OBSERVATION OF THE DALITZ DECAY OF THE
FIRST EXCITED STATE OF THE
CHARMED-STRANGE MESON

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by
Souvik Das

January 2011



(© 2011 Souvik Das
ALL RIGHTS RESERVED



OBSERVATION OF THE DALITZ DECAY OF THE FIRST EXCITED STATE OF
THE CHARMED-STRANGE MESON
Souvik Das, Ph.D.
Cornell University 2011

The branching fraction for a previously unobserved decay D;* — Dfe*e™ is pre-
dicted theoretically in this dissertation to be 0.65% of the branching fraction for
the decay D:* — D!y. We conduct a search for the D** — D*e*e” in 586 pb™'
of e*e™ collision data collected with the CLEO-c detector at the Cornell Elec-
tron Storage Ring (CESR) operating at a center of mass energy of 4170 MeV
and observe it with a significance of 6.4 o over estimated backgrounds. The
ratio of branching fractions B(D;* — Dle*e™)/B(D;"* — D}y) is measured to be
(0.72 £ 0.14(stat) = 0.06(syst))%, which is within one standard deviation of un-

certainty from the predicted value.
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CHAPTER 1
INTRODUCTION



What is the world made of?
What holds it together?

The tale of human civilization is a testament to the gullibility of a pattern
seeking social species, challenged perhaps only by its insatiable curiosity. Con-
temporary particle physics represents the culmination and cutting-edge of our
most organized and ambitious attempt at answering some of our biggest ques-
tions, becoming at once a signature of and remedy to this curiosity. Recorded
history is littered with attempts at coming to an understanding of what the
world is made of, from the ancient patterns of classification of the world into
fundamental elements to the atomic hypotheses of the Ionian Greeks and the
Vaisheshika and Jain schools of India in the 5th century BC. However, it is dif-
ficult to associate the thrust of empiricism and the scientific method with any
atomic understanding of the fundamental constituents of matter prior to the
works of John Dalton between 1800 and 1805, which in turn paved the way for
the periodic table of elements. The patterns in the properties of the elements
compiled by Dmitri Mendeleev in the late 1860s was a powerful suggestion of
sub-atomic structure. Thereafter, a series of experiments and insights lead not
only to our archetypical image of the atom with a nucleus at the center and elec-
trons in orbit, but also to some understanding of the nature of the electron and

the nucleus itself.

A similar train of events occurred in the 1960s. A menagerie of new and
short-lived particles were discovered by experiments on cosmic rays and with
particle accelerators designed to probe the sub-nuclear structure of matter. The
first sense of order emerged with the realization that there are two distinct types

of matter. There are particles like the electron that do not experience the strong



nuclear force; they were named leptons from the Greek for lightweight. There
exist 6 of them and they appear to be truly fundamental. Then there are hadrons
(Greek for bulky) that do feel the strong nuclear force, and we have discov-
ered well over 200 of them. Hadrons may be usefully divided into baryons and
mesons. Baryons are particles of spin 1/2 that are unstable and decay, ultimately
returning to a proton. Mesons are particles with integer spin that ultimately
decay to electrons, photons and neutrinos. This proliferation of hadrons even-
tually gave hint of an underlying pattern called the Eightfold Way. Identification
of such patterns lead to the proposal that hadrons are not fundamental but are
composed of at least three varieties of quarks; the up (u), the down (d) and the

strange (s).

This served to explain most thus far observed hadronic phenomena except
for a few, among which was the observed rate of K} — u*u~ that was lower
than expected. Introducing a fourth quark, the charm ¢, within the Glashow-
Iliopoulos-Maiani (GIM) mechanism produced the required interference with
the u being exchanged between the d and s quarks of the K} meson to lower the
theoretical rate [13]]. The mass of the charm quark required to lower this theoret-
ical rate to the observed value was calculated to be in the range of a few GeVs.
Bound states of the charm quark were subsequently discovered, the almost si-
multaneous discovery of the J/y (c¢) meson at SLAC and BNL in November
1974 being among the most prominent. This was followed by discoveries of the

Dy(cit) and the D*(cd). The D! (c5) bound state was discovered at CLEO in 1983
[8].

A D?! meson is the 0 (L=0, §=0) bound state of a charm and strange quark

system, while a D;* is the 17 (L=0, S=1) excited state of the same. While the



Table 1.1: Branching fractions of the known decays of the D;*.

Mode Branching Fraction

BD™ — D*y) (942 +0.7)%
B(D:* — Din") (5.8 +0.7)%

D? decays via the weak interaction into a rich spectrum of particles, the D;* is
known to decay via an electromagnetic and an isospin-suppressed strong decay

as recorded by the Review of Particle Physics 2008 [4] and listed in Table .11

It is important to note that the branching fractions listed in the table are

derived from the ratio

(D — Dn°%)

=0.062 £ 0.
D = D1y) 0.062 + 0.008

assuming that the branching fractions of D:* — D}y and D:* — D?z° decays

sum to 100% [5].

In this dissertation, we propose a new electromagnetic decay of the D}, the
Dt — Dje*e”, and search for it using data collected by the CLEO-c detector.
Since this decay does not violate any rigorous or semi-rigorous conservation
principle, it is expected to occur at the rate of D;* — D}y suppressed by ap-
proximately a factor of the electromagnetic structure constant, @. Such decays
where a virtual photon is internally converted to a e*e™ pair are known in high
energy physics as Dalitz decays [11]. Dalitz decays have not been observed in
the electromagnetic decays of mesons containing the heavy charm or bottom

quark. This dissertation documents the first observation of such a decay.

A theoretical derivation of the ratio of branching fractions

B(D:* — Dfete)

— (1.1)
B(D;* — Dyy)

4



is presented in Chapter 2l Chapter Bl presents a description of the components
of the CLEO-c detector relevant for following the analysis technique outlined
in Chapter Bl towards making an observation of the D;* — D}e*e” decay and
measuring the ratio of branching fractions in Eq. [LTl An observation of this
decay and a measurement of the ratio of branching fractions would lead to a

re-evaluation of the fractions listed in Table .11



CHAPTER 2
A THEORETICAL PREDICTION FOR THE RATIO OF BRANCHING
FRACTIONS B(D:* — D*e*e”)/B(D** — D¥y)

N



The electromagnetic decay D;" — D{y supercedes the strong decay D;" —
D{n° in rate because the latter is suppressed by isospin violation of the strong
interaction. The currently known branching fractions of the D;* are listed in Ta-
ble[LTlof the Introduction. In this section, we propose the existence of a hitherto
unobserved electromagnetic decay, the D;* — Dfe*e™. It is separated from the
D" — D}y process by one vertex of the electromagnetic interaction, as can be

seen by comparing Fig. E.Tland 2] and does not violate any known symmetry.

In this section, we estimate the ratio of branching fractions B(D;* —
Die*e™)/B(Di" — Dty) through a prediction of the ratio of rates for the D;* —

Dfe*e” and D;* — D;y processes.

B(D:* — Diete”) T(D:* — Die*e)
B(D;* — Dfy) — T(Di* — Diy)

(2.1)

With reference to Fig. 7] the quantum mechanical amplitude for the D}* —

D?y decay may be written schematically as
M(D;" — Diy) = &8, Tw(P,k), (2.2)

where g’L‘)z is the polarization vector of the decaying D;* meson with three de-
grees of freedom indexed by p, &} is the polarization vector of the photon with
two degrees of freedom indexed by v, P is the four-momentum of the D}*, k is
the four-momentum of the photon and 7,,(P, k) encodes the coupling between

the meson and the photon.

T,,(P, k) may be expressed, most generally, in the form:

T (P, k) = Ag,, + Bk,P, + CéuyopP K. (2.3)

The D** meson has J* = 17, the D! has J* = 0~ and the emitted y has spin



s = 1 with intrinsic odd parity. The angular momentum of the Dy state, L,
could be 0, 1 or 2 depending on the projection of the spin of the photon on the
J,ofthe D:*. If s, = J,then L =0.If s, =0then L = 1,L, = J,. And if s, = —-J,,
then L = 2, L, = 2J.. However, in order to conserve the odd parity of the initial
state, given P = —1 for both the D} and the y, L must be equal to 1. This narrows

down the kind of terms that may constitute T,,,(P, k) to
Tpv(P, k) = Ceyvaﬂpakﬁ, (24:)

where a and S keep track of the four-momentum components of the D;* and
photon respectively. We consider C to be a constant as the range of k* is small

compared to the p mass.

In order to model the D;* — Dj}e*e™ process, we change the final state photon
to a virtual photon and couple it to a e*e™ pair as depicted in Fig. We may
then write the invariant amplitude as

va

k2

M7 — Die*e”) = &,.T,, (P, k) (a(p)lieyalv(p), (2.5)

where u(p) and v(p’) are the spinors of the electron and positron respectively as
functions of their four-momenta, k is the four-momentum of the virtual photon

and g" is the metric tensor of flat spacetime.

2.1 Rate for D;" — Dy

DT 4>—£

Figure 2.1: A Feynman diagram for the D;* — D}y process.

Y

D+

N



We now proceed to express the rate for D;* — D{y in terms of the normal-
ization constant C used to express T, (P, k) in Eq. 2.4land other constants in this
process such as the masses of the D;* and D} which we denote by mp:+ and mp:

respectively.

Inserting the expression for the coupling in Eq. 24l into the expression for

the invariant amplitude in Eq. 2.2, we may write

M =& .67CeopP k. (2.6)

This may be squared to get
IMP| = |CPley &5 €uvapP  KoE ) €)) €y PT R, (2.7)

where 1/, v/, @’ and §’ are indices of four momentum distinguished from their

un-primed cousins.

We now sum over final state polarizations and average over initial state po-
larizations, recalling for photons that
D e =", @8)
A=1,2

and for massive vector bosons that

%121;3 e}vﬁﬂeg?ﬂ = % (—gwl + P}:;gﬂ] (2.9)
Thus, we get
IM2| = 'i—z'gW’ [gﬂﬂ’ - P;f " ) EnvapP K€y PU K (2.10)
D
which may be simplified to
M| = 2|§2|(P k) = zlgzlmzﬁEi (2.11)



where we have used the tensorial relationship e’”aﬁeﬂm,ﬁ, = —280w &8ss + 280p 8u'p

and E, is the energy component of the photon in the rest frame of the D}*.
For a two-body decay, we may write the differential decay rate as

dl = — | M?|—= 7 dQ (2.12)

327r2 m? D

where dQ is the differential element of the solid angle subtended from the point
of decay of the D}* in its rest frame. Since the invariant amplitude in the simpli-
tied expression of Eq. does not have any angular dependence, our expres-

sion for the rate of D;* — D7y simplifies to

IC2|
I'="7E, (2.13)
2.2 Rate for D" — Djee”
-
Df§+ ‘h;)% et
D+

Figure 2.2: A Feynman diagram for the D;* — Dfe*e™ process.

The rate for the D;* — D}e*e” is a bit more involved as it is a three-body
decay. The amplitude for this process may be expressed by what we had for
D" — D}e*e” except now with the photon coupled to a e*e™ pair. We express it

as presented in Eq. 2.14

V

M(D;" — Diete) = Ce#mﬁP kﬂ u(p)leypv(p ). (2.14)

10



We square this to get:

v

, , ,0PoVP s
|M2| = |C2|8/;»;822 Eyvaﬁpakﬂfy/v’a/ﬁ’Pa k'g g ]f; L_t(P)€7pV(p )V(P )eyp’u(p)' (215)

Summing over final state spins of the e*e™ and averaging over initial state

polarizations of the D", we may write

TAAL21 462|C2| 1% a’ 1.8 v v’ ’ 2
M2 = ——— =€, wap PP I [P + p"p” =" (p-p +m)]  (2.16)

which may then be expressed succinctly as

2lc2|

2_
M=z

[P k) + 2X* — mp,. K|, (2.17)

where

X+ = eﬂmﬁP"p’ﬂp”

Using the following contraction of the Levi Civita tensor,

¢ Pewpy = —808y8 — 8088l — gueh gl (2.18)

88y 8y + 8yl + 88w sy
X? evaluates to
, k* m? 2
X* = —KA(P - p')P - p) + ni, (Z - k2m2) o (mﬁ),; —m3, + k2) , (2.19)

where m represents the mass of the electron, mp, the mass of the D} meson and

mp: the mass of the D;*. The physical relationships

k2
p-p = 5 = m* (2.20)

and

(m%, —m? + k%)
P k=—2 ZDS : (2.21)

have also been used to obtain the aforementioned expression for X?.

11



Now, P-p” and P-p may be expressed in a more convenient form for the phase
space integral by boosting our inertial frame of reference to the rest frame of the
center of mass of the e*e™. Quantities marked by an asterix (*) in the following
equations are those evaluated in the e*e™ center of mass frame. We define 6*
to be the angle that the electron makes with the direction of the D} in the e*e”

center of mass frame. Thus, we may write:

P-p=pP-p°

E}.E; — [P} [Ip;| cos 6", (2.22)

P’p, :P*’p,*

E}.E. +[P}.[Ipl cos 6. (2.23)

The energies of the D! and e~ in the center of mass frame of the e*e™ may

be expressed simply by recognizing that in this frame, & = (\/ﬁ 0,0, ()). Thus,

they are
P-k
Ef = —— (2.24)
._Dk
Er=2_2 (2.25)
Vi2
Using this and
k2
k= —, 2.2
p > (2.26)
we may rewrite Eq. and as follows.
Pk Pek2 \/k2 .
P-p = > + 2 M, \| 4 ™08 0 (2.27)
. Pk [Pk 2 .
P-p = 5 —\/ = —méﬁ\/z—mzcose. (2.28)
and thus arrive at the expression for (P - p)(P - p’):
P - k)? P - k)? k?
(P-p)P-p')= ( 2 y _ (( 8 S _ szS)(Z -~ 1712)0032 6. (2.29)

We may insert this into the expression for X in Eq. to obtain:

P - k)?
—k2%+

2

k k!
x> = ((p k)? - k2m%§) (Z — mz) cos? 0" + m2D§ (Z - k2m2)2.30)

12



2
m( 2 2 2\
+ T(mm —mDS+k) :
This may be inserted into the expression for the invariant amplitude |M|?
obtained in Eq. ZT6to give us

4 2 CZ A2k2 k4 2 A2 k2
IM?| = 63]L4 | [T - m2D§ (3 + 2k2m2) + %Az + (— - kzszﬁ) (— — 2m2) cos® 9*] ,

which can be simplified to

— 42 (A, , k2 9 s ) o
IM?| = T [{Z —k ij}{E (1 +cos” 6 ) +2m (1 —cos” 6 )}] (2.32)

where we define

A= mf); —mp + k. (2.33)

Having thus obtained the averaged invariant amplitude for our process, we
must now set up the integral over the available phase space. This being a three-
body decay, we may write the decay rate in terms of the |M|? thus:

1 1 —
= 2|dE,dk>. 2.34
(2n)3 16m2D§ M ( )

where dE, is evaluated in the rest frame of the D;.

