Carlo simulations and 4 events were observed. The significance for

this observation is 1.66 σ.

 (GeV)BCm
2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Nu
m

be
r o

f E
ve

nt
s 

/ 2
 M

eV

0

0.5

1

1.5

2

2.5

3

 (GeV)BCm
2 2.02 2.04 2.06 2.08 2.1 2.12 2.14 2.16

Nu
m

be
r o

f E
ve

nt
s 

/ 2
 M

eV

0

0.5

1

1.5

2

2.5

3

γ γ → η, η ±π → ±
s Distributions in Mode DBCm

Signal MC: 2 Entries

Continuum MC: 4 Entries

Generic MC: 0 Entries

Continuum MC: 4 Entries

Data: 10 Entries

Figure 4.114: Distribution of mBC in data after unblinding overlaid with
prediction from Monte Carlo.
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Figure 4.115: Distribution of δm in data after unblinding overlaid with pre-
diction from Monte Carlo.
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4.11.4 D+s → η′π+; η′ → π+π−η; η→ γγ

The distributions of mBC and δm in data after unblinding are presented over-

laid with Monte Carlo in Fig. 4.116 and 4.117. 1.20 events were expected from

Monte Carlo simulations and 4 events were observed. The significance for this

observation is 2.68 σ.
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Figure 4.116: Distribution of mBC in data after unblinding overlaid with
prediction from Monte Carlo.
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Figure 4.117: Distribution of δm in data after unblinding overlaid with pre-
diction from Monte Carlo.
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4.11.5 D+s → K+K−π+π0

The distributions of mBC and δm in data after unblinding are presented over-

laid with Monte Carlo in Fig. 4.118 and 4.119. 6.55 events were expected from

Monte Carlo simulations and 6 events were observed. The significance for this

observation is 2.34 σ.
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Figure 4.118: Distribution of mBC in data after unblinding overlaid with
prediction from Monte Carlo.
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Figure 4.119: Distribution of δm in data after unblinding overlaid with pre-
diction from Monte Carlo.
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4.11.6 D+s → π+π−π+

The distributions of mBC and δm in data after unblinding are presented over-

laid with Monte Carlo in Fig. 4.120 and 4.121. 5.32 events were expected from

Monte Carlo simulations and 7 events were observed. The significance for this

observation is 2.79 σ.
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Figure 4.120: Distribution of mBC in data after unblinding overlaid with
prediction from Monte Carlo.

m (GeV)δ
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Nu
m

be
r o

f E
ve

nt
s 

/ 5
 M

eV

0

1

2

3

4

5

6

m (GeV)δ
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Nu
m

be
r o

f E
ve

nt
s 

/ 5
 M

eV

0

1

2

3

4

5

6

m Sidebands in pipipiδ

Signal MC: 4 Entries

Continuum MC: 11 Entries

Generic MC: 2 Entries

Conversion MC: 2 Entries

Data: 37 Entries

Figure 4.121: Distribution of δm in data after unblinding overlaid with pre-
diction from Monte Carlo.
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4.11.7 D+s → K∗+K∗0; K∗+ → K0
Sπ
+; K∗0 → K−π+

The distributions of mBC and δm in data after unblinding are presented over-

laid with Monte Carlo in Fig. 4.122 and 4.123. 3.57 events were expected from

Monte Carlo simulations and 4 events were observed. The significance for this

observation is 1.65 σ.
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Figure 4.122: Distribution of mBC in data after unblinding overlaid with
prediction from Monte Carlo.
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Figure 4.123: Distribution of δm in data after unblinding overlaid with pre-
diction from Monte Carlo.
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4.11.8 D+s → ηρ+; η→ γγ; ρ+ → π+π0

The distributions of mBC and δm in data after unblinding are presented over-

laid with Monte Carlo in Fig. 4.124 and 4.125. 8.11 events were expected from

Monte Carlo simulations and 7 events were observed. The significance for this

observation is 2.23 σ.
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Figure 4.124: Distribution of mBC in data after unblinding overlaid with
prediction from Monte Carlo.
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Figure 4.125: Distribution of δm in data after unblinding overlaid with pre-
diction from Monte Carlo.
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4.11.9 D+s → η′π+; η′ → ρ0γ

The distributions of mBC and δm in data after unblinding are presented over-

laid with Monte Carlo in Fig. 4.126 and 4.127. 4.26 events were expected from

Monte Carlo simulations and 4 events were observed. The significance for this

observation is 1.52 σ.
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Figure 4.126: Distribution of mBC in data after unblinding overlaid with
prediction from Monte Carlo.
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Figure 4.127: Distribution of δm in data after unblinding overlaid with pre-
diction from Monte Carlo.
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4.11.10 Comparison of me+e− between Data and Monte Carlo

Simulation

Fig. 4.128 shows the distribution of the invariant mass of the e+e− in the 51 data

points uncovered when compared to the general shape predicted by our Monte

Carlo simulations. It must be noted that we did not depend on the numbers

from Monte Carlo for our estimation of the backgrounds. This plot is presented

as a rough check. The Kolmogorov probability for the data and Monte Carlo

points to have come from the same distribution is found to be 0.86.
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Figure 4.128: Distribution of me+e− in data after unblinding overlaid with
prediction from Monte Carlo.
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4.11.11 A Re-evaluation of All D∗+s Branching Fractions

Now that we have a measurement of the ratio of branching fractions B(D∗+s →

D+s e+e−)/B(D∗+s → D+s γ), we may combine it with the measurement of B(D∗+s →

D+s π0)/B(D∗+s → D+s γ) as measured by the BABAR collaboration [5] to re-evaluate

the absolute branching fractions B(D∗+s → D+s γ), B(D∗+s → D+s π0) and B(D∗+s →

D+s e+e−). For notational convenience, we shall denote B(D∗+s → D+s γ) by bγ,

B(D∗+s → D+s π0) by bπ0 and B(D∗+s → D+s e+e−) by be+e− . If we call our measure-

ments of the ratios m1 and m2 as indicated in Eq. 4.36 & 4.37,

m1 =
bπ0

bγ
= 0.062 ± 0.005 ± 0.006 (4.36)

m2 =
be+e−

bγ
= 0.0072 ± 0.0014 ± 0.0006 (4.37)

and have the absolute branching fractions add up to unity, we may write

bγ =
1

1 + m1 + m2
(4.38)

∆bγ =
∂bγ
∂m1
∆m1 ⊕

∂bγ
∂m2
∆m2 (4.39)

where
∂bγ
∂m1
=
∂bγ
∂m2
=

−1
(1 + m1 + m2)2

In a similar vein, one may write the solutions for bπ0 and be+e− as follows.

bπ0 =
m1

1 + m1 + m2
(4.40)

∆bπ0 =
∂bπ0

∂m1
∆m1 ⊕

∂bπ0

∂m2
∆m2 (4.41)

where
∂bπ0

∂m1
=

1 + m2

(1 + m1 + m2)2
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∂bπ0

∂m2
=

−m1

(1 + m1 + m2)2

and

be+e− =
m2

1 + m1 + m2
(4.42)

∆be+e− =
∂be+e−

∂m1
∆m1 ⊕

∂be+e−

∂m2
∆m2 (4.43)

where
∂be+e−

∂m1
=

−m2

(1 + m1 + m2)2

∂be+e−

∂m2
=

1 + m1

(1 + m1 + m2)2

We evaluate these derivatives using the central values of the measurements

m1 and m2 and propagate the statistical and systematic errors independently to

give us absolute measures for the branching fractions of the D∗+s thus far discov-

ered.

B(D∗+s → D+s γ) = (93.5 ± 0.5 ± 0.5)% (4.44)

B(D∗+s → D+s π0) = (5.8 ± 0.4 ± 0.5)% (4.45)

B(D∗+s → D+s e+e−) = (0.67 ± 0.13 ± 0.05)% (4.46)
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4.12 Systematic Uncertainties from the Tracking of Soft Elec-

trons and Photons

As reported in Section 4.11, systematic errors in the measurement of εe+e−/εγ

will contribute to the systematic uncertainty in our measurement of the ratio

of branching fractions B(D∗+s → D+s e+e−)/B(D∗+s → D+s γ). In this section, we seek

to estimate the systematic uncertainty in the measurement of εe+e−/εγ in the en-

ergy range relevant for our analysis by studying the decay of ψ(2S ) mesons to

J/ψπ0π0. We estimate this systematic error by measuring the ratio of the num-

bers of events where one of the π0 Dalitz decays to γe+e− to the number of events

where both π0 decay to γγ and comparing this to the ratio expected from the cur-

rently accepted branching fractions for π0 → γe+e− and π0 → γγ.

Dataset 42, which contains 53 pb−1 of data taken at the ψ(2S ) resonance, was

used for this study. Since soft electrons from the Dalitz decay of the π0 would

also suffer from the systematic deviation in their energy and other track pa-

rameters if their tracks are fitted to the pion mass hypothesis, we reprocessed

this dataset to include track fits to the electron mass hypothesis. This has been

described in Section 4.5.

In the following paragraphs, we describe a method that completely recon-

structs the ψ(2S ) from its decay into J/ψπ0π0 in order to estimate our systematic

error in the measurement of εe+e−/εγ.