Now we need to express the differential of the energy of the electron, dE,, in
terms of d(cos 6*). Using the relationship expressed in Eq. and recognizing
that P - p = mp:E,- in the rest frame of the D}, we may write
P.p EnEl IP,Ip

mpx

s

E. cos 6. (2.35)

mp«

s

mpx

s

We note that the quantities E7,., E7, |P;.|, and [p;| depend only on k* and not on
cos 0. Therefore, we can differentiate the above expression to obtain

P Ip;]
dE, = ——2 " d(cos 6). (2.36)

np:

N
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In the center of mass frame of the e*e™, P-k = E7.k;. Therefore, we may write

P-k P-k
E*D*_ =

= = o (2.37)
0 e

Using this expression for the energy of the D7 in the center of mass frame of the

e*e”, we may write its momentum thus:

) [ /(I'J'k)2
Pl = ED%; - méj = 1T méj. (2.38)

Thus we may simplify the Jacobian of the differential,

L]l P |E; 2
= 1—4% (2.39)
Mmp; mp;
P-k2 Am?
_ \/ T B 1- (2.40)
D*

4 2
- ,/k2 ea1- 28 (2.41)

P 42
= —' §S|\/1 = (2.42)

Using this in Eq. we arrive at a simple expression for dE,:

P
dE, = ';' 1- d(cosH) (2.43)

Now we substitute our expression for |M|? in Eq. and dE, in Eq.
into Eq. and integrate over d(cos 6) from -1 to +1 to obtain the differential
rate of decay

— 4kPmy, ) (k2 + 2m*) A[1 - dm?

ar _ |PplalC?
( -

R 2.44
dk? 1447r2m2D*k4 ( )

where A is defined in Eq. « is the fine structure constant.

2
We integrate this numerically with k* ranging from 4m* to (mD;+ - mD;) to
obtain our prediction for the ratio of branching fractions:

[(D;" - Dje*e”) B(D;" — Dje’e)
[(D:* — Dty)  B(D:* — Dty)

= 0.89a = 0.65%. (2.45)

14



The following chapters deal with an experimental observation of the Di" —

Dje*e” process and a measurement of this ratio at the CLEO-c experiment.
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CHAPTER 3
THE CLEO-C DETECTOR
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Figure 3.1: Cutaway schematic of the CLEO-c detector.

CLEO-c was the last upgrade to CLEO, a general purpose particle detec-
tor for high energy physics used to collect data on electron-positron collisions
at the Cornell Electron Storage Ring (CESR) facility. The name CLEO is not
an acronym and was derived from Cleopatra, to go with CESR which is pro-
nounced as Caesar. The iteration of the collider used for studying the charm
quark was called CESR-c. Counter-rotating beams of positrons and electrons in
CESR-c were made to collide at the center of the CLEO-c detector with center of
mass energies between 3 and 5 GeV that are required for studies of the charm
quark. The nearly hermetic CLEO-c detector with several layers of subdetectors
tracked and measured the energy and momenta of particles produced at these

collisions.
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Figure 3.2: Quarter-view schematic of the CLEO-c detector.

A cutaway schematic of the CLEO-c detector is presented in Fig. The
sub-detectors closest to the interaction point were the inner drift chamber and
the main drift chamber which were used together to reconstruct the 3 dimen-
sional trajectories of charged particles. A solenoidal magnetic field of 1 T in the
direction of the beampipe curved these trajectories and enabled us to deduce
the momenta and charges of these particles. Outside the drift chamber lay the
Ring Imaging Cerenkov (RICH) subdetector dedicated to particle identification.
It used the Cerenkov radiation left in the wake of a charged particle traveling
through a medium of high refractive index (LiF) to measure the velocity of the
particle. This velocity combined with the momentum measured by the drift
chambers allowed us to determine the mass, and hence the identity of the par-

ticle. Surrounding the RICH was the electromagnetic calorimeter made out of
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Csl crystals arranged in the central barrel region and endcap regions flanking
the drift chamber. It measured the energy of electromagnetic showers, thus al-
lowing the reconstruction of photons and the identification of electrons. The
superconducting solenoid used to maintain the 1 T magnetic field was located
external to these subdetectors. All of this was encased in iron yokes to return
the magnetic field, also known as the magnet iron. Interlaced within the magnet

iron lay the muon drift chambers.

The following sections describe the sub-detectors that were used in the anal-

ysis presented in this dissertation.
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Figure 3.4: Stereo angles in the outer drift chamber.
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3.1 The Tracking System

The CLEO-c tracking system consisted of two cylindrical, concentric drift cham-
bers — an inner drift chamber between the radii of 5.3 cm and 10.5 cm, and an
outer drift chamber between 12 cm and 82 cm. Longitudinally, they extended
to cover the region in polar angle |cos 6] < 0.93 subtended from the interaction
point as depicted in Fig. A 3:2 mixture of He and C;Hg gas, chosen for
its long radiation length, filled the volume of the detector. Tens of thousands
of wires were strung along the length of the sub-detector as shown in Fig. B.2)
arranged in 6 layers within the inner chamber and 47 layers in the outer cham-
ber. Sense wires were maintained at a 2,000 V positive electric potential relative
to the field wires which were grounded. The sense wires were 20 ym in diam-
eter made of gold-plated tungsten. The field wires were 130 um in diameter
and made of gold-plated aluminum. The minimum distance between sense and
field wires were 5 mm for the inner chamber and 7 mm for the outer chamber.
A detailed physical description of the tracking system may be found in Sections

2.1.1 and 2.2.2 of the Yellow Book [9].

An energetic charged particle traversing the chamber would ionize a track of
gas and electrons liberated thus would be accelerated towards the sense wires.
In the vicinity of the sense wires, the electrons would be energetic enough to
induce local ionization in the gas, thereby releasing more electrons and ampli-
fying the total charge deposited on the wires. The precise time of each such
deposition event and the total charge collected would be recorded by the appa-

ratus.

The temporal information was used to measure the distance of closest ap-
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proach of the energetic particle to each sense wire. This could be done because
the exact time of the electron-positron collisions at the center of CLEO-c was
well known from the CESR-c machine and the drift velocities of the liberated
electrons well understood. The distances of closest approach from multiple
sense wires were fitted with a minimum y*-fit as well as Kalman-fits encod-
ing physical models of various particles in a 1 T magnetic field to reconstruct
the particle’s 3-dimensional trajectory through the sub-detector. The curvature
of the fitted track in the magnetic field allowed us to measure the momentum of
the charged particle. This procedure is especially relevant for our analysis be-
cause we rely on an accurate reconstruction of electron-positron pairs that test
the low-energy limits of this procedure. CLEO-c had decided not to store tracks
reconstructed using the physical model of electrons, under the assumption that
electron tracks reconstructed using the physical model of charged pions would
do fine for most analyses and the fact that doing so would save some disk-space.
As described in our analysis, the accuracy of pion-fitted tracks did not suffice
and a campaign to reconstruct tracks to the physical model of electrons had to

be undertaken.

The charge collected by the sense wire at each deposition event corresponds
to the energy lost by the charged particle in ionizing a segment of the track, the
dE/dx. We know from the Bethe-Bloch equation that this dE/dx varies with the
mass and momentum of the incident particle. Thus, informed with the track’s

momentum and dE/dx we may deduce the particle’s mass and hence its identity.

If the wires of the drift chamber were all aligned strictly parallel to the beam-
axis, only dimensions of the track perpendicular to this axis, i.e. the azimuthal

and radial directions, could be reconstructed. To enable reconstruction of the
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longitudinal dimension, all 6 layers of sense wires in the inner drift chamber
and 16 out of the 47 layers in the outer drift chamber were oriented at a small
“stereo” angle to the beam-axis. The 16 layers were divided into groups of 4
and alternated in stereo angle. The timing pattern from such wires staggered
in stereo angle allowed us to determine the longitudinal parameters of tracks.
This afforded the tracker a spatial resolution of 85 um for 2.5 GeV tracks in
the dimensions perpendicular to the beam-axis and 5-7 mm in the dimension

parallel.
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3.2 The Calorimeter

The CLEO-c calorimeter, located outside the drift chambers and the RICH, was
divided into a barrel section and two encap sections together covering 95%
of the solid angle subtended from the interaction point. Thallium-doped ce-
sium iodide crystals were used for showering and scintillation material in this
calorimeter. CsI (T1) crystals have a density of 4,510 kg/m?, a radiation length x,
of 1.83 cm and a Moliere radius of 3.8 cm, and this provided excellent shower-
ing material for the experiment. Each crystal was 30 cm (16.4 radiation lengths)
long in the direction away from interaction point with a 5 cm x 5 cm face point-
ing inwards. Four photodiodes mounted at the back of each crystal measured

the scintillation light.

The barrel consisted of an array of 6,144 Csl crystals, 128 along the azimuthal
direction and 48 along the longitudinal. The crystals were tilted to point a few
centimeters away from the interaction point so as to minimize the loss of par-
ticles in the cracks between crystals. The barrel calorimeter extended from a
radius of 1.02 m to 1.32 m, and was 3.26 m long at the inner radius. This covers

the region in polar angle | cos 6] < 0.85.

The two endcaps consisted of 820 crystals each, aligned parallel to the beam-
pipe. The front faces of each endcap lay 1.308 m along the beam-line from the
interaction point, and the back faces extended to 1.748 m. Each endcap extended
from 43.3 cm to 95.8 cm in radius. Together, they covered the region in polar

angle 0.83 < |cos 6| < 0.95.

The energy of a typical electromagnetic shower produced by a photon, as

used in our analysis, is spread over multiple adjacent crystals. Interpolating the
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“center-of-mass” of this energy deposit offers us a much better resolution for
the shower position and hence the direction of the photon than could be naively
expected from the 5 cm face width of an individual crystal. A small fraction of
crystals are known to be noisy and their contributions have been ignored in this
analysis. The pattern of energy deposits in the crystals was used to distinguish

between showers from electrons, hadrons and photons.
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CHAPTER 4
ANALYSIS METHOD TO SEARCH FOR THE D;* — Dfe*e” AND
MEASURE THE RATIO OF BRANCHING FRACTIONS

B(D;* — Dte*e™)/B(D:* — D}vy)
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As described in the Introduction, this chapter documents a search for and
observation of the decay D;* — Dfe*e” along with a measurement of the ratio

of branching fractions
B(D;* — Die*e)
B(D;* — Dgy)

at the CLEO-c experiment. We choose to measure and present this ratio of
branching fractions instead of an absolute branching fraction for the Di* —
D}e*e” in order to minimize systematic uncertainties arising from the recon-
struction and selection of D} mesons. When we refer to the positively charged
D" or the D} in this document, we imply the negatively charged particle or the
charge-conjugate process unless otherwise specified. This search and measure-
ment was conducted in 586 pb~' of e*e” collision data collected by the CLEO-c
experiment at a center of mass energy of 4,170 MeV. At this energy, the total
charm cross section is known to be ~ 9 nb, of which about 10% produces D; D;*
events. More accurately, the cross section for producing D7D} at this energy
has been experimentally measured in two papers, [10] and [3], that we average
to quote 948 + 36 pb. How we arrive at this number is covered in more detail in
Section L4 where we discuss the datasets used. Using the quoted values of inte-
grated luminosity and production cross section we conclude that approximately

556 thousand events were at our disposal for this analysis.

In our search and measurement we employ a blind-analysis technique to
search for our signal process, the D;* — D}e*e”, where we reconstruct the D"
through the D} on the same side as the D;" and the soft e*e™ pair. The D] is
reconstructed exclusively through the nine hadronic decay channels outlined
in Eqs. B1l- Selection criteria are optimized, their efficiencies noted and
the background levels estimated from data outside the signal region before we

proceed to unblind data within the signal region.
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Figure 4.1: A schematic showing a e*e™ collision producing a D;*D; pair
where the D" decays to a D} and a e*e” via the decay we are

searching for in this dissertation.
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Selection criteria on the reconstructed D;*, D} and soft e*e” candidates are

designed to reject background events described in Section L1l These selection
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criteria are described in Section Of note are the criteria on the helix pa-
rameters of the soft e*e™ tracks that are used to discriminate our signal against
backgrounds that come from D" — D!y where the y converted to an e*e™ pair
in material. These selection criteria are optimized for each of the nine hadronic
decay modes of the D} using Monte Carlo simulations of the signal and back-

grounds as described in Section &7

The e*e™ pair from the D" decay share ~ 144 MeV of energy and are hence
anticipated to be very soft. The Kalman-filter based track fitter used in CLEO-c
did not, by default, store track fits with the electron mass hypothesis, storing
tracks fitted to the charged pion mass hypothesis instead. Section .7 that doc-
uments our effort to converge on optimal sets of parameters for our selection
criteria also documents our realization that tracks fitted to the electron mass
hypothesis offers us considerably higher signal significances for observing the
D" — Dfe*e” than tracks fitted to the pion mass hypothesis. Therefore, a cam-
paign to reprocess several datasets to include track fits with the electron mass
hypothesis was launched and this is described in Section Henceforth, the
analysis focuses on data with electron tracks fitted to the electron mass hypoth-

esis in searching for the D;* — D}e*e™.

Having narrowed down on a signal region for each of the hadronic decay
modes of the D} in the course of our optimization procedure, we estimate the
expected number of background events within this region for each mode by ex-
trapolating Monte Carlo simulation and data points from the sideband regions.
This is described in Section Before we unblind data within the signal re-
gions, we establish that our predicted signal and estimated background levels

are adequate to obtain maximal signal significance if we are to unblind data in
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all the modes.

Thereafter, we measure the efficiencies of our selection criteria for D;* —
Dte*e” reconstruction in each of the hadronic decay channels in Section We
could at this point proceed to unblind data and use the number of observed
events in conjunction with the selection efficiencies to present a measurement
for the absolute branching fraction of D;* — De*e”. Such a measurement, how-
ever, would have large unquantified systematic errors from the reconstruction

of the D} and we choose not to present such a measurement.

Using criteria similar to those used to select D;* — D}e*e™ events, except
without the track helix criteria for the e*e™ and including criteria on the photon
from the D?*, we reconstruct D;* — D}y events where the D} decays through
the hadronic modes specified in Eq. Bl - The efficiency of our selection
criteria is noted, as is our signal yield for each of the channels. This is described

in Section {10

We then unblind data in the signal regions of the D;* — Dte*e™ reconstruc-
tion in each of the chosen decay modes of the D} taking into account the back-
ground for each mode estimated in Section Using the numbers of observed
signal events, the efficiencies for our selection criteria and the signal yields and
efficiencies for the Di* — D}y reconstruction, we proceed to compute the ratio
of branching fractions we set out to measure. This is described in Section E.TT]
of the document. Also motivated in this section is the requirement for quanti-
tying systematic uncertainties in the selection efficiencies that stem from devi-
ations between data and Monte Carlo in the reconstruction of soft e*e™ pairs in

D" — D}e*e and the photon in D" — D}y.
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The systematic uncertainties associated with the selection and reconstruc-
tion efficiencies of soft e*e™ pairs in Di* — Dfe*e™ and the photon in D" — DYy
is measured in Section We estimate the systematic deviation between re-
construction efficiencies in Monte Carlo simulation and data by measuring the
ratio of the numbers of events where one of the 7 Dalitz decays to ye*e™ to the
number of events where both 7° decay to yy and comparing this to the ratio ex-
pected from currently accepted branching fractions for 7° — ye*e™ and n° — yy.

This uncertainty is propagated into the ratio of branching fractions reported in

Section ELT11

4.1 Backgrounds for D" — Die"e”

A significant background to the observation of this decay is expected from
D" — Dty events where the y converts in the material of the apparatus or
the beam-pipe to form an e*e™ pair. The material of the beam-pipe is known to
have been approximately 1% of a radiation length thick for photons incident on
it closest to the interaction region and higher for photons incident at steeper an-
gles. If we accept the theoretical estimate of the rate of the Di* — D}e*e™ process
with respect to the D;* — D}y as described in Section ], we conclude that this
conversion process occurred at roughly the same rate as the signal. This back-
ground is called the conversion background in this document. The electrons from
such conversions will have the same range of energies as those from signal pro-
cesses. However, their tracks would appear to originate at a distance away from
the primary interaction point. Selection criteria for selecting and reconstructing

the Di* — Dfe*e™ are designed to exploit this fact.
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Another source of background, also seen to be significant from Monte Carlo
simulation studies, arises from 7° mesons that were produced at the primary
interaction point which then decayed through the Dalitz channel: 7% — ye*e~
[11]]. Such e*e™ pairs would typically have had the same range of energies as
those expected from the signal process and their tracks would seem to have
originated from the primary interaction point. Though the rate of Dalitz decays
of the ¥ is ~ 1.2% [4]], the prodigious production of n° mesons makes this a sig-
nificant background to our rare signal. We recognize that such a combinatorial
background would not peak in the variables of any of our selection criteria and
estimate the frequency of its occurrence from the sidebands of the signal region

in our data. We call this the Dalitz decay background in the rest of the document.

Combinatorial backgrounds necessarily result from combining candidate
daughters of the DY and candidate e”s and e*s. Such backgrounds are not ex-
pected to be structured in the kinematic variables used to select signal events

and we estimate them from the sidebands around the signal region in our data.

We also account for backgrounds that arise from light quark («, d, s) produc-
tion at the interaction point. These backgrounds are seen, from Monte Carlo
simulations, to dominate, though not peak, in the 7*z 7" and n'z*; ¥ — p%
decay channels of the D} after applying our selection criteria. Therefore, we
choose to estimate their contributions from the sidebands of the signal region in
our data. They are collectively called the continuum background in the rest of this

document.
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4.2 Selection Criteria for Reconstructing D™ — De"e”

The entities directly measured by the CLEO-c detector that is relevant for our
analysis are charged tracks and electromagnetic showers. The sub-detectors
used for their detection have been described in Sections B.Jland B2 respectively.
Relatively stable particles like the soft ¢* and e~ in the final state of our signal
process or the n*, K* and y from decays of the D} could be detected directly
by the detector. Short-lived particles like the D} and the D" must be recon-
structed by analyzing the signatures of their decays into particles that left tracks
or shower in the detector. As we have mentioned earlier, we choose to recon-
struct the D through 9 hadronic final states as listed in Eq. E1]-E.9] and the D**

through the D and the soft e*e™ pair.

We construct three kinematic variables from reconstructed D} and D;* candi-
dates based on which we select events most likely to contain our signal. We also
construct two combinations of track parameters of the e* and e~ which gives us

criteria to powerfully reject conversion backgrounds.

4.2.1 Track Quality Requirements for the Soft e*e™ Pair

Quality requirements are imposed on the soft e*e™ tracks in order to reject poorly
reconstructed tracks and tracks that cannot correspond to our signal process.
These tracks are required to fit hits in the drift chambers with y? less than
100,000. The measured energy, which is derived from the momentum, that in
turn is inferred from the curvature of the track’s helix in the 1 T magnetic field, is

required to be between 10 MeV and 150 MeV. The upper limit is set by consider-
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ing the mass difference between the D;* and D} mesons, which is approximately
144 MeV. A single electron cannot carry more than that amount of energy. Be-
low 10 MeV, electron tracks curl in a way that cannot be well reconstructed by
the drift chamber. Next, we require tracks to pass within 5 cm of the interaction
point in the dimension parallel to the beam-axis and within 5 mm of the beam-
axis in the transverse dimensions. Finally, in order to reject particles that are not
electrons, we require the dE/dx as computed from the track fit to be within 3o

of that expected for electrons.

These criteria remain identical for all the hadronic decay modes of the D as

the e*e™ pair is independent of the D} .

4.2.2 Mass of the D7 Meson, mp:

The D} meson is reconstructed using the tight D,-tagging criteria outlined in the
document “Developments in D,-Tagging” [18]. We select events which con-
tain D! candidates with invariant mass within tens of MeV from 1.969 GeV.
The current world standard for the D} mass as recorded in the Review of Par-
ticle Physics 2008 is 1.96849 + 0.00034 GeV [4]. This criterion rejects most false
combinations of D} daughters. The exact width of this criterion was optimized

individually for each mode.

4.2.3 Beam Constrained Mass of the D" Meson, mpc

The energy of a D;* meson produced from the e*e™ collisions in CESR may be

determined with higher precision from the measured energy of the beam than
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from the sum of the energies of its decay constituents as measured by the CLEO-

c detector. It may be calculated from:

4s — m%)+ (RPP) + m%w (RPP)
4+s

where Ep:+(beam) is the energy of the D;* we calculate from the beam energy,

Ep:+(beam) = , (4.10)

s is the square of the center of mass energy of the beam, and mp:(RPP) and
mp:+(RPP) are the current world standards for the D} and D;* masses respec-

tively as recorded in the Review of Particle Physics 2008 [4].

Having thus calculated the energy of the D;* meson, we can now define a

more precise variant of the invariant mass of the D;* as follows:

Mpe = \/Eé?(beam) - p%§+(constituents) (4.11)

where pp:+(constituents) is the momentum of the D}* calculated from the mo-
menta of the daughters of its decay. mpc is called the beam constrained mass in

CLEO literature.

For this selection criterion, we accept events with candidates having mgc
within tens of MeV from 2.112 GeV. The current world standard for the DI*
mass as recorded in the Review of Particle Physics 2008 is 2.1123 + 0.0005 GeV

[4]. This criterion is meant to reject most false combinations of D" daughters.

4.2.4 Mass Difference between the D™ and the D! Mesons, om

We define 6m as the mass difference between the reconstructed D:* and D;

mesons.

om = mps+ — mpy (4.12)
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This mass difference is known to be 143.8 MeV [4]. By accepting events with
om within a narrow range of these values around 143.8 MeV we reject most
combinations where the e~ or e¢* that are used to reconstruct the D:* did not, in

fact, come from decays of the D;*.

4.2.5 Ad,between the ¢ and ¢~ Tracks

In CLEQ, the d, of a track is defined as the distance of closest approach of the
track to the z-axis. It is a signed quantity, whose sign depends on the charge of
the track (inferred from the sense of the track helix) and whether the origin of
the x — y plane falls within the circle made by the track in that plane. For more
details, one may see Section 6 of the “How and Why Wonder Book of CLEO

Tracking Conventions” [14].

Now, for e” and e™ tracks that come from the origin, as they do for our signal,
it may be seen from Fig. that df — dg+ is 0. Hence, in data, our signal will

have Ad, centered around 0.

However, for e* and e~ tracks that come from a point away from the origin,
as they do for the conversion background, it is clear from Fig. that d¢ — d¢

will be negative.
For our selection criterion, we define:
Ady = d§ —dS (4.13)

and require Ad, to be greater than -5 mm. This criterion efficiently rejects con-

version background events.
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Figure 4.2: An illustration of Ad, between the soft e*e™ tracks of the signal
and conversion events.

4.2.6 A¢)between the ¢" and ¢~ Tracks

The azimuthal angle of the e* and e~ tracks measured at the point of closest
approach of the track to the z-axis, denoted by ¢,, appears to be very effective in

rejecting conversion background events.

For events where the ¢* and e~ tracks come from the origin, as they do for

our signal, it may be noted from Fig. .3 that if we define:
Ao = ¢ — ¢, (4.14)

A¢y will be centered around 0 for the signal. However, for conversion events
where the tracks do not emanate from the origin, it may be inferred from Fig.

that A¢, will always be positive.

Requiring A¢y to be less than 0.12 in this selection criterion rejects a signifi-

cant portion of our conversion background events.
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Figure 4.3: An illustration of A¢, between the soft e*e™ tracks of the signal
and conversion events.

4.3 Selection Criteria for Reconstructing D;™ — D[y

As mentioned earlier, we seek to measure the ratio of branching fractions
B(Dy* — Dtfe*e™)/B(D;* — DYy) in order to minimize systematics arising from
the reconstructing of D} mesons, and therefore we must have a way to measure
yields and efficiencies for a B(D;* — D?y) measurement. We do this, again,
by reconstructing the D;* through the D} and the y. The D} is reconstructed

exclusively through the nine hadronic decay channels listed in Eq. B.1l-

Selection criteria used to separate the D;* — D}y signal from backgrounds
are similar to those used for the D;* — Dje*e™. The kinematic variables mp:,
mgc and om retain their definitions from the previous section, except the four-
momenta of the e*e™ pair is replaced by that of the y. Selection criteria on the
e*e” pair are obviously inapplicable and are replaced by criteria on the y. These
are described in the following section. Furthermore, we plot the distribution

of mpc after applying all other criteria, and the large rate of this channel that
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translates to a large number of data points allows us to compute the signal yields
and efficiencies from a fit instead of cutting and counting within a range. The

procedure is described in detail for the K* K~ 7" decay mode of the D} in Section

4.3.1 Shower Criteria for the Photon

As described briefly in Section B.2], photons are reconstructed from electromag-
netic showers in the calorimeter that distribute their energies over multiple crys-
tals. The direction of the photon is determined by interpolating between crystals
and the total energy is determined by summing the energy deposited in the re-
gion identified as part of an electromagnetic shower. The shower is required
to have total energy between 10 MeV and 2 GeV. No part of the shower may
deposit its energy in a known noisy, i.e. “hot”, crystal or an under-performing
one. The shower may not lie in the path of a track since such a shower would
almost certainly have been produced by a charged particle and therefore can-
not be a photon candidate. Electromagnetic showers tend to deposit a narrower
distribution of energy than a hadronic shower. The collimation of energy depo-
sition is measured by a quantity known as E9/E25. It is the ratio of energy in
the 3 x 3 block of crystal surrounding the cluster-center of the shower energy
to the energy deposited in the 5 x 5 block. E9/E25 is required to be close to 1
for a photon shower. We also require that energies in this 5 x 5 block that are
associated with any other photon be subtracted. We select on a range for this
unfolded E9/E25 variable, limited by 1, such that 99% of showers are accepted.
And finally, the shower is required to be from a region of the barrel or endcap

calorimeter known to be good.
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Table 4.1: Integrated luminosity corresponding to the CLEO-c datasets
used in this analysis. The statistical uncertainties are added
in quadrature, while the systematic uncertainties are added lin-
early. Thereafter, these two forms of uncertainties are added in
quadrature to give us the total uncertainty we use for the analy-
sis and the remainder of this document.

Dataset Integrated Luminosity + stat + syst (pb™")

39 55.1 £0.03 + 0.56
40 1239+ 0.05+1.3
41 119.1+0.05+1.3
47 109.8 £ 0.05 + 1.1
48 1783 + 0.06 £+ 1.9
Total 586.2 £ 0.11 £ 6.1

4.4 Datasets Used

Data taken by the CLEO-c detector at e*e™ center of mass collision energy of
4,170 MeV that is used for this analysis correspond to the datasets enumerated
in Table &1l The center of mass collision energy is usually represented in high
energy physics as v/s. We add the integrated luminosities of each of the datasets
to converge on the value of 586 + 6 pb™' as the total luminosity of our data. This

value is used for the rest of this dissertation.

Electron-positron collisions at a center of mass energy of +/s= 4,170 MeV
have been measured to produce D5 D;* pairs with a cross section of 916 + 11(sta-
tistical) + 49(systematic) pb in [10] and 983 + 46(statistical) + 21(systematics of
measurement) + 10 (systematics of luminosity) in [3]]. These being independent
measurements, we use the uncertainty-weighted average value of 948 + 36 pb

for the cross section in this analysis.
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Dataset 42 containing 48.1 pb™' of data collected at the ¥(2S) resonance en-
ergy was used to measure the systematic uncertainty in the reconstruction effi-

ciencies of soft e*e” and y in this analysis.

Monte Carlo samples modeling known physical processes expected in these
datasets had been produced and are available as the Generic and Continuum

samples described in the following sections.

44.1 Generic Monte Carlo

By Generic Monte Carlo, we mean a Monte Carlo (MC) simulation of all known
physics processes that follow from the production of charm quarks at 4,170 MeV
e*e” collisions. The D;* — Dfe*e” process which we are searching for, conse-
quently, is not a part of this simulation. In order to decrease statistical uncer-
tainties, the Generic MC was created with approximately 20 events for every 1
event of data. This scale factor of 20 was aimed for, but not necessarily achieved

due to computational errors. We re-evaluate the scale factor achieved as follows:

According to

https://www.lepp.cornell.edu/ c3mc/private/genmc_decs/20080404 _MCGEN_1/ddmix_4170_isr.dec
which is the EVTGEN decay file used to set the branching fractions of the vari-
ous charm quark states possible at 4,170 MeV, the branching fraction of produc-
ing Dy D" is 0.1014. Also, from the “Samples” section of
https://wiki.lepp.cornell.edu/lepp/bin/view/CLEO/Private/SW/CLEOcMCstatus
we see that the total number of produced events is 105.2 million. Therefore, we
may write:

(586 + 3)pb~! x (948 + 36)pb

— 6
01014 x scale = (105.2 +0.1) x 10 (4.15)
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From this, we deduce that the achieved scale factor for the Generic MC sample
has been 19.2 + 0.8. The uncertainty in the luminosity contributes most to the
uncertainty in this scale. Since we will be mostly dividing the number of events
in Generic MC by this scale factor, it is useful to record the inverse of this scale:

0.052 + 0.002.

4.4.2 Continuum Monte Carlo

By Continuum Monte Carlo, we mean a Monte Carlo simulation of all physics
processes that follow from the production of up, down and strange quarks at
Vs =4,170 MeV e*e™ collisions. The scale factor for this MC sample is read off
as 5 from the website:

https://wiki.lepp.cornell.edu/lepp/bin/view/CLEO/Private/SW/CLEOcMCstatus
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4.5 Reprocessing Data to Fit Tracks with the Electron Mass Hy-

pothesis

Tracks in CLEO-c are fitted to various particle mass hypotheses with a Kalman
tilter as described in [20]. In order to conserve disk-space, however, CLEO-c
had chosen to not store track fits made with the electron mass hypothesis in
the reconstruction process. Electrons tracks were stored with fits made with the
charged pion mass hypothesis. This is found to work fine for energies above a
few hundred MeVs, but not in our analysis which deals with average electron
energies of 70 MeV and goes down to 40 MeV. A plot of the difference between
the reconstructed and generated electron energy as a function of the generated
energy for electron tracks fitted with the pion mass hypothesis is presented in
Fig. B.4(Left). We find a systematic and significant over-estimation of the elec-
tron energy with lower generated energies. This is directly related to the signif-
icantly larger mass of the charged pion being used to model the energy loss for

an electron in the Kalman filter used to fit the tracks.

This systematic deviation disappears when we switch to the electron mass
hypothesis for our track fits as presented in Fig. H4(Right). Simply re-
parameterizing the energy of the tracks using a fit to Fig. B.4(Left) was found to
not improve our results as significantly as reconstructing tracks with the elec-

tron mass fit.