For our convenience, events where one of the π0 Dalitz decays to e+e−γ will

be called events of Type I. Events where both π0 decay to γγ will be called events

of Type II. The latest fit in the Review of Particle Physics 2010 establishes the
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ratio B(π0 → γe+e−)/B(π0 → γγ) to be (1.188 ± 0.034) × 10−2 [11, 3]. From this, we

can establish that the ratio of numbers of these two types of events produced in

our dataset should be (2.376 ± 0.068) × 10−2 from Eq. 4.47.

r = nI

nII
= 2 × B(π0 → γe+e−)

B(π0 → γγ
= 0.02376 ± 0.00068 (4.47)

In our method, we obtain a measurement of this ratio from data and com-

pute the branching fraction B(π0 → γe+e−). The deviation of this measurement

from the currently accepted value of the branching fraction translates to the sys-

tematic uncertainty in our measurement of εe+e−/εγ:

∆εe+e−/εγ

εe+e−/εγ
=
∆B(π0 → γe+e−)
B(π0 → γe+e−) (4.48)

Our method reconstructs the ψ(2S ) through events of Type I (ψ(2S ) →

J/ψπ0π0; π0 → γγ; π0 → e+e−γ) and events of Type II (ψ(2S ) → J/ψπ0π0; π0 →

γγ; π0 → γγ). We estimate the reconstruction efficiencies for both types of events

using Monte Carlo samples. First, we establish a set of criteria to reconstruct

Type I events in our data. To illustrate our method, we shall call the efficiency

of selecting Type I events from an MC sample of Type I events εs. The efficiency

of keeping Type II events in the signal region of these criteria from an MC sam-

ple of Type II events shall be called εc. For nI produced Type I and nII produced

Type II events, we can expect an yield of y events after applying this set of se-

lection criteria to our data as expressed in Eq. 4.49.

nIεs + nI Iεc = y (4.49)

Using the currently accepted ratio of nI/nII from Eq. 4.47, we may calculate nI,

the number of Type I events in our data, from this.
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Hereafter, we construct a set of selection criteria to reconstruct Type II events

in our data. Using Type II Monte Carlo event samples, we find the reconstruc-

tion efficiency εγ for this set of criteria. Then we estimate the number of pro-

duced Type II events in our data with this method as nII using

nIIεγ = yγ (4.50)

where yγ is the yield of our set of criteria on data to isolate Type II events.

Having estimated the numbers of Type I and II events in our data, we may

estimate the branching fraction B(π0 → e+e−γ) using

B(π0 → e+e−γ) = B(π0 → γγ)
2

nI

nII
. (4.51)

.

In order to establish a systematic uncertainty in our measurement of B(π0 →

e+e−γ), we implement a second method for measuring this branching fraction.

In this method, we use Type I and Type II events in our data that are most likely

conversion events, events where one of the photons from the π0 converts to a

e+e− in material, in combination with Eq. 4.49 to estimate the total number of

Type I and Type II events in the data. In order to select events that are most

likely to be conversion events, we select events that are rejected by the ∆d0 and

∆φ0 criteria on the tracks of the e+e− pair. These selection criteria have been de-

scribed in Sections 4.2.5 and 4.2.6. The efficiency of selecting such conversion-

type events from a Monte Carlo sample of Type I events shall be called ε ′s. The

efficiency of selecting such events from a Monte Carlo sample of Type II events

shall be called ε′c. Thus, upon the application of our selection criteria (that in-
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verts the standard ∆d0 and δφ0 requirements), the yield in data may be denoted

by y′ as expressed in Eq. 4.52.

nIε
′
s + nIIε

′
c = y′ (4.52)

Solving Equations 4.49 and 4.50 simultaneously gives us the number of Type

I events in the data. The number of Type II events is used as deduced earlier

from the selection of Type II events. This ratio, nI/nII, is plugged into Equation

4.51 to give us a second estimate for the π0 Dalitz decay branching fraction.

Now we shall discuss the details of implementation of the two methods.

4.12.1 Method 1

First, we shall describe the selection criteria used to select events from data in

our first method.

The J/ψ is reconstructed from its decays to e+e− and µ−µ+. The tracks of these

leptons are fitted with the Kalman fitter using electron and muon mass hypothe-

ses respectively. 50% of the expected number of hits on a track are required to be

present. The momentum of each track is required to be between 500 MeV and

10 GeV. They may be reconstructed upto a cos θ of 0.93. The track parameter d0

must be less than 5 mm and z0 must be less than 5 cm. The dE/dx of electron

and muon tracks are required to be within 3 σ of their expected values. The J/ψ

has a mass of 3096.92 ± 0.001 MeV and a full natural width of 93.2 ± 2.1 keV. In

our study, we require the invariant mass of the e+e− pair to be within 30 MeV

of 3.09200 GeV, and the invariant mass of the µ−µ+ pair to be within 30 MeV of
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Figure 4.129: Invariant mass of the J/ψ reconstructed from its decay to e+e−
(top plots) and µ+µ− (bottom plots). The column on the left is
from signal MC of Type I events. The column at the center is
from signal MC of Type II events. The column on the right is
from data.

3.09692 GeV as depicted in Fig 4.129.

The first π0 in Type I events is reconstructed from its decay to two photons.

The photons must not have showered in known noisy crystals and must not

have tracks matched to them. Each of their shower energies are required to be

between 10 Mev and 2 Gev. The pull mass of the π0 is required to be within ±

2.5 σ. This is shown in Fig. 4.130.

The second π0 in Type II events is reconstructed from its decay to a photon

and a soft e+e− pair. Requirements on the photon are identical to those of the

photons from the first π0. The electron is Kalman fitted using the electron mass

hypothesis and is required to have a momentum between 10 Mev and 2 GeV. It

must be reconstructed within an angle of cos θ = 0.93. The track parameter d0

200



h_pi0Mass_Pull
Entries  21302
Mean   -0.09217
RMS     1.376

σ 
-3 -2 -1 0 1 2 3100

200

300

400

500

600

700

800

h_pi0Mass_Pull
Entries  21302
Mean   -0.09217
RMS     1.376

 Pull Mass0π h_pi0Mass_Pull
Entries  2070
Mean   0.01718
RMS     1.425

σ 
-3 -2 -1 0 1 2 3

10

20

30

40

50

60

70

80

h_pi0Mass_Pull
Entries  2070
Mean   0.01718
RMS     1.425

 Pull Mass0π h_pi0Mass_Pull
Entries  16046
Mean   -0.08606
RMS     1.468

σ 
-3 -2 -1 0 1 2 3

150

200

250

300

350

400

450

500

h_pi0Mass_Pull
Entries  16046
Mean   -0.08606
RMS     1.468

 Pull Mass0π

Figure 4.130: The invariant mass of the first π0. The column on the left is
from signal MC of Type I events. The column at the center is
from MC of Type II events. The column on the right is from
data.
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Figure 4.131: The invariant mass of the second π0. The column on the left
is from signal MC of Type I events. The column at the center
is from MC of Type II events. The column on the right is from
data.

must be less than 5 mm and z0 must be less than 5 cm. The dE/dx of the track

is required to be within 3 σ of the value expected of an electron. The invariant

mass of the γe+e− is required to be within 18 MeV of the nominal mass of the π0

which is 134.9766 MeV. The distribution of this invariant mass and the selection

range is shown in Fig. 4.131.

The electron and the positron are each required to have an energy less than

144 MeV as indicated in Fig. 4.132. This is the range of energies of the positron

and the electron from the decay D∗+s → D+s e+e−.
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Figure 4.132: The distribution of energy of the positron and the electron
from the Dalitz decay of the π0 in the MC. Events contain-
ing positron and electrons with energy less than 144 MeV, as
indicated, are accepted.

Next, we combine the four-momenta of the J/ψ and two π0 to get the four-

momentum of the ψ(2S ) meson. This must be close to the four-momentum of

the colliding e+e− pair at the center of the CLEO-c detector. Hence, we apply

selection criteria constraining each component of the momentum of the ψ(2S )

to be within 40 MeV of that of the collision momentum. This is shown in Fig.

4.133.

We select events where the difference between the invariant masses of the

reconstructed ψ(2S ) candidate and the J/ψ candidate is within 30 MeV of the

nominal difference in masses. This is depicted in Fig. 4.134.

A background to the selection of Type I events are Type II events where one

of the photons from a π0 converts in material to produce an e+e− pair. We reject

this background using the ∆d0 > −5mm and ∆φ0 < 0.12 criteria used in our

D∗+s → D+s e+e− reconstruction. This is shown in Fig. 4.135 and 4.136.

The aforementioned selection criteria are found to accept 1,069 Type I events

out of a Monte Carlo sample of 299,794. Thus, we record the efficiency εs =

0.0357 ± 0.0011 as applicable in Eq. 4.49. They are also found to accept 10 Type
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Figure 4.133: Four momenta of ψ(2S ) relative to the e+e− collision four mo-
menta. The column on the left is from signal MC of Type
I events. The column at the center is from MC of Type II
events. The column on the right is from data.

II events out of a Monte Carlo sample of 149,888 and thus we may write εc =

2/149, 888 = (1.33 ± 0.94) × 10−5. When these selection criteria are applied to our

data, we get an yield of y = 306 events.

Assuming the established ratio of Type I to Type II events detailed in Eq.