All datasets listed in Table L] and dataset 42, which is used for comput-
ing systematic uncertainties in the low-energy electron tracking efficiency, were
reprocessed to have events with D} candidates decaying to one of the nine

hadronic modes specified in Eq. B.1l-B.9 also contain tracks fitted to the electron
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Figure 4.4: (Left) The difference between the reconstructed and Monte
Carlo generated electron energy plotted against the generated
electron energy when the electrons have been fitted to tracks
using the pion mass hypothesis. (Right) The difference when
the electrons are fitted to tracks using the electron mass hy-
pothesis.

mass hypothesis. The execution of this procedure was a major technical chal-
lenge, given the sheer volume of data that had to be sifted through, and failed to
reproduce 0.2% of the D? candidates while producing 0.1% new D} candidates
in the reprocessed datasets. This was attributed to virtually intractable changes
in software since the first processing of this data and is incorporated in our final

measurement as a source of uncertainty.
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4.6 Monte Carlo Generation and Validation

In order to calibrate our selection criteria for selecting D;* — D}e*e™ and D}* —
D7y events over background processes, we produce Monte Carlo simulations of
these events. Monte Carlo simulations also help us estimate the efficiencies for

our thus tuned selection criteria in retaining such events in data.

These simulations begin by modeling the physics of e*e™ collisions which
produces intermediate particles, which in turn decay to D;*D; pairs and ul-
timately down to known stable particles. The invariant quantum mechanical
amplitude which captures the essential dynamics of this process is programmed
into the EvtGen [15] software package. The package uses this information along
with the Lorentz-invariant phase space factor which encodes the kinematics of
the process to populate the available phase space. Thus, distributions of final
state particles in momenta are generated. The behavior and detection of these fi-
nal state particles in CLEO-c are computed by another software package known
as GEANT [[12]. It accounts for the decay of short lived particles in flight, the
interaction of particles with the material of the detector and energy loss due to

bremsstrahlung.

The decay of a vector boson (D}*) to a scalar boson (D7 and two leptons (e*e™)
had not previously been modeled in the EvtGen package. A software plug-in
to accomplish this within EvtGen, based on the invariant amplitude computed
in Eq. was implemented. This was used to generate signal Monte Carlo
samples for the D;* — D}e*e™ process, and this included accounting for all
angular correlations. However, it remained for us to ensure that the form for

dU'/dk* of the Di* — D}e*e” process which we arrived at analytically in Eq.
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.44 that was used in the computation of I'(D:* — D}e*e™)/T(D:* — D}y) in Eq.
matched with that produced by the Monte Carlo simulation of EvtGen. k?
represents the invariant mass squared of the e*e™ pair as it did in Chapter P21
To do this, we plotted the dT'/dk? as a function of k* that was written down in
Eq. 244 overlaid with an appropriately normalized histogram of the k* from
EvtGen as presented in Fig. L3l The match is found to be satisfactory with

discrepancies well beyond the capacity for our detector to resolve.
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Figure 4.5: (a) The analytical expression for the distribution of k* overlaid
with the distribution of the corrected m?, from the Monte Carlo.
(b) A zoom into the region betweeen 0 GeV and 20m? to illus-
trate the close match near the peak.

Monte Carlo samples were generated for both D" — D}e*e” and D;* — D}y
processes. The former served as the signal sample for the Di;* — Dle*e”
reconstruction. The latter served as one of the background samples for the
D" — Dje*e” reconstruction (where the y converted to e*e™ pairs in the material
of the detector) and as the signal sample for reconstruction of the D;* — D}y
itself. Separate samples were generated for the D} decaying to each of the 9

hadronic decay modes listed between Eq. EJland
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4.7 Optimization of Selection Criteria for the D;™ — Die"e™

In this section, we describe our method of calibrating the selection criteria out-
lined in Section B2 to optimally select D;* — D}e*e™ events in data while re-
jecting background events. This is done using Monte Carlo samples for both
the signal and background events. The various kinds of expected background
events, as described in Section B.J] had been simulated as part of the Generic
and Continuum Monte Carlo samples accompanying each dataset as described

in Section B4l A crude measure of signal significance, defined as:

s
Ocrude = %

(4.16)
where s and b are the numbers of signal and background events observed after
all selection criteria have been applied, is maximized in the course of our op-
timization effort. We optimize the selection criteria for each of the 9 hadronic
decay modes of the D} separately using Monte Carlo samples that contain elec-
tron tracks fitted to both the charged pion and electron mass hypotheses. Im-
provements in the signal yields (observed number of signal events after selec-
tion criteria) and significances (as defined crudely above) are noted as we go
from the pion-fitted to the electron-fitted samples, and this is summarized in
Tables £.2l and They are a compilation of results obtained in the following
sub-sections that deals with the optimization of the modes individually. The
numbers in these tables are not used as final expectations of the background in
data. A data driven method is used to achieve that in Section .9 and summa-

rized in Section B.9.121 The numbers here are merely representative and were

used to converge on an optimized set of parameters for our selection criteria.

A problem arises in making optimization plots for the electron-fitted sam-

ples because the generic and the continuum Monte Carlo samples do not contain
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tracks that are electron-fitted. To get around this, we recognize that electron-
fitting tracks is most important for separating conversion events from signal. It
does not change distributions of the Dalitz decay or other combinatoric back-
grounds appreciably for the purposes of this analysis. Therefore, we privately
produce electron-fitted Monte Carlo samples of D;* — D}y events where the D}
decays generically, and use them in place of Generic Monte Carlo events which

have D;* — D7y excluded at the generator (EvtGen) level.

To create the plots for optimization in the following sub-sections for each
hadronic decay of the D}, it is assumed that D;D;* pairs are produced at
V/s= 4170 MeV with a cross section of 948 + 36 pb, the branching fraction of
D" — Dty is 94.2%, the branching fraction of D;* — D}e*e™ is 0.65%, the scale
of generic Monte Carlo is 1/19.2, and the scale of continuum Monte Caro is 1/5.
The plots for a particular selection criterion are made having applied all other
selection criteria. This allows us to assess the performance of a particular crite-
rion when applied in conjunction with all other criteria. We may take the set of
plots in Fig. B.f as an illustration of our procedure. We plot the distribution of
the variable that we are selecting on, the mass of the D} in this example, for the
signal on the top left plot in each set of plots. The plot on the right in the same
row graphs the increase in accepted signal as we increase the width of our se-
lection criterion in mp:. The number of produced signal events are normalized
to what we expect in 586 pb~' of data. The second row displays the same for
a generic MC sample. The third row displays the same for the continuum MC
sample. They too are normalized to a luminosity of 586 pb™'. The first column
on the last row plots the crude significance as defined in Eq. against an
increasing acceptance of the selection criterion. The second column on the last

row plots a crude precision, as defined in Eq. BE.JZ against an increasing accep-
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tance of the selection criterion. For each selection criterion we try to maximize
the crude significance while ensuring that we are not too far from the maximum

in the crude precision.
s

Pcrude = s (4.17)

Optimization of the selection criteria for each hadronic decay mode of the D}
is described separately in the following sub-sections. In the interest of reading
clarity, the plots used to converge on optimized parameters are only presented
for the DY — K*K n* mode in this section. Plots for all other modes are rele-
gated to Appendix[Al The parameters converged upon for the selection criteria
and their performances against signal and background Monte Carlo samples,

however, are presented in the sub-sections corresponding to each of the modes.

Table 4.2: Numbers of signal and background events retained by opti-
mized selection criteria in signal and background Monte Carlo
simulations where electron tracks have been fitted to the pion
mass hypothesis. The numbers are normalized to 586 pb~' of
integrated luminosity.

Mode Signal Generic Background Continuum Background Total Background s/ Vb
K*K rn* 11.7 2.03 0.00 2.03 8.2
KsK* 3.12 0.78 0.00 0.78 3.5
nrt 1.57 0.21 0.20 0.41 6.3
n'ntyy - atr . 1.02 0.47 0.00 047 1.5
K"K n*n® 4.62 3.49 0.40 3.89 2.3
P aF o o 2.99 0.73 0.60 1.33 2.6
K** K" 1.78 1.35 0.00 1.35 1.5
np* 5.54 2.40 3.60 6.00 2.3
nntin — pdy 2.17 0.83 1.60 243 14
Total 36.94 12.29 6.4 18.69 8.6

49



Table 4.3: Numbers of signal and background events retained by opti-
mized selection criteria in signal and background Monte Carlo
simulations where electron tracks have been fitted to the elec-
tron mass hypothesis. The numbers are normalized to 586 pb™'
of integrated luminosity.

Mode Signal Conversion Background ~Generic Background ~Continuum Background ~Total Background s/ Vb

Conversions Vetoed

K*K n* 13.36 1.04 0.42 0.00 145 11.1

KsK* 3.05 0.34 0.21 0.00 0.54 413

nn* 1.79 0.17 0.10 0.20 0.47 6.6
n'ntyy > ntnp 074 0.00 0.00 0.00 0.00 00
K*K-n*n® 4.86 0.63 1.46 0.20 2.29 32
et 3.67 0.28 0.21 1.60 2.09 2.5
KK 2.02 0.23 0.63 0.20 1.05 2.0

np* 5.71 0.85 0.99 1.00 2.84 34
'ty — oy 241 0.34 0.21 1.80 2.35 1.6

Total 40.36 3.88 4.23 5.00 13.08 11.2

471 D' - K*Kn*

Given that the branching fraction of DY — K*K~n* is 0.055 + 0.0028 [3, 4], we
study the plots in [d.6] B.7 B8, and to arrive at the selection criteria for
data with electron tracks fitted to the pion mass hypothesis, and the plots in £.11],
E14 and to arrive at the selection criteria for data with electron
tracks fitted to the electron mass hypothesis. These are summarized in Table
B4l The optimization plots for any given selection criteria are produced after
having applied all other criteria on the simulated samples. All plots correspond

to 586 pb™' of integrated luminosity.

When the selection criteria outlined in Table B.4l are applied to Monte Carlo
simulation samples corresponding to 586 pb~' of integrated luminosity, with the
pion mass hypothesis and the electron mass hypothesis for electron tracks, we

are left with signal and background yields as presented in Table
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Figure 4.6: Optimization plots for the my: selection criterion in the D} —
K*K~n* mode using pion-fitted tracks in the simulated sam-
ples. The top left plot is the distribution of mp: in the signal
Monte Carlo sample. The top right plot graphs the number of
signal MC sample events accepted by the criterion as we in-
crease the cut width plotted on the x-axis. The plots in the
second and third rows correspond to the generic and contin-
uum MC samples. The bottom left shows the significance of
the signal over background. The bottom right plot shows the

precision of the signal.
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Figure 4.7: Optimization plots for the mpc selection criterion in the D} —
K*K~n* mode using pion-fitted tracks in the simulated sam-
ples. The top left plot is the distribution of mpc in the signal
Monte Carlo sample. The top right plot graphs the number of
signal MC sample events accepted by the criterion as we in-
crease the cut width plotted on the x-axis. The plots in the
second and third rows correspond to the generic and contin-
uum MC samples. The bottom left shows the significance of
the signal over background. The bottom right plot shows the
precision of the signal.
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Figure 4.8: Optimization plots for the dm selection criterion in the DY —
K*K~n* mode using pion-fitted tracks in the simulated sam-
ples. The top left plot is the distribution of ém in the signal
Monte Carlo sample. The top right plot graphs the number of
signal MC sample events accepted by the criterion as we in-
crease the cut width plotted on the x-axis. The plots in the
second and third rows correspond to the generic and contin-
uum MC samples. The bottom left shows the significance of
the signal over background. The bottom right plot shows the
precision of the signal.
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Figure 4.9: Optimization plots for the Adj selection criterion in the D} —
K*K~n* mode using pion-fitted tracks in the simulated sam-
ples. The top left plot is the distribution of Ad, between the
e*e” tracks in the signal Monte Carlo sample. The top right
plot graphs the number of signal MC sample events accepted
by the criterion as we vary the cut on the x-axis. The plots in
the second and third rows correspond to the generic and con-
tinuum MC samples. The bottom left shows the significance of
the signal over background. The bottom right plot shows the
precision of the signal.
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Figure 4.10: Optimization plots for the A¢, selection criterion in the D} —
K*K~n* mode using pion-fitted tracks in the simulated sam-
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of the signal over background. The bottom right plot shows
the precision of the signal.
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Figure 4.11: Optimization plots for the mp: selection criterion in the DY —
K*K~n* mode using electron-fitted tracks in the simulated
samples. The top left plot is the distribution of mp: in the
signal Monte Carlo sample. The top right plot graphs the
number of signal MC sample events accepted by the crite-
rion as we increase the cut width plotted on the x-axis. The
plots in the second, third and fourth rows correspond to the
Di* — D}y, generic and continuum MC samples. The bottom

left shows the significance of the signal over background. The
bottom right plot shows the precision of the signal.
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Figure 4.12: Optimization plots for the mpc selection criterion in the DY —
K*K~n* mode using electron-fitted tracks in the simulated
samples. The top left plot is the distribution of mpc in the
signal Monte Carlo sample. The top right plot graphs the
number of signal MC sample events accepted by the crite-
rion as we increase the cut width plotted on the x-axis. The
plots in the second, third and fourth rows correspond to the
D" — Dtvy, generic and continuum MC samples. The bottom
left shows the significance of the signal over background. The
bottom right plot shows the precision of the signal.
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Figure 4.13: Optimization plots for the om selection criterion in the D} —
K*K~n* mode using electron-fitted tracks in the simulated
samples. The top left plot is the distribution of 6m in the signal
Monte Carlo sample. The top right plot graphs the number of
signal MC sample events accepted by the criterion as we in-
crease the cut width plotted on the x-axis. The plots in the
second, third and fourth rows correspond to the D;* — D}y,
generic and continuum MC samples. The bottom left shows
the significance of the signal over background. The bottom
right plot shows the precision of the signal.
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Figure 4.14: Optimization plots for the Ad, selection criterion in the D} —
K*K~n* mode using electron-fitted tracks in the simulated
samples. The top left plot is the distribution of Ad, between
the e*e™ tracks in the signal Monte Carlo sample. The top
right plot graphs the number of signal MC sample events ac-
cepted by the criterion as we vary the cut on the x-axis. The
plots in the second, third and fourth rows correspond to the
Di* — D!y, generic and continuum MC samples. The bottom

left shows the significance of the signal over background. The
bottom right plot shows the precision of the signal.
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Figure 4.15: Optimization plots for the A¢, selection criterion in the D} —
K*K~n* mode using electron-fitted tracks in the simulated
samples. The top left plot is the distribution of A¢, between
the e*e™ tracks in the signal Monte Carlo sample. The top
right plot graphs the number of signal MC sample events ac-
cepted by the criterion as we vary the cut on the x-axis. The
plots in the second, third and fourth rows correspond to the
Di* — D}y, generic and continuum MC samples. The bottom

left shows the significance of the signal over background. The
bottom right plot shows the precision of the signal.
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Table 4.4: Selection criteria for data with electron tracks fitted to the pion
and electron mass hypotheses in the D} — K*K~n* decay mode.

Selection Criterion Pion-Fitted Data Electron-Fitted Data

Cut Center + Width Cut Center + Width

mp; 1.969 = 0.011GeV ~ 1.969 + 0.011 GeV
Mac 2112 +0.005GeV  2.112 + 0.004 GeV
om 0.155 + 0.009 GeV  0.144 + 0.006 GeV
Ady -0.002 m -0.006 m

Ado 0.06 0.1

Table 4.5: Numbers of signal and background events left in 586 pb~' of
pion and electron-fitted simulation samples in the D} — K*K™n*
decay mode.

Expected Number of Pion-Fitted Samples Electron-Fitted Samples
Events in 586 pb~' and Criteria and Criteria
Signal (s) 11.7 13.36
Conversion Background - 1.04
Generic Background (without Conversions in e-fit) 2.03 0.42
Continuum Background 0.00 0.00
Total Background (b) 2.03 1.45
s/ Vb 8.2 11.1
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472 D' - KsK*

The optimization plots for this decay mode may be found in Appendix [A]l
Given that the branching fraction of DY — KgK* is 0.0149 + 0.0009 [3, 4], we
study the plots in [A]] [A3] [A5] [A.7 and to arrive at the selection criteria
for data with electron tracks fitted to the pion mass hypothesis, and the plots
in [A2] [A4 [A6, and to arrive at the selection criteria for data with
electron tracks fitted to the electron mass hypothesis. These are summarized in

Table 4.6

Table 4.6: Selection criteria for data with electron tracks fitted to the pion
and electron mass hypotheses in the D! — KsK* decay mode.

Selection Criterion Pion-Fitted Data Electron-Fitted Data

Cut Center + Width Cut Center + Width

mps 1.969 +0.012GeV  1.969 + 0.008 GeV
Mac 2.112 £ 0.006 GeV  2.112 + 0.007 GeV
om 0.158 + 0.010 GeV  0.144 + 0.006 GeV
Ady -0.002 m -0.004 m

Ao 0.09 0.14

When the selection criteria outlined in Table l.6lare applied to Monte Carlo
simulation samples corresponding to 586 pb ™' of integrated luminosity, with the
pion mass hypothesis and the electron mass hypothesis for electron tracks, we

are left with signal and background yields as presented in Table &7
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Table 4.7: Numbers of signal and background events expected in pion and
electron-fitted data in the D} — KsK* decay mode.

Expected Number of Pion-Fitted Samples Electron-Fitted Samples
Events in 586 pb ™' and Criteria and Criteria
Signal (s) 3.12 3.05
Conversion Background - 0.34
Generic Background (without Conversions in e-fit) 0.78 0.21
Continuum Background 0.00 0.00
Total Background (b) 0.78 0.54
s/ Vb 3.5 413
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473 D - natin— yy

The optimization plots for this decay mode may be found in Appendix
Given that the branching fraction of DY — nr* is 0.0158+0.0021 [3,4] and n — yy
is 0.3931 +0.0020 [, 16, 4], we study the plots in[A.TT] [A13} [AT5 [AT7and [A.19
to arrive at the selection criteria for data with electron tracks fitted to the pion
mass hypothesis, and the plots in [A.12] [A.T4) and to arrive at
the selection criteria for data with electron tracks fitted to the electron mass

hypothesis. These are summarized in Table

Table 4.8: Selection criteria for data with electron tracks fitted to the pion
and electron mass hypotheses in the D} — nn*;n — yy decay
mode.

Selection Criterion Pion-Fitted Data Electron-Fitted Data

Cut Center + Width Cut Center + Width

Mpy 1.969 +0.015GeV  1.969 + 0.016 GeV
Mac 2.112 £ 0.007 GeV  2.112 + 0.008 GeV
om 0.155 + 0.013GeV ~ 0.144 + 0.008 GeV
Ady -0.007 m -0.004 m

Ado 0.07 0.12

When the selection criteria outlined in Table B.8 are applied to Monte Carlo
simulation samples corresponding to 586 pb ™' of integrated luminosity, with the
pion mass hypothesis and the electron mass hypothesis for electron tracks, we

are left with signal and background yields as presented in Table
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Table 4.9: Numbers of signal and background events expected in pion and
electron-fitted data in the D} — nz*;n — yy decay mode.

Expected Number of Pion-Fitted Samples Electron-Fitted Samples
Events in 586 pb ™' and Criteria and Criteria
Signal (s) 1.57 1.79
Conversion Background - 0.17
Generic Background (without Conversions in e-fit) 0.21 0.10
Continuum Background 0.20 0.20
Total Background (b) 0.41 0.47
s/ Vb 6.3 6.6
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474 D! -sny'ntiy - ratngn - yy

The optimization plots for this decay mode may be found in Appendix
Given that the branching fraction of D} — n'zn* is 0.038 +£0.004 [3} 4], the branch-
ing fraction of 7 — 77 nis 0.446 + 0.0014 [19] 4], and the branching fraction of
n — yyis 0.3931 +0.0020 [}, 16, 4], we studied the plots in [AZT],
and to arrive at the selection criteria for data with electron tracks fitted to
the pion mass hypothesis, and the plots in and to
arrive at the selection criteria for data with electron tracks fitted to the electron

mass hypothesis. These are tabulated in Table

Table 4.10: Selection criteria for data with electron tracks fitted to the
pion and electron mass hypotheses in the DY — p'n*;y —
n*nn;n — yy decay mode.

Selection Criterion Pion-Fitted Data Electron-Fitted Data

Cut Center + Width Cut Center + Width

Mpy 1.969 +0.011 GeV  1.969 + 0.008 GeV
Mac 2112 £0.011GeV  2.112 + 0.004 GeV
om 0.155 + 0.013 GeV  0.144 + 0.008 GeV
Ady -0.003 m -0.004 m

Ado 0.07 0.1

When the selection criteria outlined in Table are applied to Monte Carlo
simulation samples corresponding to 586 pb ™' of integrated luminosity, with the
pion mass hypothesis and the electron mass hypothesis for electron tracks, we

are left with signal and background yields as presented in Table E.T1]
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Table 4.11: Numbers of signal and background events expected in pion
and electron-fitted data in the DY — 7"y — a*x ngn — yy

decay mode.

Expected Number of Pion-Fitted Samples Electron-Fitted Samples
Events in 586 pb~' and Criteria and Criteria
Signal (s) 1.02 0.74
Conversion Background - 0.00
Generic Background (without Conversions in e-fit) 0.47 0.00
Continuum Background 0.00 0.00
Total Background (b) 0.47 0.00
s/ b 1.50 o0
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4.7.5 D! —» KK n*n®

The optimization plots for this decay mode may be found in Appendix [A.4
Given that the branching fraction of D} — K*K n*z° is 0.056 + 0.005 [3, 4], we
study the plots in [A3]] [A 37 and to arrive at the selection cri-
teria for data with electron tracks fitted to the pion mass hypothesis, and the
plots in[A.37] [A.34), and[A. 40 to arrive at the selection criteria for data
with electron tracks fitted to the electron mass hypothesis. These are tabulated
in Table
Table 4.12: Selection criteria for data with electron tracks fitted to the pion

and electron mass hypotheses in the D! — K*K n*zn’ decay
mode.

Selection Criterion Pion-Fitted Data Electron-Fitted Data

Cut Center + Width Cut Center + Width

mps 1.969 + 0.009 GeV  1.969 + 0.010 GeV
Mac 2.112 £ 0.007 GeV  2.112 + 0.004 GeV
om 0.155 + 0.011 GeV  0.144 + 0.006 GeV
Ady -0.002 m -0.006 m

Ado 0.07 0.12

When the selection criteria outlined in Table are applied to Monte Carlo
simulation samples corresponding to 586 pb ™' of integrated luminosity, with the
pion mass hypothesis and the electron mass hypothesis for electron tracks, we

are left with signal and background yields as presented in Table
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Table 4.13: Numbers of signal and background events expected in pion
and electron-fitted data in the D} — K*K n*z° decay mode.

Expected Number of Pion-Fitted Samples Electron-Fitted Samples
Events in 586 pb ™' and Criteria and Criteria
Signal (s) 4.62 4.86
Conversion Background - 0.63
Generic Background (without Conversions in e-fit) 3.49 1.46
Continuum Background 0.40 0.20
Total Background (b) 3.89 2.29
s/ Vb 2.3 32

69



4.7.6 D! - nnn"

The optimization plots for this decay mode may be found in Appendix
Given that the branching fraction of D} — n*n 7" is 0.0111+0.0008 [4], we study
the plots in [A4T] [A 47 and to arrive at the selection criteria for
data with electron tracks fitted to the pion mass hypothesis, and the plots in
[A4D] [A 44 and to arrive at the selection criteria for data with
electron tracks fitted to the electron mass hypothesis. These are tabulated in

Table .14

Table 4.14: Selection criteria for data with electron tracks fitted to the pion
and electron mass hypotheses in the D} — n*n~n* decay mode.

Selection Criterion Pion-Fitted Data Electron-Fitted Data

Cut Center + Width Cut Center + Width

mp; 1.969 = 0.013GeV  1.969 + 0.012 GeV
Mac 2112 +0.005GeV  2.112 + 0.004 GeV
om 0.155 + 0.009 GeV  0.144 + 0.006 GeV
Ady -0.001 m -0.006 m

Ado 0.06 0.1

When the selection criteria outlined in Table E.T4lare applied to Monte Carlo
simulation samples corresponding to 586 pb ™' of integrated luminosity, with the
pion mass hypothesis and the electron mass hypothesis for electron tracks, we

are left with signal and background yields as presented in Table
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Table 4.15: Numbers of signal and background events expected in pion
and electron-fitted data in the D} — 7*7~ 7" decay mode.

Expected Number of Pion-Fitted Samples Electron-Fitted Samples
Events in 586 pb ™' and Criteria and Criteria
Signal (s) 2.99 3.67
Conversion Background - 0.28
Generic Background (without Conversions in e-fit) 0.73 0.21
Continuum Background 0.60 1.60
Total Background (b) 1.33 2.09
s/ Vb 2.6 25
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4.7.7 D} - K"K K** — Kon*,K** - K™n*

The optimization plots for this decay mode may be found in Appendix
Given that the branching fraction of D} — K**K**;K** — K{n*,K** — K n*
is 0.0164 + 0.0012 [2, 4], we study the plots in [A5T] and
to arrive at the selection criteria for data with electron tracks fitted to the pion
mass hypothesis, and the plots in and to arrive at
the selection criteria for data with electron tracks fitted to the electron mass

hypothesis. These are tabulated in Table

Table 4.16: Selection criteria for data with electron tracks fitted to the pion
and electron mass hypotheses in the D} — K**K* decay mode.

Selection Criterion Pion-Fitted Data Electron-Fitted Data

Cut Center + Width Cut Center + Width

Mpy 1.969 + 0.007 GeV  1.969 + 0.006 GeV
Mac 2.112 £ 0.007 GeV  2.112 + 0.005 GeV
om 0.155 + 0.009 GeV  0.144 + 0.008 GeV
Ady -0.004 m -0.005 m

Ado 0.07 0.13

When the selection criteria outlined in Table are applied to Monte Carlo
simulation samples corresponding to 586 pb ™' of integrated luminosity, with the
pion mass hypothesis and the electron mass hypothesis for electron tracks, we

are left with signal and background yields as presented in Table .17
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Table 4.17: Numbers of signal and background events expected in pion
and electron-fitted data in the D} — K**K** decay mode.

Expected Number of Pion-Fitted Samples Electron-Fitted Samples
Events in 586 pb ™' and Criteria and Criteria
Signal (s) 1.78 2.02
Conversion Background - 0.23
Generic Background (without Conversions in e-fit) 1.35 0.63
Continuum Background 0.00 0.20
Total Background (b) 1.35 1.05
s/ Vb 15 2.0
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4.7.8 D! — notin— yy;p" — atn

The optimization plots for this decay mode may be found in Appendix [A.Z
Given that the branching fraction of D} — np* is 0.130 + 0.022 [17, 4], and the
branching fraction of n — yy is 0.3931 + 0.0020 [}, 16} 4], we study the plots in
[A6T], and to arrive at the selection criteria for data with
electron tracks fitted to the pion mass hypothesis, and the plots in A.64
and[A. 70 to arrive at the selection criteria for data with electron tracks

fitted to the electron mass hypothesis. These are tabulated in Table

Table 4.18: Selection criteria for data with electron tracks fitted to the pion
and electron mass hypotheses in the DY — np*;n — yy;p* —
n*n® decay mode.

Selection Criterion Pion-Fitted Data Electron-Fitted Data
Cut Center + Width Cut Center + Width

Mmp; 1.969 + 0.014 GeV  1.969 + 0.015 GeV
Mpc 2.112 £ 0.006 GeV  2.112 = 0.004 GeV
om 0.155+ 0.009 GeV  0.144 + 0.005 GeV
Ady -0.003 m -0.007 m

Ao 0.07 0.13

When the selection criteria outlined in Table are applied to Monte Carlo
simulation samples corresponding to 586 pb~' of integrated luminosity, with the
pion mass hypothesis and the electron mass hypothesis for electron tracks, we

are left with signal and background yields as presented in Table
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Table 4.19: Numbers of signal and background events expected in pion

and electron-fitted data in the D} — np*;n = yy;p* - n*n°

decay mode.

Expected Number of Pion-Fitted Samples Electron-Fitted Samples
Events in 586 pb_1 and Criteria and Criteria
Signal (s) 5.54 5.71
Conversion Background - 0.85
Generic Background (without Conversions in e-fit) 2.40 0.99
Continuum Background 3.60 1.00
Total Background (b) 6.00 2.84
s/ Vb 2.3 34
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4.79 D! — np'nt — py

The optimization plots for this decay mode may be found in Appendix
Given that the branching fraction of D} — n'z* is 0.038 + 0.004 [3, 4], and the
branching fraction of n” — p%y is 0.294 + 0.009 [19} 4], we study the plots in[A7T]
[A 7 and [A.79to arrive at the selection criteria for data with electron
tracks fitted to the pion mass hypothesis, and we studied the plots in[A. 72| [A.74}
and[A.80to arrive at the selection criteria for data with electron tracks

fitted to the electron mass hypothesis. These are tabulated in Table

Table 4.20: Selection criteria for data with electron tracks fitted to the pion
and electron mass hypotheses in the D} — n'z*;17 — p’y decay
mode.

Selection Criterion Pion-Fitted Data Electron-Fitted Data
Cut Center + Width Cut Center + Width

Mpy 1.969 + 0.018 GeV  1.969 + 0.012 GeV
Mac 2.112 +0.004 GeV  2.112 + 0.004 GeV
om 0.155 + 0.008 GeV  0.144 + 0.007 GeV
Ady -0.004 m -0.006 m

Ao 0.09 0.11

When the selection criteria outlined in Table are applied to Monte Carlo
simulation samples corresponding to 586 pb ™' of integrated luminosity, with the
pion mass hypothesis and the electron mass hypothesis for electron tracks, we

are left with signal and background yields as presented in Table B.27]
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Table 4.21: Numbers of signal and background events expected in pion
and electron-fitted data in the D} — n'z*; 7’ — p’y decay mode.

Expected Number of Pion-Fitted Samples Electron-Fitted Samples
Events in 586 pb ™' and Criteria and Criteria
Signal (s) 217 241
Conversion Background - 0.34
Generic Background (without Conversions in e-fit) 0.83 0.21
Continuum Background 1.60 1.80
Total Background (b) 243 2.35
s/ Vb 14 1.6
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Figure 4.16: Signal efficiency for reconstructing D;* — Dle*e” in D! —
K*K n* as represented in the mpc distribution.