4.47 to hold true, we may solve Eq. 4.49 for nI . The solution is given in Eq. 4.53

and 4.54. The ⊕ symbol is used to denote addition in quadrature. This gives us
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Figure 4.134: Difference between the invariant masses of the ψ(2S ) and
the J/ψ. The column on the left is from signal MC of Type
I events. The column at the center is from MC of Type II
events. The column on the right is from data.
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Figure 4.135: The ∆d0 between the e+e− pair from the second π0. The col-
umn on the left is from signal MC of Type I events. The col-
umn at the center is from MC of Type II events. The column
on the right is from data.
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Figure 4.136: The ∆φ0 between the e+e− pair from the second π0. The col-
umn on the left is from signal MC of Type I events. The col-
umn at the center is from MC of Type II events. The column
on the right is from data.
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nI = 8447 ± 554.

nI =
y

εs + εc/r
(4.53)

∆nI

nI
=
∆y
y ⊕

∆εs ⊕ (εc/r)(∆εc/εc ⊕ ∆r/r)
εs + εc/r

(4.54)

Having calculated the number of Type I events in our data, we may now

estimate the number of Type II events present in the data sample. The recon-

struction of Type II events is similar to the reconstruction of Type I events. The

second π0 is reconstructed from photons with the same selection criteria as the

first π0. The ∆d0 and ∆φ0 cuts are not used as they are clearly inapplicable. A

signal MC for Type II events was generated to calculate the signal efficiency of

our criteria. Distributions of the J/ψ mass, the pull masses of the two π0, the

momentum of the ψ(2S ) relative to the collision momentum and the mass dif-

ference between the ψ(2S ) and the J/ψ are presented in Fig. 4.137, 4.138, 4.139,

4.140 and 4.141.

25,713 events out of 149,888 signal MC events were seen to be accepted by

our criteria. This gives a signal efficiency εγ = 0.1716 ± 0.0011. We find the yield

in data to be yII = 58, 602 events. Using Eq. 4.50 we infer that the number of

Type II events is our data is nII = 341, 607 ± 2, 555.

Now, we may calculate the ratio of Type I to Type II events in our data as

nI/nII and from that estimate the branching fraction B(π0 → γe+e−) thus:

nI

nII
=

8447 ± 554
341607 ± 2555 =

2B(π0 → e+e−γ)
(98.823 ± 0.034) × 10−2 . (4.55)
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Figure 4.137: Invariant mass of the J/ψ reconstructed from its decay to e+e−
(top plots) and µ+µ− (bottom plots). The column on the left is
from signal MC of Type II events. The column on the right is
from data.

From this, we calculate B(π0 → e+e−γ) = 0.01222 ± 0.00081(stat). In order to

establish a systematic uncertainty in this measurement, we use a second method

to estimate B(π0 → e+e−γ).
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Figure 4.138: The invariant mass of the first π0. The column on the left is
from signal MC of Type II events. The column on the right is
from data.
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Figure 4.139: The invariant mass of the second π0. The column on the left
is from signal MC of Type II events. The column on the right
is from data.
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Figure 4.140: Four momenta of ψ(2S ) relative to the e+e− collision four mo-
menta. The column on the left is from signal MC of Type II
events. The column on the right is from data.
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Figure 4.141: Difference between the invariant masses of the ψ(2S ) and the
J/ψ. The column on the left is from signal MC of Type II
events. The column on the right is from data.
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Figure 4.142: The ∆φ0 between the e+e− pair. Now we accept events with
∆φ0 greater than 0.12. These were previously rejected as
likely to be conversion-type events. The column on the left is
from signal MC of Type I events. The column at the center is
from MC of Type II events. The column on the right is from
data.

4.12.2 Method 2

Our second method for estimating B(π0 → e+e−γ) uses conversion-type events

found in data. Conversion-type events are those where both π0 decay to γγ but

at least one photon converts in material to form a e+e− pair. We select for such

events by requiring all the criteria on J/ψ and the invariant masses of the π0 used

to select Type I events, except now we look at the “wrong side” of the ∆d0 and

∆φ0 criteria. In other words, we keep events which were previously rejected

by both the ∆d0 and the ∆φ0 criteria. The distribution of ∆d0 is the same as

Fig. 4.135 since all preceding criteria are identical. The distribution of ∆φ0 after

having accepted tracks on the ”wrong side” of ∆d0 is presented in Fig. 4.142.

The efficiency of such a set of selection criteria for Type I events is found to

be ε′s = 10/29, 974 = (3.34 ± 1.1(stat)) × 10−4. The efficiency for Type II events

is found to be ε′c = 54/149, 888 = (3.60 ± 0.49(stat)) × 10−4. On applying these

selection criteria to our data, we are left with an yield of y′ = 141 events. These

values may be plugged into Eq. 4.52 and solved simultaneously with Eq. 4.49
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to get nI = 8437 ± 342. The solution for nI is given in Eq. 4.56 and 4.57.

nI =
yε′c − y′εc

εsε′c − εcε′s
(4.56)

∆nI =
δnI

δy ∆y ⊕ δnI

δy′ ∆y′ ⊕ δnI

δεc
∆εc ⊕

δnI

δεs
∆εs ⊕

δnI

δε′c
∆ε′c ⊕

δnI

δε′s
∆ε′s (4.57)

where

δnI

δy = ε
′
c

δnI

δy′ = −εc

δnI

δεc
=

−y
εsε′c − εcε′s

+
yε′c − y′εc

(εsε′c − εcε′s)2 ε
′
s

δnI

δεs
= − yε′c − y′εc

(εsε′c − εcε′s)2 ε
′
c

δnI

δε′c
=

y
εsε′c − εcε′s

− yε′c − y′εc

(εsε′c − εcε′s)2 εs

δnI

δε′s
=

yε′c − y′εc

(εsε′c − εcε′s)2 εc

Now, we may calculate the ratio of Type I to Type II events in our data as

nI/nII and from that estimate the branching fraction B(π0 → γe+e−) thus:
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nI

nII
=

8437 ± 342
341607 ± 2555 =

2B(π0 → e+e−γ)
(98.823 ± 0.034) × 10−2 . (4.58)

From this, we calculate B(π0 → e+e−γ) = 0.01220 ± 0.00050(stat).

Now, we may combine our results from the two methods to establish a sys-

tematic error. Result from method 1: B(π0 → e+e−γ) = 0.01222 ± 0.00081(stat).

Result from method 2: B(π0 → e+e−γ) = 0.01220 ± 0.00050(stat). The result of

method 2 has the smaller uncertainty and will, therefore, be quoted as the cen-

tral value of our measurement. The statistical uncertainty will quoted as the

quadrature sum of the uncertainties in the two results. The absolute differ-

ence between the central values of the two results will be quoted as the sys-

tematic uncertainty in our measurement. Hence, we report B(π0 → e+e−γ) =

(1.222 ± 0.081(stat) ± 0.002(syst)) × 10−2.

The currently accepted branching fraction for the Dalitz decay of the π0 is

(1.174 ± 0.035) × 10−2 [6, 22, 21, 7, 3]. The difference between this and our result

is 0.046%. Hence, we cannot motivate a correction to the tracking efficiency and

must settle for an uncertainty. We add the difference between our measured

branching fraction and the currently accepted measurement, and the uncertain-

ties in our result in quadrature to get a total uncertainty of 0.077%. Thus, the

fractional uncertainty that we set out to estimate is found to be 6.51% as shown

in Eq. 4.59.

∆εe+e−/εγ

εe+e−/εγ
=
∆B(π0 → γe+e−)
B(π0 → γe+e−) =

0.077%
1.174%

= 6.51% (4.59)
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We conclude this dissertation with a compilation of the results of our analy-

sis.

We have observed the Dalitz decay D∗+s → D+s e+e− with a signal significance

of 6.4 σ using nine hadronic decays of the D+s as tabulated in Table 4.75. It is

the first instance of a Dalitz decay that has been observed in the electromagnetic

decay of mesons containing the heavy charm or bottom quark.

We have also measured the ratio of branching fractions B(D∗+s →

D+s e+e−)/B(D∗+s → D+s γ) to be (0.72 ± 0.14(stat) ± 0.06(syst))% as presented in Eq.

4.35 of Section 4.11. The statistical uncertainty arises from the limited signal

yields of D∗+s → D+s e+e− and D∗+s → D+s γ. Larger datasets will decrease this error.

The systematic uncertainty arises from systematic uncertainties in the estimated

background for the D∗+s → D+s e+e− yield, systematic uncertainties in the signal

yield for D∗+s → D+s γ, and the systematic uncertainty from the e+e− and γ recon-

struction efficiencies in the energy range relevant for this analysis.

Finally, in Section 4.11.11 we have recomputed the absolute branching frac-

tions of the D∗+s meson in light of our discovery and measurement as follows.