4.8 Efficiency of Selection Criteria for the Reconstruction of

D" — Dfete”

In order to estimate the ratio of branching fractions B(D;* — D}e*e™)/B(D;* — Dy),
we need to measure the efficiencies of our selection criteria for accepting D;* —
D}e*e” events for each hadronic decay mode of the D?. This is determined by
applying our selection criteria on the Monte Carlo simulation samples of our
signal in each of the modes. The efficiency is calculated by dividing the num-
ber of events remaining within the signal region of the m¢ distribution, having
applied all other criteria, by the number of produced sample events. Such dis-
tributions of the mgc for each mode with marked signal regions are presented
in Fig. - Measurements of these selection efficiencies are presented in

Table
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Table 4.22: Selection efficiencies for reconstructing the D;* — D?e*e™ sig-
nal in each of the hadronic decay modes of the D} that this
analysis deals with.

Mode Signal Selection Efficiency
K*K n* 0.0729 + 0.0019
KsK* 0.0597 + 0.0017
nrt 0.0855 + 0.0021
nntn > atnn,n - yy 0.0530 + 0.0016
K*K ntn° 0.0255 + 0.0011
mtnnt 0.0992 + 0.0022
K*K*0 0.0356 + 0.0013
np* 0.0316 + 0.0013
n'ntin — ply 0.0638 + 0.0018
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Figure 4.17: Signal efficiency for reconstructing D;* — Dfe*e” in D! —
KsK™ as represented in the mpc distribution.
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Figure 4.18: Signal efficiency for reconstructing D;* — D}e*e”™ in D} — nn*
as represented in the mpgc distribution.
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Figure 4.19: Signal efficiency for reconstructing D;* — Dle*e” in D! —
nntin — ntag;n — yy as represented in the mpc distribu-
tion.
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Figure 4.20: Signal efficiency for reconstructing D;* — D}e*e” in D} —

K*K n*n° as represented in the mpc distribution.
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Figure 4.22: Signal efficiency for reconstructing D;* — D}e*e” in D} —

K**K* as represented in the mpc distribution.
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Figure 4.23: Signal efficiency for reconstructing D;* — D}e*e” in D} —
notin — yy;pt — n*n’ as represented in the mpc distribution.
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Figure 4.24: Signal efficiency for reconstructing D;* — Dle*e” in D! —

n'n*;n — p'y as represented in the mpc distribution.
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4.9 Estimation of Background in the Signal Region of D;" —

Diete”

In this section we estimate the number of background events expected in the sig-
nal region for each of the hadronic decay modes of the D?. To do this, we study
the sidebands of the signal regions in the mpc and ém distributions of Monte
Carlo simulated backgrounds and data. When we refer to either of the kine-
matic distributions, we imply that all other selection criteria have been applied

before plotting the distribution.

The signal regions in the mpc and 6m distributions are kept blinded in data
for this procedure. The regions in the distributions corresponding to values of
the mpc and om greater than or less than the signal region are called the sideband
regions. The distributions of the mpc and dm in the sideband regions of data are
extrapolated into the signal region using two pre-determined shapes to estimate
the number of background events we expect there. The first shape is obtained
by fitting the distributions of mgc and 6m in the simulated background Monte
Carlo. We refer to this as the “MC shape” in the rest of this section. The second
shape is determined by fitting the distributions of mpc and 6m in the sideband

regions of data. This is referred to as the “data shape” in the rest of this section.

The backgrounds are estimated for each of the hadronic decay modes of the
D}. However, there are not enough data and Monte Carlo simulation points at
the end our selection criteria in the distributions for each of the modes to make a
meaningful fit that may be normalized to extract a shape. Therefore, we add the
contributions from each mode to produce a summed distribution of mpc and a

summed distribution of §m. These distributions are used to determine the data
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and MC shapes for the mpc and dm distributions as described in Sections E9.1]

and respectively.

The data and MC shapes are then scaled to fit the sideband regions of data
in each of the individual modes, for both the mp- and 6m distributions. This
is described, mode by mode, in the following sub-sections between and
B9.T11l For each mode, we obtain four numbers for the estimated background
from our fits extrapolating into the signal region — one for the data shape in the
mpgc distribution, one for the MC shape in the mgc distribution, one for the data
shape in the om distribution and one for the MC shape in the dm distribution.
The average of the values and statistical uncertainties obtained from the the
data and MC shapes in the mpc distribution is used as the primary estimate
for the background in each mode. The difference between this value and the
average of the data and MC shape numbers for the ém distribution is quoted
as the systematic uncertainty of our method for each mode. These numbers are

summarized in Section E.9.17]

Having thus obtained a summary of the background numbers expected for
each of the modes, we are in a position to quantify the signal significance that
can be achieved for a predicted number of signal events found in a given mode.

This is described in Section B.9. 13
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Table 4.23: Maximum likelihood fit parameters for the MC shape in mgc

distribution.
Fit Parameters Value
Do -3.91135e+02
)2 1.91233e+02

Table 4.24: Maximum likelihood fit parameters for the data shape in mgc

distribution.
Fit Parameters Value
Do -2.79836e+02
)2 1.38607e+02

4.9.1 Determining the Shape of the mpc Distribution

The distributions of mgc in data and the Monte Carlo simulations are added up
for all modes and presented in Fig. The Monte Carlo distribution is fitted
to the function given in Eq. E.I8between 2.060 GeV and 2.155 GeV. It is depicted
in the figure as a black curve and shall be called the MC shape. The data is also
fitted to the same function, but between the disconnected domains of 2.060 to
2.100 GeV and 2.124 to 2.155 GeV. It is depicted in the figure as a magenta curve
and shall be referred to as the data shape. Each sideband region, it may be
noted, is separated from the signal region by half the width of the signal region.

This is done in order to avoid contaminating the sideband region with signal.

y = (po+ p1x) V2.155 — x/GeV (4.18)

The maximum likelihood fit parameters of the MC shape and data shape are

tabulated in Tables respectively.
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Figure 4.25: Distributions of mpc in Monte Carlo and data. The blue region
is distribution of mpc in Continuum MC. On top of that, in
green, is stacked the Generic MC with Conversion type events
excluded. The Conversion MC is stacked on top of that in
red. The black curve is fitted to the sum of the aforementioned
background distributions. The Signal MC is stacked on top of
the background MC to show roughly what expect to see when
we unblind data. Data points, blinded in the signal region, are
overlaid in magenta. The magenta curve is fitted to the data
in the sideband regions, as described in the text.
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Table 4.25: Maximum likelihood fit parameters for the MC shape in ém dis-

tribution.
Fit Parameters Value
Do -2.45787e+03
D1 6.02306e+03
P2 -2.39666e+03
D3 1.65951e+03

4.9.2 Determining the Shape of the 6m Distribution

As we have done in the case of the mpc distribution, the distributions of ém in
data and the Monte Carlo simulations are added up for all modes and presented
in Fig. However, to further increase the sample sizes, the width of the mpc
criterion for each of the modes has been doubled. The Monte Carlo distribution
is fitted to the third order Chebyshev polynomial given in Eq. between
0.100 GeV and 0.250 GeV. It is depicted in the figure as a black curve and shall
be called the MC shape. The data is also fitted to the same function, but between
the disconnected domains of 0.1000 to 0.1298 GeV and 0.1578 to 0.2500 GeV.
It is depicted in the figure as a magenta curve and shall be referred to as the
data shape. Each sideband region, it may be noted, is separated from the signal

region by half the width of the signal region.

y=po+piTi + pTs + p3T; 4.19)

The maximum likelihood fit parameters of the MC shape and data shape are

tabulated in Tables respectively.
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Figure 4.26: Distributions of ¢m in Monte Carlo and data. The blue re-
gion is distribution of 6m in Continuum MC. On top of that, in
green, is stacked the Generic MC with Conversion type events
excluded. The Conversion MC is stacked on top of that in
red. The black curve is fitted to the sum of the aforementioned
background distributions. The Signal MC is stacked on top of
the background MC to show roughly what expect to see when
we unblind data. Data points, blinded in the signal region, are
overlaid in magenta. The magenta curve is fitted to the data
in the sideband regions, as described in the text.

Table 4.26: Maximum likelihood fit parameters for the Data shape in 6m dis-

tribution.
Fit Parameters Value
Do 2.38215e+03
D1 -8.89072e+03
D2 2.35325e+03
3 -2.76871e+03
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4.9.3 Estimating the Background in the D} — K"K 7" Mode

Having found the generic MC shape and data shape in the mpc distribution in
Section E.9.7] we now proceed to scale these shapes to fit data in the sideband
regions of the D} — K"K~ 7" mode. The signal region is centered at 2.112 GeV
with a width of 0.008 GeV. The sideband regions are separated from the signal
region by half the width of the signal region. The sideband regions extend from
2.060 to 2.104 GeV and 2.120 to 2.155 GeV. The maximum likelihood fits are

displayed in Fig. and the values for the scale parameters are presented in

Table d.27
[ mg Distributions in Mode D} - K* K nf |
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Figure 4.27: The various backgrounds and signal MC expected in the
vicinity of the signal region in mgc distribution of the D} —
K*K~n* mode. The data, blinded in the signal region, is over-
laid in magenta points. The black and magenta curves are MC
and data shapes scaled by maximum likelihood to the points of
data in the sideband regions.

Also, having found the generic MC and data shapes in the om distribution
in Section we can now scale those to fit data in the sideband regions of
om in the D} — K*K n* mode. The signal region is centered at 0.1438 GeV

with a width of 0.012 GeV. The sideband regions are separated from the signal
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Table 4.27: Maximum likelihood fit parameters to estimate background in
the DY — K*K~n* mode

Scale for Shape Value

mpc MC shape  1.03798e-01
om MC shape  9.35684e-02
mpgc data shape 7.75452e-02
om data shape 6.54773e-02

region by half the width of the signal region. The sideband regions extend from
0.1000 to 0.1318 GeV and 0.1558 to 0.2500 GeV. The maximum likelihood fits are
displayed in Fig. and the values for the scale parameters are presented in
Table
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Figure 4.28: The various backgrounds and signal MC expected in the
vicinity of the signal region in ém distribution of the D} —
K*K~n* mode. The data, blinded in the signal region, is over-
laid in magenta points. The black and magenta curves are MC
and data shapes scaled by maximum likelihood to the points of
data in the sideband regions.

The four different fits give us four estimates of the background in the signal
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Table 4.28: Estimates of the background in the signal region of the D} —
K*K~n* mode using four fits outlined above.

Mode Mmpc om

MC shape datashape MC shape data shape

K*Kn* 1.10+0.39 1.00+035 2.06+049 1.61+0.38

region. These are tabulated in Table The uncertainties noted in the table
are statistical and are estimated by assuming Poisson statistics on the number
of data points in the sidebands. It is calculated as given in Eq. E.20l where b is

the estimated number of background events and N is the number of events

side

observed in the data sidebands.

Ab=—2 (4.20)

\/Nside
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4.9.4 Estimating the Background in the D} — K;K*™ Mode

The signal region in the mpc distribution of this mode is centered at 2.112 GeV
with a width of 0.014 GeV. The sideband regions extend from 2.060 to 2.098 GeV
and 2.126 to 2.155 GeV. The maximum likelihood fits are displayed in Fig.

and the values for the scale parameters are presented in Table

The signal region in the ém distribution is centered at 0.1438 GeV with a
width of 0.012 GeV. The sideband regions extend from 0.1000 to 0.1318 GeV and
0.1558 to 0.2500 GeV. The maximum likelihood fits are displayed in Fig.

and the values for the scale parameters are presented in Table
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Figure 4.29: The various backgrounds and signal MC expected in the
vicinity of the signal region in mgc distribution of the D} —
KsK* mode. The data, blinded in the signal region, is over-
laid in magenta points. The black and magenta curves are MC
and data shapes scaled by maximum likelihood to the points of
data in the sideband regions.

The four different fits give us four estimates of the background in the signal

region. These are tabulated in Table
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Table 4.29: Maximum likelihood fit parameters to estimate background in
the DY —» KsK* mode

Scale for Shape Value

mpc MC shape  4.86292e-02
om MC shape  4.29587e-02
mpc data shape 5.25423e-03
om data shape 4.28206e-03
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Figure 4.30: The various backgrounds and signal MC expected in the
vicinity of the signal region in ¢m distribution of the D} —
KsK* mode. The data, blinded in the signal region, is over-
laid in magenta points. The black and magenta curves are MC
and data shapes scaled by maximum likelihood to the points of
data in the sideband regions.

Table 4.30: Estimates of the background in the signal region of the D} —
KsK* mode using four fits outlined above.

Mode mpc om

MC shape datashape MC shape data shape

KsK* 090+045 0.80+040 0.12+0.12 0.10+0.10
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4.9.5 Estimating the Background in the D — nn™;n — yy Mode

The signal region in the mgc distribution of this mode is centered at 2.112 GeV
with a width of 0.016 GeV. The sideband regions extend from 2.060 to 2.096 GeV
and 2.128 to 2.155 GeV. The maximum likelihood fits are displayed in Fig. E.31]

and the values for the scale parameters are presented in Table {371

The signal region in the dm distribution of this mode is centered at 0.1438
GeV with a width of 0.016 GeV. The sideband regions extend from 0.1000 to
0.1278 GeV and 0.1598 to 0.2500 GeV. The maximum likelihood fits are dis-
played in Fig. and the values for the scale parameters are presented in
Table 311
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Figure 4.31: The various backgrounds and signal MC expected in the
vicinity of the signal region in mgc distribution of the D} —
nnt;n — yy mode. The data, blinded in the signal region, is
overlaid in magenta points. The black and magenta curves
are MC and data shapes scaled by maximum likelihood to the
points of data in the sideband regions.

The four different fits give us four estimates of the background in the signal

region. These are tabulated in Table
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Table 4.31: Maximum likelihood fit parameters to estimate background in
the DY — nn*;n — yy mode

Scale for Shape Value

mpc MC shape  7.05486e-02
om MC shape  6.18039e-02
mpc data shape 3.33356e-02
om data shape 2.68789e-02
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Figure 4.32: The various backgrounds and signal MC expected in the
vicinity of the signal region in ¢m distribution of the D} —
nnt;n — yy mode. The data, blinded in the signal region, is
overlaid in magenta points. The black and magenta curves
are MC and data shapes scaled by maximum likelihood to the
points of data in the sideband regions.

Table 4.32: Estimates of the background in the signal region of the D} —
nn*;n — yy mode using four fits outlined above.

Mode mpc om

MC shape datashape MC shape data shape

nrt 148 +074 132+0.66 1.02+0.39 0.79 +0.30
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4.9.6 Estimating the Background in the D! — py'n%;np -

nn n;n — yy Mode

The signal region in the mpc distribution of this mode is centered at 2.112 GeV
with a width of 0.022 GeV. The sideband regions extend from 2.060 to 2.090 GeV
and 2.134 to 2.155 GeV. The maximum likelihood fits are displayed in Fig.

and since no data point fell within our sideband region, no fit could be made.

The signal region in the om distribution of this mode is centered at 0.1438
GeV with a width of 0.026 GeV. The sideband regions extend from 0.1000 to
0.1178 GeV and 0.1698 to 0.2500 GeV. The maximum likelihood fits are dis-
played in Fig. £.34
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Figure 4.33: The various backgrounds and signal MC expected in the
vicinity of the signal region in mgc distribution of the D} —
n'n*;n’ — ntr n;n — yy mode. The data, blinded in the signal
region, is overlaid in magenta points. The black and magenta
curves are MC and data shapes scaled by maximum likelihood
to the points of data in the sideband regions.

Not much could be estimated of the background expected in the signal re-

gion. This is tabulated in Table
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Figure 4.34: The various backgrounds and signal MC expected in the
vicinity of the signal region in ém distribution of the D} —
n'n*;n — ntn n;n — yy mode. The data, blinded in the signal
region, is overlaid in magenta points. The black and magenta
curves are MC and data shapes scaled by maximum likelihood
to the points of data in the sideband regions.

Table 4.33: Estimates of the background in the signal region of the DY —
n'n*;n’ — ntr n;n — yy mode using four fits outlined above.

Mode mpc om

MC shape datashape MC shape data shape

n’z"  0.00+0.68 0.00+059 0.00+0.34 0.00+0.26
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Table 4.34: Maximum likelihood fit parameters to estimate background in
the D} - K*K "7’ mode

Scale for Shape Value

mpc MC shape  1.68672e-01
om MC shape  1.52049e-01
mpc data shape 1.10339e-01
om data shape  8.99227e-02

4.9.7 Estimating the Background in the D7 —» K"K 7"z’ Mode

The signal region in the mgc distribution of this mode is centered at 2.112 GeV
with a width of 0.008 GeV. The sideband regions extend from 2.060 to 2.104 GeV
and 2.120 to 2.155 GeV. The maximum likelihood fits are displayed in Fig.

and the values for the scale parameters are presented in Table £34

The signal region in the om distribution of this mode is centered at 0.1438
GeV with a width of 0.012 GeV. The sideband regions extend from 0.1000 to
0.1318 GeV and 0.1558 to 0.2500 GeV. The maximum likelihood fits are dis-

played in Fig. and the values for the scale parameters are presented in
Table 34

The four different fits give us four estimates of the background in the signal

region. These are tabulated in Table
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Figure 4.35: The various backgrounds and signal MC expected in the
vicinity of the signal region in mgc distribution of the D} —
K*K n*n’ mode. The data, blinded in the signal region, is
overlaid in magenta points. The black and magenta curves
are MC and data shapes scaled by maximum likelihood to the
points of data in the sideband regions.

Table 4.35: Estimates of the background in the signal region of the DY —
K*K 77 mode using four fits outlined above.

Mode mpc om

MC shape datashape MC shape data shape

K*'K ntn® 1.78+049 1.63+045 254+054 1.99+0.43
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5m Distributions in Mode D - K* K w*n° |

Figure 4.36:
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The various backgrounds and signal MC expected in the
vicinity of the signal region in ¢m distribution of the D} —
K*K n*n® mode. The data, blinded in the signal region, is
overlaid in magenta points. The black and magenta curves
are MC and data shapes scaled by maximum likelihood to the
points of data in the sideband regions.
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4.9.8 Estimating the Background in the D} — n"7n 7" Mode

The signal region in the mgc distribution of this mode is centered at 2.112 GeV
with a width of 0.008 GeV. The sideband regions extend from 2.060 to 2.104 GeV
and 2.120 to 2.155 GeV. The maximum likelihood fits are displayed in Fig. £.37

and the values for the scale parameters are presented in Table

The signal region in the dm distribution of this mode is centered at 0.1438
GeV with a width of 0.012 GeV. The sideband regions extend from 0.1000 to
0.1318 GeV and 0.1558 to 0.2500 GeV. The maximum likelihood fits are dis-
played in Fig. and the values for the scale parameters are presented in

Table
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Figure 4.37: The various backgrounds and signal MC expected in the
vicinity of the signal region in mgc distribution of the D} —
n*n~n* mode. The data, blinded in the signal region, is over-
laid in magenta points. The black and magenta curves are MC
and data shapes scaled by maximum likelihood to the points of
data in the sideband regions.

The four different fits give us four estimates of the background in the signal

region. These are tabulated in Table £.371
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Table 4.36: Maximum likelihood fit parameters to estimate background in
the D} — n*n~n" mode

Scale for Shape Value

mgc MC shape  1.55698e-01
om MC shape  1.40353e-01
mpc data shape 1.05085e-01
om data shape  8.56409e-02

5m Distributions in Mode D - * 1 * |
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Figure 4.38: The various backgrounds and signal MC expected in the
vicinity of the signal region in ¢m distribution of the D} —
n*n~n* mode. The data, blinded in the signal region, is over-
laid in magenta points. The black and magenta curves are MC
and data shapes scaled by maximum likelihood to the points of
data in the sideband regions.

Table 4.37: Estimates of the background in the signal region of the D} —
rn*n~n* mode using four fits outlined above.

Mode mpc om

MC shape datashape MC shape data shape

+

ntn ot 1.64+048 150+043 242+0.53 1.90+0.41
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4.9.9 Estimating the Background in the D} — K*K*0;K*" —

Kin*; K™ — K~ n* Mode

The signal region in the mpc distribution of this mode is centered at 2.112 GeV
with a width of 0.010 GeV. The sideband regions extend from 2.060 to 2.102 GeV
and 2.122 to 2.155 GeV. The maximum likelihood fits are displayed in Fig.

and the values for the scale parameters are presented in Table

The signal region in the om distribution of this mode is centered at 0.1438
GeV with a width of 0.016 GeV. The sideband regions extend from 0.1000 to
0.1278 GeV and 0.1598 to 0.2500 GeV. The maximum likelihood fits are dis-
played in Fig. and the values for the scale parameters are presented in
Table B.38
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Figure 4.39: The various backgrounds and signal MC expected in the
vicinity of the signal region in mgc distribution of the D} —
K**K*® mode. The data, blinded in the signal region, is over-
laid in magenta points. The black and magenta curves are MC
and data shapes scaled by maximum likelihood to the points of
data in the sideband regions.

The four different fits give us four estimates of the background in the signal
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Table 4.38: Maximum likelihood fit parameters to estimate background in
the D! - K**K* mode

Scale for Shape Value

mpc MC shape  1.25192e-01
om MC shape  1.12174e-01
mpgc data shape 7.22271e-02
om data shape 5.82375e-02
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Figure 4.40: The various backgrounds and signal MC expected in the
vicinity of the signal region in ¢m distribution of the D} —
K**K* mode. The data, blinded in the signal region, is over-
laid in magenta points. The black and magenta curves are MC
and data shapes scaled by maximum likelihood to the points of
data in the sideband regions.

region. These are tabulated in Table
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Table 4.39: Estimates of the background in the signal region of the DY —
K**K*® mode using four fits outlined above.

Mode mpc om

MC shape datashape MC shape data shape

K*K* 1.65+055 150+050 221+061 1.72+0.48
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4.9.10 Estimating the Background in the DY — npo";n —

yy;pt — ntn’ Mode

The signal region in the mgc distribution of this mode is centered at 2.112 GeV
with a width of 0.008 GeV. The sideband regions extend from 2.060 to 2.104 GeV
and 2.120 to 2.155 GeV. The maximum likelihood fits are displayed in Fig. B4l

and the values for the scale parameters are presented in Table

The signal region in the dm distribution of this mode is centered at 0.1438
GeV with a width of 0.010 GeV. The sideband regions extend from 0.1000 to
0.1338 GeV and 0.1538 to 0.2500 GeV. The maximum likelihood fits are dis-
played in Fig. and the values for the scale parameters are presented in
Table &40
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Figure 4.41: The various backgrounds and signal MC expected in the
vicinity of the signal region in mgc distribution of the D} —
notsn — yy;pt — n*n® mode. The data, blinded in the signal
region, is overlaid in magenta points. The black and magenta
curves are MC and data shapes scaled by maximum likelihood
to the points of data in the sideband regions.

The four different fits give us four estimates of the background in the signal
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Table 4.40: Maximum likelihood fit parameters to estimate background in
the D} — np*;n — yy;p* — 7'n” mode

Scale for Shape Value

mpc MC shape  2.59496e-01
om MC shape  2.33921e-01
mpc data shape 1.65995e-01
om data shape 1.36454e-01
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Figure 4.42: The various backgrounds and signal MC expected in the
vicinity of the signal region in ¢m distribution of the D} —
netin = yy;pt — nta’ mode. The data, blinded in the signal
region, is overlaid in magenta points. The black and magenta
curves are MC and data shapes scaled by maximum likelihood
to the points of data in the sideband regions.

region. These are tabulated in Table B.41]
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Table 4.41: Estimates of the background in the signal region of the D} —
net;n — yy;pt — n*a° mode using four fits outlined above.

Mode mpc om

MC shape datashape MC shape data shape

npt  274+061 250+056 3.19+0.54 252+043
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4.9.11 Estimating the Background in the D! — n/'n*;n’ — ply

Mode

The signal region in the mgc distribution of this mode is centered at 2.112 GeV
with a width of 0.008 GeV. The sideband regions extend from 2.060 to 2.104 GeV
and 2.12 to 2.155 GeV. The maximum likelihood fits are displayed in Fig.

and the values for the scale parameters are presented in Table

The signal region in the om distribution of this mode is centered at 0.1438
GeV with a width of 0.014 GeV. The sideband regions extend from 0.1000 to
0.1298 GeV and 0.1578 to 0.2500 GeV. The maximum likelihood fits are dis-
played in Fig. B.44l and the values for the scale parameters are presented in

Table
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Figure 4.43: The various backgrounds and signal MC expected in the
vicinity of the signal region in mgc distribution of the D} —
n'nt;n — p’ mode. The data, blinded in the signal region,
is overlaid in magenta points. The black and magenta curves
are MC and data shapes scaled by maximum likelihood to the
points of data in the sideband regions.

The four different fits give us four estimates of the background in the signal
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Table 4.42: Maximum likelihood fit parameters to estimate background in
the D} — 'n*; 7’ — p% mode

Scale for Shape Value
mpc MC shape 1.81647e-01
om MC shape  1.63745e-01
mpgc data shape  6.66708e-02
om data shape 5.37577e-02
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The various backgrounds and signal MC expected in the
vicinity of the signal region in ¢m distribution of the D} —
n'n*;n — p’ mode. The data, blinded in the signal region,
is overlaid in magenta points. The black and magenta curves
are MC and data shapes scaled by maximum likelihood to the
points of data in the sideband regions.

region. These are tabulated in Table
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Table 4.43: Estimates of the background in the signal region of the DY —
n'nt;n — p’y mode using four fits outlined above.

Mode mpc om

MC shape datashape MC shape data shape

nr™ 192+051 1.75+047 1.79+052 1.39+0.40
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4.9.12 Summary of Estimated Background in the Various

Modes

Given that we determined the shape of the mc distribution in Section £.9.Tlwith-
out loosening other cuts, that the distribution itself is less peaked, and that the
difference between the predictions of the MC shape and data shape is lower
than in the om distribution, we choose to use the predictions of this distribution

as the primary estimate of the backgrounds in each mode.

For each mode, we quote the mean of the MC shape and data shape predic-
tions in the mpc distribution as the estimate of the background we expect in the
signal region for that mode. The statistical errors from these two predictions
are averaged to obtain the statistical error for this estimate. The absolute value
of the difference between this estimate and the mean of the predictions from

the two shapes in the 6m distribution is quoted as the systematic error. This is

tabulated for each mode in Table E.44]

4.9.13 Predicted Signal Significances

It is clear from our optimization and background estimation studies that we do
not expect equally significant results from each of the hadronic decay modes
we are studying. For instance, it is clear that the D] — K*K~n* decay mode will
contribute more significantly than any other mode due to the marked excess
of expected signal yield over the estimated background in its signal region. It
therefore behooves us to establish a clear measure of signal significance over es-

timated background, calculate what signal significance we expect in each mode
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Table 4.44: Summary of the estimates for the background in the signal re-
gion for all the modes we have studied.

Mode mpc om
Background =+ (Stat) + (Syst)
MC Shape  Data Shape  MC Shape  Data Shape

K*Kn* 110+ 039 1.00+0.35 2.06+049 1.61+0.38 1.056 +£0.37 £ 0.79
K¢K* 090+045 080+040 0.12+0.12 0.10+0.10 0.85+0.43 + 0.74

nm* 148 +0.74 132+0.66 1.02+0.39 0.79+0.30 1.40 £ 0.70 = 0.49
n'nty -ty 0.00+0.68 0.00+0.59 0.00+0.34 0.00+0.26 0.00 + 0.63 + 0.00
K"K n*n® 1.78+049 1.63+045 254+054 199043 1.70 £ 0.47 + 0.56
rtnt 1.64+048 150+043 242+053 1.90=+041 1.57 + 0.45 + 0.59
KK 1.65+055 1.50+050 221+0.61 1.72+048 1.58 + 0.53 + 0.40

np* 274+0.61 250+056 3.19+054 2.52+043 2,62 +0.59 +0.23
nrty - %  192+051 1.75+047 1.79+0.52 1.39 +0.40 1.84 +0.49 + 0.25

based on a Monte Carlo estimate of the signal and the background we’ve esti-
mated from data in section 4.9.12] and converge on a group of modes to unblind

together in order to achieve the most significant result.

In order to establish a measure of our signal significance, we assume that
the uncertainty in our estimated background is shaped as a Gaussian with a
standard deviation equal to the quadrature sum of the statistical and systematic
uncertainties in the estimated background. Then we calculate the Poisson prob-
ability of such a background fluctuating to higher than the number of events
we find in the signal region on unblinding. In effect, we convolute a Gaussian
smeared background with a Poisson distribution to model the probability of it
fluctuating to the yield we see in data. So, if we call the background estimate b
with a standard deviation of o, and unblind our data to discover n events in the
signal region, we may estimate the probability for it to be a fluctuation of the

background as P given in Eq. 2Tl We may express this probability, P, in terms
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of the number of standard deviations in a Gaussian that one must go out to in
order to exclude a region of such probability, and we will use this number as a

measure of signal significance.

L3 "X=00 i 1 X—b 2
Zl._—oo X. —[X+—(—) ] ’
P(k,o’”) - : f_o L

X=00

x=0

(4.21)

b2
e 3 dx

The signal significance projected for each individual hadronic decay mode of
the D} is tabulated in Table[.45 The uncertainty on the estimated background is
the quadrature sum of the statistical and systematic uncertainties. The projected
signal is estimated by Monte Carlo simulation. As expected, the D} — K*K 7"
mode is projected to give us the highest signal significance among individual
modes of 5.40. However, we notice that summing all modes can give us a sig-
nificance of 6.39, which is higher than any of the individual mode. Therefore,
we choose to unblind data in all the modes in order to attain the highest signal

significance if we make an observation.
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Table 4.45: The projected signal significance expected for each individual
hadronic decay mode of the D7, as well as modes combined.