B(D∗+s → D+s γ) = (93.5 ± 0.5 ± 0.5)%

B(D∗+s → D+s π0) = (5.8 ± 0.4 ± 0.5)%

B(D∗+s → D+s e+e−) = (0.67 ± 0.13 ± 0.05)%
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A.1 D+s → KS K+
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Optimization plots for the mD+s selection criterion in the D+s → KS K+ mode. Plots
on the left grouped as Fig. A.1 correspond to pion-fitted tracks in the simulated
samples. Plots on the right grouped as Fig. A.2 correspond to electron-fitted
tracks in the samples. The top left plots, for both samples, is the distribution
of mD+s in the signal Monte Carlo sample. The top right plot graphs the signal
MC sample accepted by the criterion as we increase the cut width plotted on
the x-axis. For the pion-fitted samples on the left, the plots in the second and
third rows correspond to the generic and continuum MC samples, respectively.
For the electron-fitted samples on the right, the plots in the second, third and
fourth rows correspond to the D∗+s → D+s γ, generic and continuum MC samples,
respectively. For both sets of plots, the bottom left shows the significance of the
signal over background. The bottom right plot shows the precision of the signal.
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Figure A.1: mD+s , KS K+, pion-fit

 (GeV)±
SD

 m1.94 1.95 1.96 1.97 1.98 1.99 2
 #

 E
ve

nt
s 

/ 0
.6

 M
eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

 Signal Sample±
SDm h_dsPlusM_signal

Entries  1596
Mean    1.968
RMS    0.007181

 Signal Sample±
SDm

 Cut Width (GeV)
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

 #
 E

ve
nt

s

0

0.5

1

1.5

2

2.5

3

3.5

4

 Signal Sample vs Cut Width±
SDm h_dsPlusM_signal_range

Entries  21437
Mean   0.01137
RMS    0.004746

 Signal Sample vs Cut Width±
SDm

 (GeV)±
SD

 m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

 #
 E

ve
nt

s 
/ 1

.5
 M

eV

0
0.02
0.04
0.06
0.08

0.1

0.12
0.14

0.16
0.18

0.2
0.22

 Conversion Sample±
SDm h_dsPlusM_conver

Entries  9
Mean    1.965
RMS    0.0127

 Conversion Sample±
SDm

 Cut Width (GeV)
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

 #
 E

ve
nt

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 Conversion MC Sample vs Cut Width±
SDm h_dsPlusM_conver_range

Entries  121
Mean   0.01107
RMS    0.004782

 Conversion MC Sample vs Cut Width±
SDm

 (GeV)±
SD

 m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

 #
 E

ve
nt

s 
/ 1

.5
 M

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

 Generic MC Background Sample±
SDm h_dsPlusM_generic

Entries  61
Mean    1.982
RMS    0.04773

 Generic MC Background Sample±
SDm

 GeV±
SD

 m0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

 #
 E

ve
nt

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 Generic MC Background Sample vs Cut Width±
SD

m h_dsPlusM_generic_range

Entries  97
Mean   0.01163
RMS    0.005118

 Generic MC Background Sample vs Cut Width±
SD

m

 (GeV)±
SD

 m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

 #
 E

ve
nt

s 
/ 1

.5
 M

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

 Continuum MC Background Sample±
SDm h_dsPlusM_continu

Entries  6
Mean    1.989
RMS    0.04463

 Continuum MC Background Sample±
SDm

 Cut Width GeV
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

 #
 E

ve
nt

s

-1

-0.5

0

0.5

1

 Continuum MC Background Sample vs Cut Width±
SDm h_dsPlusM_continu_range

Entries  0
Mean        0
RMS         0

 Continuum MC Background Sample vs Cut Width±
SDm

 Cut Width (GeV)
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.020

0.5

1

1.5

2

2.5

3

3.5

4

4.5

 Signal Significance vs Cut Width±
SDm h_dsPlusM_significance

Entries  20
Mean   0.01066
RMS    0.004994

 Signal Significance vs Cut Width±
SDm

 Cut Width (GeV)
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.020

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 Signal Precision vs Cut Width±
SDm h_dsPlusM_precision

Entries  20
Mean   0.01064
RMS    0.00506

 Signal Precision vs Cut Width±
SDm

Figure A.2: mD+s , KS K+, electron-fit
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Optimization plots for the mBC selection criterion in the D+s → KS K+ decay
mode. Plots on the left grouped as Fig. A.3 correspond to pion-fitted tracks
in the simulated samples. Plots on the right grouped as Fig. A.4 correspond
to electron-fitted tracks in the samples. The top left plots, for both samples, is
the distribution of mBC in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.3: mBC, KS K+, pion-fit
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Figure A.4: mBC, KS K+, electron-fit
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Optimization plots for the δm selection criterion in the D+s → KS K+ decay
mode. Plots on the left grouped as Fig. A.5 correspond to pion-fitted tracks
in the simulated samples. Plots on the right grouped as Fig. A.6 correspond
to electron-fitted tracks in the samples. The top left plots, for both samples,
is the distribution of δm in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.5: δm, KS K+, pion-fit
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Figure A.6: δm, KS K+, electron-fit
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Optimization plots for the selection criterion on the ∆d0 between the e+e− in
the D+s → KS K+ decay mode. Plots on the left grouped as Fig. A.7 correspond
to pion-fitted tracks in the simulated samples. Plots on the right grouped as
Fig. A.8 correspond to electron-fitted tracks in the samples. The top left plots,
for both samples, is the distribution of ∆d0 in the signal Monte Carlo sample.
The top right plot graphs the signal MC sample accepted by the criterion as
we vary the cut on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.7: ∆d0, KS K+, pion-fit
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Figure A.8: ∆d0, KS K+, electron-fit
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Optimization plots for the selection criterion on the ∆φ0 between the e+e− in
the D+s → KS K+ decay mode. Plots on the left grouped as Fig. A.9 correspond
to pion-fitted tracks in the simulated samples. Plots on the right grouped as
Fig. A.10 correspond to electron-fitted tracks in the samples. The top left plots,
for both samples, is the distribution of ∆φ0 in the signal Monte Carlo sample.
The top right plot graphs the signal MC sample accepted by the criterion as
we vary the cut on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.

 (GeV)Φ∆ 
-1.5 -1 -0.5 0 0.5 1 1.5

 #
 E

ve
nt

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 Signal SampleΦ∆ h_dPhi_signal
Entries  1508
Mean   -0.05944
RMS    0.3149

 Signal SampleΦ∆

 Cut Width (GeV)
-0.1 -0.05 0 0.05 0.1 0.15 0.2

 #
 E

ve
nt

s

0

0.5

1

1.5

2

2.5

3

3.5

 Signal Sample vs Cut WidthΦ∆ h_dPhi_signal_range

Entries  31401
Mean   0.06283
RMS    0.07852

 Signal Sample vs Cut WidthΦ∆

 (GeV)Φ∆ 
-1.5 -1 -0.5 0 0.5 1 1.5

 #
 E

ve
nt

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 Generic MC BackgroundΦ∆ h_dPhi_generic
Entries  70
Mean   0.07624
RMS     0.257

 Generic MC BackgroundΦ∆

 Cut Width (GeV)
-0.1 -0.05 0 0.05 0.1 0.15 0.2

 #
 E

ve
nt

s

0

0.5

1

1.5

2

2.5

 Generic MC Background vs Cut WidthΦ∆ h_dPhi_generic_range

Entries  515
Mean   0.08187
RMS    0.0865

 Generic MC Background vs Cut WidthΦ∆

 (GeV)Φ∆ 
-1.5 -1 -0.5 0 0.5 1 1.5

 #
 E

ve
nt

s

-1

-0.5

0

0.5

1

 Continuum MC BackgroundΦ∆ h_dPhi_continu

Entries  2
Mean        0
RMS         0

 Continuum MC BackgroundΦ∆

 Cut Width (GeV)
-0.1 -0.05 0 0.05 0.1 0.15 0.2

 #
 E

ve
nt

s

-1

-0.5

0

0.5

1

 Continuum MC Background vs Cut WidthΦ∆ h_dPhi_continu_range

Entries  0
Mean        0
RMS         0

 Continuum MC Background vs Cut WidthΦ∆

 Cut Width (GeV)
-0.1 -0.05 0 0.05 0.1 0.15 0.2

 #
 E

ve
nt

s

0

0.5

1

1.5

2

2.5

3

3.5

 Significance vs Cut WidthΦ∆ h_dPhi_significance

Entries  30
Mean   0.04905
RMS    0.07591

 Significance vs Cut WidthΦ∆

 Cut Width (GeV)
-0.1 -0.05 0 0.05 0.1 0.15 0.2

 #
 E

ve
nt

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 Precision vs Cut WidthΦ∆ h_dPhi_precision

Entries  30
Mean   0.05262
RMS    0.07983

 Precision vs Cut WidthΦ∆

Figure A.9: ∆φ0, KS K+, pion-fit
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Figure A.10: ∆φ0, KS K+, electron-fit
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A.2 D+s → ηπ+; η→ γγ
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Optimization plots for the mD+s selection criterion in the D+s → ηπ+ mode. Plots
on the left grouped as Fig. A.11 correspond to pion-fitted tracks in the simulated
samples. Plots on the right grouped as Fig. A.12 correspond to electron-fitted
tracks in the samples. The top left plots, for both samples, is the distribution
of mD+s in the signal Monte Carlo sample. The top right plot graphs the signal
MC sample accepted by the criterion as we increase the cut width plotted on
the x-axis. For the pion-fitted samples on the left, the plots in the second and
third rows correspond to the generic and continuum MC samples, respectively.
For the electron-fitted samples on the right, the plots in the second, third and
fourth rows correspond to the D∗+s → D+s γ, generic and continuum MC samples,
respectively. For both sets of plots, the bottom left shows the significance of the
signal over background. The bottom right plot shows the precision of the signal.
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Figure A.11: mD+s , ηπ+, pion-fit
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Figure A.12: mD+s , ηπ+, electron-fit
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Optimization plots for the mBC selection criterion in the D+s → ηπ+ decay mode.
Plots on the left grouped as Fig. A.13 correspond to pion-fitted tracks in the
simulated samples. Plots on the right grouped as Fig. A.14 correspond to
electron-fitted tracks in the samples. The top left plots, for both samples, is
the distribution of mBC in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.13: mBC, ηπ+, pion-fit
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Figure A.14: mBC, ηπ+, electron-fit
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Optimization plots for the δm selection criterion in the D+s → ηπ+ decay mode.
Plots on the left grouped as Fig. A.15 correspond to pion-fitted tracks in the
simulated samples. Plots on the right grouped as Fig. A.16 correspond to
electron-fitted tracks in the samples. The top left plots, for both samples, is
the distribution of δm in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.15: δm, ηπ+, pion-fit
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Figure A.16: δm, ηπ+, electron-fit
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Optimization plots for the selection criterion on the ∆d0 between the e+e− in
the D+s → ηπ+ decay mode. Plots on the left grouped as Fig. A.17 correspond
to pion-fitted tracks in the simulated samples. Plots on the right grouped as
Fig. A.18 correspond to electron-fitted tracks in the samples. The top left plots,
for both samples, is the distribution of ∆d0 in the signal Monte Carlo sample.
The top right plot graphs the signal MC sample accepted by the criterion as
we vary the cut on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.17: ∆d0, ηπ+, pion-fit
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Figure A.18: ∆d0, ηπ+, electron-fit
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Optimization plots for the selection criterion on the ∆φ0 between the e+e− in
the D+s → ηπ+ decay mode. Plots on the left grouped as Fig. A.19 correspond
to pion-fitted tracks in the simulated samples. Plots on the right grouped as
Fig. A.20 correspond to electron-fitted tracks in the samples. The top left plots,
for both samples, is the distribution of ∆φ0 in the signal Monte Carlo sample.
The top right plot graphs the signal MC sample accepted by the criterion as
we vary the cut on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.

 (GeV)Φ∆ 
-1.5 -1 -0.5 0 0.5 1 1.5

 #
 E

ve
nt

s

0

0.2

0.4

0.6

0.8

1

1.2

 Signal SampleΦ∆ h_dPhi_signal
Entries  1909
Mean   -0.04563
RMS     0.353

 Signal SampleΦ∆

 Cut Width (GeV)
-0.1 -0.05 0 0.05 0.1 0.15 0.2

 #
 E

ve
nt

s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

 Signal Sample vs Cut WidthΦ∆ h_dPhi_signal_range

Entries  38849
Mean   0.06282
RMS    0.07839

 Signal Sample vs Cut WidthΦ∆

 (GeV)Φ∆ 
-1.5 -1 -0.5 0 0.5 1 1.5

 #
 E

ve
nt

s

0

0.2

0.4

0.6

0.8

1

 Generic MC BackgroundΦ∆ h_dPhi_generic
Entries  76
Mean   0.2816
RMS    0.1878

 Generic MC BackgroundΦ∆

 Cut Width (GeV)
-0.1 -0.05 0 0.05 0.1 0.15 0.2

 #
 E

ve
nt

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 Generic MC Background vs Cut WidthΦ∆ h_dPhi_generic_range

Entries  161
Mean   0.1022
RMS    0.07808

 Generic MC Background vs Cut WidthΦ∆

 (GeV)Φ∆ 
-1.5 -1 -0.5 0 0.5 1 1.5

 #
 E

ve
nt

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 Continuum MC BackgroundΦ∆ h_dPhi_continu
Entries  11
Mean   0.3049
RMS    0.2084

 Continuum MC BackgroundΦ∆

 Cut Width (GeV)
-0.1 -0.05 0 0.05 0.1 0.15 0.2

 #
 E

ve
nt

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

 Continuum MC Background vs Cut WidthΦ∆ h_dPhi_continu_range

Entries  22
Mean     0.08
RMS    0.06344

 Continuum MC Background vs Cut WidthΦ∆

 Cut Width (GeV)
-0.1 -0.05 0 0.05 0.1 0.15 0.2

 #
 E

ve
nt

s

0

1

2

3

4

5

6

7

8

9

 Significance vs Cut WidthΦ∆ h_dPhi_significance

Entries  30
Mean   0.03634
RMS    0.08094

 Significance vs Cut WidthΦ∆

 Cut Width (GeV)
-0.1 -0.05 0 0.05 0.1 0.15 0.2

 #
 E

ve
nt

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 Precision vs Cut WidthΦ∆ h_dPhi_precision

Entries  30
Mean   0.05274
RMS    0.08102

 Precision vs Cut WidthΦ∆

Figure A.19: ∆φ0, ηπ+, pion-fit
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Figure A.20: ∆φ0, ηπ+, electron-fit
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A.3 D+s → η′π+; η′ → π+π−η; η→ γγ
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Optimization plots for the mD+s selection criterion in the D+s → η′π+; η′ →
π+π−η; η → γγ mode. Plots on the left grouped as Fig. A.21 correspond to
pion-fitted tracks in the simulated samples. Plots on the right grouped as Fig.
A.22 correspond to electron-fitted tracks in the samples. The top left plots,
for both samples, is the distribution of mD+s in the signal Monte Carlo sample.
The top right plot graphs the signal MC sample accepted by the criterion as
we increase the cut width plotted on the x-axis. For the pion-fitted samples
on the left, the plots in the second and third rows correspond to the generic
and continuum MC samples, respectively. For the electron-fitted samples on
the right, the plots in the second, third and fourth rows correspond to the
D∗+s → D+s γ, generic and continuum MC samples, respectively. For both sets of
plots, the bottom left shows the significance of the signal over background. The
bottom right plot shows the precision of the signal.
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Figure A.21: mD+s , η′π+; η′ → π+π−η, pion-
fit
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Figure A.22: mD+s , η′π+; η′ → π+π−η, e-fit

229



Optimization plots for the mBC selection criterion in the D+s → η′π+; η′ →
π+π−η; η → γγ decay mode. Plots on the left grouped as Fig. A.23 correspond
to pion-fitted tracks in the simulated samples. Plots on the right grouped as
Fig. A.24 correspond to electron-fitted tracks in the samples. The top left plots,
for both samples, is the distribution of mBC in the signal Monte Carlo sample.
The top right plot graphs the signal MC sample accepted by the criterion as
we increase the cut width plotted on the x-axis. For the pion-fitted samples
on the left, the plots in the second and third rows correspond to the generic
and continuum MC samples, respectively. For the electron-fitted samples on
the right, the plots in the second, third and fourth rows correspond to the
D∗+s → D+s γ, generic and continuum MC samples, respectively. For both sets of
plots, the bottom left shows the significance of the signal over background. The
bottom right plot shows the precision of the signal.
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Figure A.23: mBC, η′π+; η′ → π+π−η,
pion-fit
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Figure A.24: mBC, η′π+; η′ → π+π−η, e-fit
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Optimization plots for the δm selection criterion in the D+s → η′π+; η′ →
π+π−η; η → γγ decay mode. Plots on the left grouped as Fig. A.25 correspond
to pion-fitted tracks in the simulated samples. Plots on the right grouped as
Fig. A.26 correspond to electron-fitted tracks in the samples. The top left plots,
for both samples, is the distribution of δm in the signal Monte Carlo sample.
The top right plot graphs the signal MC sample accepted by the criterion as
we increase the cut width plotted on the x-axis. For the pion-fitted samples
on the left, the plots in the second and third rows correspond to the generic
and continuum MC samples, respectively. For the electron-fitted samples on
the right, the plots in the second, third and fourth rows correspond to the
D∗+s → D+s γ, generic and continuum MC samples, respectively. For both sets of
plots, the bottom left shows the significance of the signal over background. The
bottom right plot shows the precision of the signal.
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Figure A.25: δm, η′π+; η′ → π+π−η, pion-
fit

m (GeV)δ 
0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16

 #
 E

ve
nt

s 
/ 4

00
 k

eV

0

0.01

0.02

0.03

0.04

0.05

0.06

m Signal Sampleδ h_DeltaM_signal
Entries  759
Mean   0.1444
RMS    0.004936

m Signal Sampleδ

 Cut Width (GeV)
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

 #
 E

ve
nt

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m Signal Sample vs Cut Widthδ h_DeltaM_signal_range

Entries  11440
Mean   0.01075
RMS    0.004982

m Signal Sample vs Cut Widthδ

m (GeV)δ 
0.08 0.1 0.12 0.14 0.16 0.18 0.2

 #
 E

ve
nt

s 
/ 1

.2
 M

eV

0

0.02

0.04

0.06

0.08

0.1

m Conversion MC Sampleδ h_DeltaM_conver
Entries  6
Mean   0.1787
RMS    0.003995

m Conversion MC Sampleδ

 Cut Width (GeV)
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

 #
 E

ve
nt

s

-1

-0.5

0

0.5

1

m Conversion MC Sample vs Cut Widthδ h_DeltaM_conver_range

Entries  0
Mean        0
RMS         0

m Conversion MC Sample vs Cut Widthδ

m (GeV)δ 
0.08 0.1 0.12 0.14 0.16 0.18 0.2

 #
 E

ve
nt

s 
/ 1

.2
 M

eV

-1

-0.5

0

0.5

1

m Generic MC Background Sampleδ h_DeltaM_generic
Entries  0
Mean        0
RMS         0

m Generic MC Background Sampleδ

 Cut Width (GeV)
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

 #
 E

ve
nt

s

-1

-0.5

0

0.5

1

m Generic MC Background vs Cut Widthδ h_DeltaM_generic_range

Entries  0
Mean        0
RMS         0

m Generic MC Background vs Cut Widthδ

m (GeV)δ 
0.08 0.1 0.12 0.14 0.16 0.18 0.2

 #
 E

ve
nt

s 
/ 1

.2
 M

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

m Contiuum MC Background Sampleδ h_DeltaM_continu
Entries  1
Mean   0.1719
RMS    3.492e-10

m Contiuum MC Background Sampleδ

 Cut Width (GeV)
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

 #
 E

ve
nt

s

-1

-0.5

0

0.5

1

m Continuum MC Background vs Cut Widthδ h_DeltaM_continu_range

Entries  0
Mean        0
RMS         0

m Continuum MC Background vs Cut Widthδ

 Cut Width (GeV)
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

 #
 E

ve
nt

s

-1

-0.5

0

0.5

1

m Signal Significance vs Cut Widthδ h_DeltaM_significance

Entries  19
Mean        0
RMS         0

m Signal Significance vs Cut Widthδ

 Cut Width (GeV)
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

 #
 E

ve
nt

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m Signal Precision vs Cut Widthδ h_DeltaM_precision
Entries  19
Mean   0.01024
RMS    0.005198

m Signal Precision vs Cut Widthδ

Figure A.26: δm, η′π+; η′ → π+π−η, e-fit
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Optimization plots for the selection criterion on the ∆d0 between the e+e− in
the D+s → η′π+; η′ → π+π−η; η → γγ decay mode. Plots on the left grouped
as Fig. A.27 correspond to pion-fitted tracks in the simulated samples. Plots
on the right grouped as Fig. A.28 correspond to electron-fitted tracks in the
samples. The top left plots, for both samples, is the distribution of ∆d0 in
the signal Monte Carlo sample. The top right plot graphs the signal MC
sample accepted by the criterion as we vary the cut on the x-axis. For the
pion-fitted samples on the left, the plots in the second and third rows cor-
respond to the generic and continuum MC samples, respectively. For the
electron-fitted samples on the right, the plots in the second, third and fourth
rows correspond to the D∗+s → D+s γ, generic and continuum MC samples,
respectively. For both sets of plots, the bottom left shows the significance of the
signal over background. The bottom right plot shows the precision of the signal.
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Figure A.27: ∆d0, η′π+; η′ → π+π−η, pion-
fit
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Figure A.28: ∆d0, η′π+; η′ → π+π−η, e-fit
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Optimization plots for the selection criterion on the ∆φ0 between the e+e− in
the D+s → η′π+; η′ → π+π−η; η → γγ decay mode. Plots on the left grouped
as Fig. A.29 correspond to pion-fitted tracks in the simulated samples. Plots
on the right grouped as Fig. A.30 correspond to electron-fitted tracks in the
samples. The top left plots, for both samples, is the distribution of ∆φ0 in
the signal Monte Carlo sample. The top right plot graphs the signal MC
sample accepted by the criterion as we vary the cut on the x-axis. For the
pion-fitted samples on the left, the plots in the second and third rows cor-
respond to the generic and continuum MC samples, respectively. For the
electron-fitted samples on the right, the plots in the second, third and fourth
rows correspond to the D∗+s → D+s γ, generic and continuum MC samples,
respectively. For both sets of plots, the bottom left shows the significance of the
signal over background. The bottom right plot shows the precision of the signal.

 (GeV)Φ∆ 
-1.5 -1 -0.5 0 0.5 1 1.5

 #
 E

ve
nt

s

0

0.05

0.1

0.15

0.2

0.25

0.3

 Signal SampleΦ∆ h_dPhi_signal
Entries  1181
Mean   -0.04737
RMS    0.3388

 Signal SampleΦ∆

 Cut Width (GeV)
-0.1 -0.05 0 0.05 0.1 0.15 0.2

 #
 E

ve
nt

s

0

0.2

0.4

0.6

0.8

1

 Signal Sample vs Cut WidthΦ∆ h_dPhi_signal_range

Entries  23498
Mean   0.06352
RMS    0.07858

 Signal Sample vs Cut WidthΦ∆

 (GeV)Φ∆ 
-1.5 -1 -0.5 0 0.5 1 1.5

 #
 E

ve
nt

s

0

0.05

0.1

0.15

0.2

0.25

0.3

 Generic MC BackgroundΦ∆ h_dPhi_generic
Entries  48
Mean   0.03029
RMS    0.3938

 Generic MC BackgroundΦ∆

 Cut Width (GeV)
-0.1 -0.05 0 0.05 0.1 0.15 0.2

 #
 E

ve
nt

s

0

0.2

0.4

0.6

0.8

1

 Generic MC Background vs Cut WidthΦ∆ h_dPhi_generic_range

Entries  309
Mean   0.08047
RMS    0.08094

 Generic MC Background vs Cut WidthΦ∆

 (GeV)Φ∆ 
-1.5 -1 -0.5 0 0.5 1 1.5

 #
 E

ve
nt

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

 Continuum MC BackgroundΦ∆ h_dPhi_continu
Entries  1
Mean   0.1533
RMS    1.267e-09

 Continuum MC BackgroundΦ∆

 Cut Width (GeV)
-0.1 -0.05 0 0.05 0.1 0.15 0.2

 #
 E

ve
nt

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

 Continuum MC Background vs Cut WidthΦ∆ h_dPhi_continu_range

Entries  4
Mean     0.17
RMS    0.01118

 Continuum MC Background vs Cut WidthΦ∆

 Cut Width (GeV)
-0.1 -0.05 0 0.05 0.1 0.15 0.2

 #
 E

ve
nt

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 Significance vs Cut WidthΦ∆ h_dPhi_significance

Entries  30
Mean   0.04656
RMS    0.07816

 Significance vs Cut WidthΦ∆

 Cut Width (GeV)
-0.1 -0.05 0 0.05 0.1 0.15 0.2

 #
 E

ve
nt

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 Precision vs Cut WidthΦ∆ h_dPhi_precision

Entries  30
Mean   0.05123
RMS    0.08006

 Precision vs Cut WidthΦ∆

Figure A.29: ∆φ0, η′π+; η′ → π+π−η, pion-
fit
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Figure A.30: ∆φ0, η′π+; η′ → π+π−η, e-fit
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A.4 D+s → K+K−π+π0
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Optimization plots for the mD+s selection criterion in the D+s → K+K−π+π0 mode.
Plots on the left grouped as Fig. A.31 correspond to pion-fitted tracks in the
simulated samples. Plots on the right grouped as Fig. A.32 correspond to
electron-fitted tracks in the samples. The top left plots, for both samples, is
the distribution of mD+s in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.31: mD+s , K+K−π+π0, pion-fit
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Figure A.32: mD+s , K+K−π+π0, electron-fit
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Optimization plots for the mBC selection criterion in the D+s → K+K−π+π0 decay
mode. Plots on the left grouped as Fig. A.33 correspond to pion-fitted tracks
in the simulated samples. Plots on the right grouped as Fig. A.34 correspond
to electron-fitted tracks in the samples. The top left plots, for both samples, is
the distribution of mBC in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.33: mBC, K+K−π+π0, pion-fit
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Figure A.34: mBC, K+K−π+π0, electron-fit
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Optimization plots for the δm selection criterion in the D+s → K+K−π+π0 decay
mode. Plots on the left grouped as Fig. A.35 correspond to pion-fitted tracks
in the simulated samples. Plots on the right grouped as Fig. A.36 correspond
to electron-fitted tracks in the samples. The top left plots, for both samples,
is the distribution of δm in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.35: δm, K+K−π+π0, pion-fit
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Figure A.36: δm, K+K−π+π0, electron-fit
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Optimization plots for the selection criterion on the ∆d0 between the e+e− in the
D+s → K+K−π+π0 decay mode. Plots on the left grouped as Fig. A.37 correspond
to pion-fitted tracks in the simulated samples. Plots on the right grouped as
Fig. A.38 correspond to electron-fitted tracks in the samples. The top left plots,
for both samples, is the distribution of ∆d0 in the signal Monte Carlo sample.
The top right plot graphs the signal MC sample accepted by the criterion as
we vary the cut on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.37: ∆d0, K+K−π+π0, pion-fit
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Figure A.38: ∆d0, K+K−π+π0, electron-fit
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Optimization plots for the selection criterion on the ∆φ0 between the e+e− in the
D+s → K+K−π+π0 decay mode. Plots on the left grouped as Fig. A.39 correspond
to pion-fitted tracks in the simulated samples. Plots on the right grouped as
Fig. A.40 correspond to electron-fitted tracks in the samples. The top left plots,
for both samples, is the distribution of ∆φ0 in the signal Monte Carlo sample.
The top right plot graphs the signal MC sample accepted by the criterion as
we vary the cut on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.

 (GeV)Φ∆ 
-1.5 -1 -0.5 0 0.5 1 1.5

 #
 E

ve
nt

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 Signal SampleΦ∆ h_dPhi_signal
Entries  649
Mean   -0.05461
RMS    0.3249

 Signal SampleΦ∆

 Cut Width (GeV)
-0.1 -0.05 0 0.05 0.1 0.15 0.2

 #
 E

ve
nt

s

0

1

2

3

4

5

 Signal Sample vs Cut WidthΦ∆ h_dPhi_signal_range

Entries  13136
Mean   0.06287
RMS    0.0785

 Signal Sample vs Cut WidthΦ∆

 (GeV)Φ∆ 
-1.5 -1 -0.5 0 0.5 1 1.5

 #
 E

ve
nt

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 Generic MC BackgroundΦ∆ h_dPhi_generic
Entries  346
Mean     0.13
RMS    0.3767

 Generic MC BackgroundΦ∆

 Cut Width (GeV)
-0.1 -0.05 0 0.05 0.1 0.15 0.2

 #
 E

ve
nt

s

0

1

2

3

4

5

6

7

 Generic MC Background vs Cut WidthΦ∆ h_dPhi_generic_range

Entries  2257
Mean   0.07421
RMS    0.08001

 Generic MC Background vs Cut WidthΦ∆

 (GeV)Φ∆ 
-1.5 -1 -0.5 0 0.5 1 1.5

 #
 E

ve
nt

s

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

 Continuum MC BackgroundΦ∆ h_dPhi_continu
Entries  16
Mean   -0.1025
RMS    0.4575

 Continuum MC BackgroundΦ∆

 Cut Width (GeV)
-0.1 -0.05 0 0.05 0.1 0.15 0.2

 #
 E

ve
nt

s

0

0.1

0.2

0.3

0.4

0.5

0.6

 Continuum MC Background vs Cut WidthΦ∆ h_dPhi_continu_range

Entries  58
Mean   0.07603
RMS    0.0777

 Continuum MC Background vs Cut WidthΦ∆

 Cut Width (GeV)
-0.1 -0.05 0 0.05 0.1 0.15 0.2

 #
 E

ve
nt

s

0
0.2

0.4
0.6
0.8

1
1.2
1.4

1.6

1.8
2

2.2

 Significance vs Cut WidthΦ∆ h_dPhi_significance

Entries  30
Mean   0.04927
RMS    0.0798

 Significance vs Cut WidthΦ∆

 Cut Width (GeV)
-0.1 -0.05 0 0.05 0.1 0.15 0.2

 #
 E

ve
nt

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 Precision vs Cut WidthΦ∆ h_dPhi_precision

Entries  30
Mean   0.05179
RMS    0.0805

 Precision vs Cut WidthΦ∆

Figure A.39: ∆φ0, K+K−π+π0, pion-fit
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Figure A.40: ∆φ0, K+K−π+π0, electron-fit
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A.5 D+s → π+π−π+
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Optimization plots for the mD+s selection criterion in the D+s → π+π−π+ mode.
Plots on the left grouped as Fig. A.41 correspond to pion-fitted tracks in the
simulated samples. Plots on the right grouped as Fig. A.42 correspond to
electron-fitted tracks in the samples. The top left plots, for both samples, is
the distribution of mD+s in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.41: mD+s , π+π−π+, pion-fit

 (GeV)±
SD

 m1.94 1.95 1.96 1.97 1.98 1.99 2

 #
 E

ve
nt

s 
/ 0

.6
 M

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

 Signal Sample±
SDm h_dsPlusM_signal

Entries  2230
Mean    1.968
RMS    0.007433

 Signal Sample±
SDm

 Cut Width (GeV)
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

 #
 E

ve
nt

s

0

0.5

1

1.5

2

2.5

3

3.5

4

 Signal Sample vs Cut Width±
SDm h_dsPlusM_signal_range

Entries  29544
Mean   0.01142
RMS    0.00472

 Signal Sample vs Cut Width±
SDm

 (GeV)±
SD

 m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

 #
 E

ve
nt

s 
/ 1

.5
 M

eV

0

0.02

0.04

0.06

0.08

0.1

 Conversion Sample±
SDm h_dsPlusM_conver

Entries  8
Mean    1.965
RMS    0.02147

 Conversion Sample±
SDm

 Cut Width (GeV)
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

 #
 E

ve
nt

s

0

0.05

0.1

0.15

0.2

0.25

 Conversion MC Sample vs Cut Width±
SDm h_dsPlusM_conver_range

Entries  67
Mean    0.012
RMS    0.004358

 Conversion MC Sample vs Cut Width±
SDm

 (GeV)±
SD

 m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

 #
 E

ve
nt

s 
/ 1

.5
 M

eV

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

 Generic MC Background Sample±
SDm h_dsPlusM_generic

Entries  42
Mean    1.969
RMS    0.04696

 Generic MC Background Sample±
SDm

 GeV±
SD

 m0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

 #
 E

ve
nt

s

0

0.05

0.1

0.15

0.2

0.25

0.3

 Generic MC Background Sample vs Cut Width±
SD

m h_dsPlusM_generic_range

Entries  61
Mean   0.01258
RMS    0.004332

 Generic MC Background Sample vs Cut Width±
SD

m

 (GeV)±
SD

 m1.9 1.92 1.94 1.96 1.98 2 2.02 2.04

 #
 E

ve
nt

s 
/ 1

.5
 M

eV

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 Continuum MC Background Sample±
SDm h_dsPlusM_continu

Entries  42
Mean    1.973
RMS    0.03982

 Continuum MC Background Sample±
SDm

 Cut Width GeV
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

 #
 E

ve
nt

s

0

0.5

1

1.5

2

2.5

 Continuum MC Background Sample vs Cut Width±
SDm h_dsPlusM_continu_range

Entries  118
Mean   0.01256
RMS    0.00452

 Continuum MC Background Sample vs Cut Width±
SDm

 Cut Width (GeV)
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.020

0.5

1

1.5

2

2.5

 Signal Significance vs Cut Width±
SDm h_dsPlusM_significance

Entries  20
Mean   0.009976
RMS    0.005104

 Signal Significance vs Cut Width±
SDm

 Cut Width (GeV)
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.020

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

 Signal Precision vs Cut Width±
SDm h_dsPlusM_precision

Entries  20
Mean   0.01046
RMS    0.005064

 Signal Precision vs Cut Width±
SDm

Figure A.42: mD+s , π+π−π+, electron-fit
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Optimization plots for the mBC selection criterion in the D+s → π+π−π+ decay
mode. Plots on the left grouped as Fig. A.43 correspond to pion-fitted tracks
in the simulated samples. Plots on the right grouped as Fig. A.44 correspond
to electron-fitted tracks in the samples. The top left plots, for both samples, is
the distribution of mBC in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.43: mBC, π+π−π+, pion-fit
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Figure A.44: mBC, π+π−π+, electron-fit

242



Optimization plots for the δm selection criterion in the D+s → π+π−π+ decay
mode. Plots on the left grouped as Fig. A.45 correspond to pion-fitted tracks
in the simulated samples. Plots on the right grouped as Fig. A.46 correspond
to electron-fitted tracks in the samples. The top left plots, for both samples,
is the distribution of δm in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.45: δm, π+π−π+, pion-fit
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Figure A.46: δm, π+π−π+, electron-fit
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Optimization plots for the selection criterion on the ∆d0 between the e+e− in the
D+s → π+π−π+ decay mode. Plots on the left grouped as Fig. A.47 correspond
to pion-fitted tracks in the simulated samples. Plots on the right grouped as
Fig. A.48 correspond to electron-fitted tracks in the samples. The top left plots,
for both samples, is the distribution of ∆d0 in the signal Monte Carlo sample.
The top right plot graphs the signal MC sample accepted by the criterion as
we vary the cut on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.47: ∆d0, π+π−π+, pion-fit
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Figure A.48: ∆d0, π+π−π+, electron-fit
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Optimization plots for the selection criterion on the ∆φ0 between the e+e− in the
D+s → π+π−π+ decay mode. Plots on the left grouped as Fig. A.49 correspond
to pion-fitted tracks in the simulated samples. Plots on the right grouped as
Fig. A.50 correspond to electron-fitted tracks in the samples. The top left plots,
for both samples, is the distribution of ∆φ0 in the signal Monte Carlo sample.
The top right plot graphs the signal MC sample accepted by the criterion as
we vary the cut on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.49: ∆φ0, π+π−π+, pion-fit
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Figure A.50: ∆φ0, π+π−π+, electron-fit
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A.6 D+s →→ K∗+K∗0; K∗+ → K0
Sπ
+,K∗0 → K−π+
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Optimization plots for the mD+s selection criterion in the D+s → K∗+K∗0 mode.
Plots on the left grouped as Fig. A.51 correspond to pion-fitted tracks in the
simulated samples. Plots on the right grouped as Fig. A.52 correspond to
electron-fitted tracks in the samples. The top left plots, for both samples, is
the distribution of mD+s in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.51: mD+s , K∗+K∗0, pion-fit
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Figure A.52: mD+s , K∗+K∗0, electron-fit
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Optimization plots for the mBC selection criterion in the D+s → K∗+K∗0 decay
mode. Plots on the left grouped as Fig. A.53 correspond to pion-fitted tracks
in the simulated samples. Plots on the right grouped as Fig. A.54 correspond
to electron-fitted tracks in the samples. The top left plots, for both samples, is
the distribution of mBC in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.53: mBC, K∗+K∗0, pion-fit
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Figure A.54: mBC, K∗+K∗0, electron-fit
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Optimization plots for the δm selection criterion in the D+s → K∗+K∗0 decay
mode. Plots on the left grouped as Fig. A.55 correspond to pion-fitted tracks
in the simulated samples. Plots on the right grouped as Fig. A.56 correspond
to electron-fitted tracks in the samples. The top left plots, for both samples,
is the distribution of δm in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.55: δm, K∗+K∗0, pion-fit
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Figure A.56: δm, K∗+K∗0, electron-fit
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Optimization plots for the selection criterion on the ∆d0 between the e+e− in the
D+s → K∗+K∗0 decay mode. Plots on the left grouped as Fig. A.57 correspond
to pion-fitted tracks in the simulated samples. Plots on the right grouped as
Fig. A.58 correspond to electron-fitted tracks in the samples. The top left plots,
for both samples, is the distribution of ∆d0 in the signal Monte Carlo sample.
The top right plot graphs the signal MC sample accepted by the criterion as
we vary the cut on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.57: ∆d0, K∗+K∗0, pion-fit
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Figure A.58: ∆d0, K∗+K∗0, electron-fit
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Optimization plots for the selection criterion on the ∆φ0 between the e+e− in the
D+s → K∗+K∗0 decay mode. Plots on the left grouped as Fig. A.59 correspond
to pion-fitted tracks in the simulated samples. Plots on the right grouped as
Fig. A.60 correspond to electron-fitted tracks in the samples. The top left plots,
for both samples, is the distribution of ∆φ0 in the signal Monte Carlo sample.
The top right plot graphs the signal MC sample accepted by the criterion as
we vary the cut on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.59: ∆φ0, K∗+K∗0, pion-fit
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Figure A.60: ∆φ0, K∗+K∗0, electron-fit
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A.7 D+s → ηρ+; η→ γγ; ρ+ → π+π0
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Optimization plots for the mD+s selection criterion in the D+s → ηρ+; η→ γγ; ρ+ →
π+π0 mode. Plots on the left grouped as Fig. A.61 correspond to pion-fitted
tracks in the simulated samples. Plots on the right grouped as Fig. A.62
correspond to electron-fitted tracks in the samples. The top left plots, for both
samples, is the distribution of mD+s in the signal Monte Carlo sample. The top
right plot graphs the signal MC sample accepted by the criterion as we increase
the cut width plotted on the x-axis. For the pion-fitted samples on the left, the
plots in the second and third rows correspond to the generic and continuum
MC samples, respectively. For the electron-fitted samples on the right, the plots
in the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.61: mD+s , ηρ+, pion-fit
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Figure A.62: mD+s , ηρ+, electron-fit
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Optimization plots for the mBC selection criterion in the D+s → ηρ+ decay mode.
Plots on the left grouped as Fig. A.63 correspond to pion-fitted tracks in the
simulated samples. Plots on the right grouped as Fig. A.64 correspond to
electron-fitted tracks in the samples. The top left plots, for both samples, is
the distribution of mBC in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.63: mBC, ηρ+, pion-fit
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Figure A.64: mBC, ηρ+, electron-fit
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Optimization plots for the δm selection criterion in the D+s → ηρ+ decay mode.
Plots on the left grouped as Fig. A.65 correspond to pion-fitted tracks in the
simulated samples. Plots on the right grouped as Fig. A.66 correspond to
electron-fitted tracks in the samples. The top left plots, for both samples, is
the distribution of δm in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.

m (GeV)δ 
0.12 0.125 0.13 0.135 0.14 0.145 0.15 0.155 0.16

 #
 E

ve
nt

s

0

0.05

0.1

0.15

0.2

0.25

m Signal Sampleδ h_DeltaM_signal
Entries  858
Mean   0.1529
RMS    0.005457

m Signal Sampleδ

 Cut Width (GeV)
0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

 #
 E

ve
nt

s

0

1

2

3

4

5

6

7

m Signal Sample vs Cut Widthδ h_DeltaM_signal_range

Entries  10763
Mean   0.01164
RMS    0.004624

m Signal Sample vs Cut Widthδ

m (GeV)δ 
0.08 0.1 0.12 0.14 0.16 0.18 0.2

 #
 E

ve
nt

s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

m Generic MC Background Sampleδ h_DeltaM_generic

Entries  331
Mean   0.1541
RMS    0.02614

m Generic MC Background Sampleδ

 Cut Width (GeV)
0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

 #
 E

ve
nt

s

0

1

2

3

4

5

6

m Generic MC Background vs Cut Widthδ h_DeltaM_generic_range

Entries  990
Mean   0.0132
RMS    0.004168

m Generic MC Background vs Cut Widthδ

m (GeV)δ 
0.08 0.1 0.12 0.14 0.16 0.18 0.2

 #
 E

ve
nt

s

0

0.2

0.4

0.6

0.8

1

m Contiuum MC Background Sampleδ h_DeltaM_continu

Entries  142
Mean   0.1555
RMS    0.02737

m Contiuum MC Background Sampleδ

 Cut Width (GeV)
0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

 #
 E

ve
nt

s

0

1

2

3

4

5

6

7

8

m Continuum MC Background vs Cut Widthδ h_DeltaM_continu_range

Entries  423
Mean   0.01236
RMS    0.00475

m Continuum MC Background vs Cut Widthδ

 Cut Width (GeV)
0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

 #
 E

ve
nt

s

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4

m Signal Significance vs Cut Widthδ h_DeltaM_significance

Entries  19
Mean   0.0103
RMS    0.004922

m Signal Significance vs Cut Widthδ

 Cut Width (GeV)
0 0.0020.0040.0060.008 0.010.0120.0140.0160.0180.02

 #
 E

ve
nt

s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

m Signal Precision vs Cut Widthδ h_DeltaM_precision

Entries  19
Mean   0.0105
RMS    0.004962

m Signal Precision vs Cut Widthδ

Figure A.65: δm, ηρ+, pion-fit
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Figure A.66: δm, ηρ+, electron-fit
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Optimization plots for the selection criterion on the ∆d0 between the e+e− in
the D+s → ηρ+ decay mode. Plots on the left grouped as Fig. A.67 correspond
to pion-fitted tracks in the simulated samples. Plots on the right grouped as
Fig. A.68 correspond to electron-fitted tracks in the samples. The top left plots,
for both samples, is the distribution of ∆d0 in the signal Monte Carlo sample.
The top right plot graphs the signal MC sample accepted by the criterion as
we vary the cut on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.67: ∆d0, ηρ+, pion-fit
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Figure A.68: ∆d0, ηρ+, electron-fit
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Optimization plots for the selection criterion on the ∆φ0 between the e+e− in
the D+s → ηρ+ decay mode. Plots on the left grouped as Fig. A.69 correspond
to pion-fitted tracks in the simulated samples. Plots on the right grouped as
Fig. A.70 correspond to electron-fitted tracks in the samples. The top left plots,
for both samples, is the distribution of ∆φ0 in the signal Monte Carlo sample.
The top right plot graphs the signal MC sample accepted by the criterion as
we vary the cut on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.69: ∆φ0, ηρ+, pion-fit
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Figure A.70: ∆φ0, ηρ+, electron-fit
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A.8 D+s → η′π+; η′ → ρ0γ
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Optimization plots for the mD+s selection criterion in the D+s → η′π+; η′ → ρ0γ

mode. Plots on the left grouped as Fig. A.71 correspond to pion-fitted tracks
in the simulated samples. Plots on the right grouped as Fig. A.72 correspond
to electron-fitted tracks in the samples. The top left plots, for both samples, is
the distribution of mD+s in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.71: mD+s , η′π+; η′ → ρ0γ, pion-fit
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Figure A.72: mD+s , η′π+; η′ → ρ0γ, e-fit
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Optimization plots for the mBC selection criterion in the D+s → η′π+; η′ → ρ0γ

decay mode. Plots on the left grouped as Fig. A.73 correspond to pion-fitted
tracks in the simulated samples. Plots on the right grouped as Fig. A.74
correspond to electron-fitted tracks in the samples. The top left plots, for both
samples, is the distribution of mBC in the signal Monte Carlo sample. The top
right plot graphs the signal MC sample accepted by the criterion as we increase
the cut width plotted on the x-axis. For the pion-fitted samples on the left, the
plots in the second and third rows correspond to the generic and continuum
MC samples, respectively. For the electron-fitted samples on the right, the plots
in the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.73: mBC, η′π+; η′ → ρ0γ, pion-fit
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Figure A.74: mBC, η′π+; η′ → ρ0γ, e-fit
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Optimization plots for the δm selection criterion in the D+s → η′π+; η′ → ρ0γ

decay mode. Plots on the left grouped as Fig. A.75 correspond to pion-fitted
tracks in the simulated samples. Plots on the right grouped as Fig. A.76
correspond to electron-fitted tracks in the samples. The top left plots, for both
samples, is the distribution of δm in the signal Monte Carlo sample. The top
right plot graphs the signal MC sample accepted by the criterion as we increase
the cut width plotted on the x-axis. For the pion-fitted samples on the left, the
plots in the second and third rows correspond to the generic and continuum
MC samples, respectively. For the electron-fitted samples on the right, the plots
in the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.75: δm, η′π+; η′ → ρ0γ, pion-fit
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Figure A.76: δm, η′π+; η′ → ρ0γ, e-fit
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Optimization plots for the selection criterion on the ∆d0 between the e+e− in
the D+s → η′π+; η′ → ρ0γ decay mode. Plots on the left grouped as Fig. A.77
correspond to pion-fitted tracks in the simulated samples. Plots on the right
grouped as Fig. A.78 correspond to electron-fitted tracks in the samples. The
top left plots, for both samples, is the distribution of ∆d0 in the signal Monte
Carlo sample. The top right plot graphs the signal MC sample accepted by the
criterion as we vary the cut on the x-axis. For the pion-fitted samples on the left,
the plots in the second and third rows correspond to the generic and continuum
MC samples, respectively. For the electron-fitted samples on the right, the plots
in the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.77: ∆d0, η′π+; η′ → ρ0γ, pion-fit
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Figure A.78: ∆d0, η′π+; η′ → ρ0γ, e-fit
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Optimization plots for the selection criterion on the ∆φ0 between the e+e− in
the D+s → η′π+; η′ → ρ0γ decay mode. Plots on the left grouped as Fig. A.79
correspond to pion-fitted tracks in the simulated samples. Plots on the right
grouped as Fig. A.80 correspond to electron-fitted tracks in the samples. The
top left plots, for both samples, is the distribution of ∆φ0 in the signal Monte
Carlo sample. The top right plot graphs the signal MC sample accepted by the
criterion as we vary the cut on the x-axis. For the pion-fitted samples on the left,
the plots in the second and third rows correspond to the generic and continuum
MC samples, respectively. For the electron-fitted samples on the right, the plots
in the second, third and fourth rows correspond to the D∗+s → D+s γ, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.79: ∆φ0, η′π+; η′ → ρ0γ, pion-fit
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Figure A.80: ∆φ0, η′π+; η′ → ρ0γ, e-fit
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