Hadronic Decay Mode  Estimated Background Projected Signal Signal Significance

KK n* 1.05+0.37 £ 0.79 13.65 5.40

KsK* 0.85+0.43 +0.74 3.02 1.95

nrt 1.40 + 0.70 £ 0.49 1.81 1.25

nntn - atny 0.00 + 0.63 + 0.00 1.20 0.98

K*K ntn® 1.70 + 0.47 + 0.56 4.85 2.71

P aF av ol 1.57 + 0.45 + 0.59 3.75 2.03

KK 1.58 £ 0.53 + 0.40 1.99 1.65

notin — yy 2.62 +0.59 +0.23 5.49 2.59

nrtin — ply 1.84 + 0.49 £ 0.25 242 1.52
Combination of All Modes 12.60 +2.50 + 1.08 38.18 6.39
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4.10 Signal Yields and Selection Efficiencies for D;" — Dy

In this section, we measure the selection efficiencies and yields for D;* — D}y
where the D? decays through the 9 hadronic decays modes we have focused on
for this analysis. For all modes, we begin by generating a Monte Carlo sample of
D" — Dty where the DY is forced to decay through the mode we are investigat-
ing while the D7 is allowed to decay generically. Selection criteria very similar
to those used for the corresponding D;* — Dfe*e” analysis are used, though
with a wider 6m selection criterion. The reason for this can be seen from the 6m
distribution of the K*K~n* channel as shown in Fig. The low-end tail im-
plies that a loss in the reconstructed energy of photons is expected. This may not
be well modeled in Monte Carlo simulations, and to avoid possible discrepan-
cies between simulations and data in that region, a larger region containing the
peak is selected. Next, we study the mpc distribution of various backgrounds
where the D}" is incorrectly reconstructed using the D;. These backgrounds are
accounted for in data before calculating the signal yield for each mode, as sum-
marized in Table .46 along with the signal selection efficiencies. A similar sum-
mary for the generic MC is presented in Table £.470 Discrepancies between the
recovered branching fractions and the value for it programmed into the Generic
Monte Carlo simulation result from inconsistencies between the decay models
of the D} in the Generic Monte Carlo and our signal Monte Carlo simulations.
The manner in which we measure our signal selection efficiency and evaluate
the various backgrounds before we estimate the signal yield is described in de-

tail for the K*K =t mode.
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Table 4.46: Signal yields and efficiencies for D;* — D}y from all the modes
of decay of the DY relevant for our measurement of the ratio
B(D:* — Dfe*e™)/B(D* — Diy). B(D! — i) is the known

branching fraction for D} to decay via the i

hadronic mode

we are studying. €, is the efficiency of our selection criteria
for the mode. N7},  is the signal yield observed for this mode.

i (Decay Mode of D}) B(D! — i) E;).;y N}')sy + (stat) + (syst)
K*K n* 0.055 + 0.0028 0.339 + 0.002 9114 + 110 + 201
KsK* 0.0149 + 0.0009  0.2573 + 0.0004 1902 £ 57 + 45
D! —» natin — yy 0.00621 + 0.00083 0.3310 + 0.0015 1037 + 46 + 37
D! - y'n*yn —» ntnnpyn — yy 0.00666 £ 0.00070 0.2101 + 0.0013 691 + 34 + 40

Dt —» K*K n*n® 0.056 + 0.005
IOMECY oF o & 0.0111 + 0.0008
Dt — K K" 0.0164 + 0.0012

Dt - notsnp > yy;pt - '’ 0.0348 + 0.0031
Dt - n'ntin — ply 0.0112 £ 0.0012

0.1225 + 0.0010
0.4583 + 0.0018
0.1913 + 0.0012
0.1839 + 0.0013
0.3171 + 0.0015

3592 + 118 + 72
2745 + 93 + 52
1570 £ 74 + 13

3170 + 161 + 313
1531 + 80 + 122
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Table 4.47: Signal yields and efficiencies for D;* — D}y from all the modes
of decay of the D7 relevant for our measurement of the ra-
tio B(D:* — Dte*e™)/B(D:* — Dty) in Generic Monte Carlo.
B(D? — i) is the known branching fraction for D} to decay via
the i hadronic mode we are studying. e/, , is the efficiency of
our selection criteria for the mode. N}, is the signal yield ob-
served for this mode. B(D:* — D}y) i is the branching fraction
for D" — Dfe*e” inferred from this mode. Error [1] on the
inferred branching fraction is the statistical error from the fi-
nal fit. Error [2] encapsulates the systematic uncertainties from
the signal efficiency and the uncertainty in the number of pro-
duced generic MC events as described in Section E4.T]

i (Mode) B(D* — i) €. N, B(D** — D*y)
K*K n* 0.0537 0339 £0.002 9364 £40 0.9259 = 0.0040!!) = 0.00431
KsK* 0.01465  0.25727 +0.00043 2006+ 17 0.9581 + 0.0083!1 £ 0.0018!2
Dt > qntin > yy 0.0061  0.3310+0.0015 998 +27 0.8933 + 0.0240!1 + 0.004312!

DY sty >ty —yy 000633 02101 £0.0013 690+ 11  0.9341 = 0.0149'" + 0.0058'2!

Df - K*K n*n® 0.0525 0.1225 £ 0.0010 3178 +49 0.8894 + 0.01381 + 0.0073[%
D! — n*nn* 0.0103 0.4583 + 0.0018 2706 +43 1.0327 + 0.01621 + 0.00412!
Df — KK 0.01628 0.1913 £ 0.0012 1644 +22 0.9502 + 0.0129! + 0.0058%!

DY > ptin > yyipt > ata® 00298 0.1839+0.0013 2993 +87 0.9829 + 0.028411 + 0.0070!
Dt > yrtiy = py 00111 03171 +0.0015 1930 +45 0.9886 + 0.02311 + 0.0049'2)
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Table 4.48: Selection criteria for Di* — D!y events where D} — K*K ™ n*.
The 6m cut has been widened to accommodate the wider peak
for the signal in this distribution.

Selection Criterion Cut Center + Width

Mmpy 1.969 + 0.011 GeV
om 0.140 + 0.02 GeV
y Shower Energy 10 MeV to 2.0 GeV

y Hot Crystals None
Tracks Matched to y None
v E9/E25 Unfolded 99 percentile

4101 D! - K*K n*

We begin with a Monte Carlo signal sample of D;* — D}y events where D}
decays to K*K~n* and the Dj is allowed to decay generically. The selection
criteria applied are tabulated in Table Instead of the cuts on Ady and Ady,
which are applicable to the soft e*e™ pair, we have some selection criteria on
the y that is kept common across all modes of decay of the D} and shall not be
repeated in subsequent tables of this section. A plot of the ém distribution is

presented in Fig.

To obtain the selection efficiency using the condition on mgc as our last se-
lection criterion, we produce a plot of the mpc distribution of the signal sample,
having applied all other criteria, as shown in Fig. For a handle on the
shape of the peak in this plot, we produce one more plot — that of mpc where the
D? and the photon are matched to their generated counterparts in the Monte
Carlo simulation. This plot, shown in Fig. B.47, is fitted to a Crystal Ball func-

tion of the form given in Eq. that has the power law shoulder on the higher
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Figure 4.45: Distribution of ¢m in the signal Monte Carlo sample of D;" —
D}y events where D} — K"K n*. The plot is normalized so as
to directly read out the efficiency of the ¢m selection criterion.

side of the central peak and also contains a wide Gaussian on this shoulder. The
shape of this peak is attenuated by a scaling factor and added to a background
shape modeled by Eq. to fit the mpc distribution of the signal Monte Carlo
between 2.08 and 2.15 GeV as shown in The signal efficiency of our selec-
tion criteria is read off from this plot as the integral of the fit to the data within

the marked region minus the background curve within that region.

f(x’ -X?O’ O, Q,nNn, N()a fla o1, Nl)

(x - X_l)z)

2072

Njexp (—
1
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— )2 —
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20,
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Figure 4.46: Distribution of mpc in the signal Monte Carlo sample of D;" —
D}y events where D} — K"K n*. The plot is normalized so as
to directly read out the efficiency of the mpc selection criterion.

f(x; x0, p, Co, C1, Ca, C3) = (Cop + Cix + Cox® + C3x)(x — x0)P, 0<p<1 (4.23)

The mpe distribution in data contains more features than just a signal peak.
A structured background emerges from events where our selection criteria re-
constructs the D}* incorrectly using the D; and the y. The D7 would then have
been reconstructed from its decay to K*K~n~. A Monte Carlo sample where the
D" decays to D!y but only the Dy is forced to decay to K*K 7~ is generated
to help us model this background in data. For reasons that will soon become
clear, this background is decomposed into two components. The first includes
cases where the D; and the photon are matched to their generated counterparts
in Monte Carlo. The mgc distribution of these events is shown in Fig. The
second component includes cases where the D] has been matched but the pho-

ton failed to match the photon from the D;* decay at the generator level of the
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Figure 4.47: Distribution of mpc in the signal Monte Carlo sample of D;" —
Dty events where D} — K*K n*.

Monte Carlo simulation. These events have mpc distributed as shown in Fig.
These two components are cleft apart and fitted separately in data because
there is no reason for such combinatorial backgrounds to maintain the same

ratio to one another as modeled in our privately produced Monte Carlo.

Fig. is fitted to a function that contains a Crystal Ball shape with the
power law on the high side, a wide Gaussian on the high side, and another
Gaussian on the lower side of the center of the Crystal Ball as described by Eq.

The fit is restricted to 2.08 GeV < mpc < 2.15 GeV.

= \2
- - - (x—x1)
S (x; Xo, 070, @, 1, No, X1, 01, Ny, X2, 02, N2) = Nyexp|l———=—5—
2077
Y —-n — Xr
A-(B+x0§°) , for a/<"0f0
+ N()'
_ (=)? x—3
exp( o ), for N Sa
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Figure 4.48: Combinatorial background structured in the mpc distribution
consisting of events where the D;* has been reconstructed out
of the D; and the y, and where both the D; and the y have
been matched to their generated counterparts in the Monte
Carlo simulation. This distribution has been fitted to a shape
described by Eq.

(4.24)

—\2
+ Nzexp(——(x_xz))

2
20'2

where

Fig. is fitted to a function that contains a Crystal Ball centered around
the higher edge of the trapezoidal shape with the power law on the higher side
of the Gaussian, and continued analytically on the lower side with a straight

line as described by Eq. The fit is restricted to 2.08GeV < mpc < 2.15GeV
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Figure 4.49: Combinatorial background structured in the mpc distribution
consisting of events where the D;* has been reconstructed out
of the D] and the v, and the D} has been matched to its gener-
ated counterpart but the y has failed to match the photon from
the D" decay at the generator level of the Monte Carlo simu-
lation. This distribution has been fitted to a shape described
by Eq.

A-(B+x;5‘)_n, for a<2
f(x; %, 0,a,n,8,N) = N, - exp(_%), for B> <a (4.25)

C+D=%, for =2 <p

where

B=—-q,
(0%
B B
C = (1 + ;)exp(—r‘_z),
_ B B
b= Fe"p(_ﬁ)
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Having established the shapes of the signal and various backgrounds, we
tirst study the mpc distribution of the Generic Monte Carlo sample to see how
well our fits fare in reproducing the branching fraction for B(D;* — D}y) that
had been programmed into the simulation. The plot of mpc and the fits of the
signal and various backgrounds to it are presented in Fig. The lowest
curve is a function of the form given in Eq. that models the continuum and
featureless combinatorial backgrounds. The curve above that is a scaled version
of the shape fitted to the plot in Fig. Above that is a scaled version of
the shape fitted to the plot in Fig. On top of these backgrounds lies the
signal peak, which is a scaled version of the shape fitted to Fig. B.470 The fit is
restricted to the range 2.08 GeV < mpc < 2.15 GeV. The signal yield is measured
by the integral of the highest curve that includes the signal peak minus the in-
tegral of all the backgrounds between 2.08 and 2.15 GeV. This may be combined
with the efficiency of our selection criteria €, , the integrated luminosity of data
being used L, the cross section for producing D:*D? (values given in Section E.4)
and the value for B(D} — K*K n*) programmed into the simulation to give us
an estimate for B(D;* — D!y) as tabulated in Table We find the thus esti-
mated value for B(D;* — D?y) equal to 0.9259 + 0.0058 to be 2.80 away from the

programmed value of 0.942 in the Monte Carlo simulation.

We present the distribution of mpc in data in Fig. .51l It is fitted to the sig-
nal and background shapes as described in the previous paragraph. The ratio
of amplitudes for the signal peak shape to the shape for the incorrectly recon-
structed D;* with the photon strictly unmatched (second curve from the top) is
carried over as a constant from the fit to the generic MC. A systematic uncer-
tainty is evaluated by repeating this fit without such constraints on the ratio.

The signal yield is measured by subtracting the integral of all the backgrounds
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Figure 4.50: Distribution of mpc of D;* — DYy events where D} — K*K™n*
in 586 pb~' of Generic Monte Carlo.

Table 4.49: ¢, , is the efficiency of our selection criteria for the mode. N},
is the signal yield observed in generic Monte Carlo for thls
mode. B(D;* — Dfy) is the branching fraction for D;* —
Die*e” inferred from this mode. Error [1] on the inferred
branching fraction is the statistical error from the final fit. Error
[2] encapsulates the systematic uncertainties from the signal ef-
ficiency and the uncertainty in the number of produced generic

MC events.
i (Decay Mode of DY) B(D} — i) €Dy Ny, B(D:* — D}y) Inferred
K*K n* 0.0537  0.339 +0.002 9364 +40 0.9259 + 0.0040!! + 0.0043!2

from the integral of the total fit between 2.08 and 2.15 GeV, as described earlier.
We do not present any calculation of the branching fraction B(D;* — D{y) as we
have no measure of the systematic uncertainty arising from the reconstruction
of the D}. We expect this systematic uncertainty to cancel in our final calculation
of the ratio of branching fractions B(D;* — Dfe*e”)/B(D;* — D}y). Arriving ata
result for this ratio will only require us to report the signal yields and efficiencies

for D" — DYy for each of the decay modes of the D?.
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Figure 4.51: Distribution of mpc of Di* — D}y events where D} — K*K n*
in 586 pb~' of data.

Table 4.50: €, ,, is the efficiency of our selection criteria for the mode. N,
is the signal yield in data observed for this mode.

sY

i (Decay Mode of D}) B(D! — i) qw A%ﬁi(ﬂm)icwﬂ)

K"K n* 0.055 £0.0028 0.339 +0.002 9114 + 110 + 201
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Table 4.51: Selection criteria for Di* — Dy events where D! — KgK*. The
om cut has been widened to accomodate the wider peak for the
signal in this distribution.

Selection Criterion Cut Center + Width

mp+ 1.969 + 0.008 GeV
om 0.140 + 0.02 GeV

4102 D! — KgK*

We begin with a Monte Carlo signal sample of D;* — D}y events where D! —
KsK* and the D is allowed to decay generically. The selection criteria applied
are tabulated in Table E5]l Fig. depicts the 6m distribution of this signal

sample and the region selected by our criterion.
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Figure 4.52: Distribution of ém in the signal Monte Carlo sample of D* —

D}y events where D} — KsK*. The plot is normalized so as to
directly read out the efficiency of the ém selection criterion.

To obtain the selection efficiency using the condition on mgc as our last se-

lection criterion, we produce a plot of the mpc distribution of the signal sample,
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having applied all other criteria, as shown in Fig. We extract the shape
of the peak from the plot of mgc where the D} and the photon are matched to
their generated counterparts in the Monte Carlo simulation as shown in Fig.
The equations that parameterize all fits and the range they are fitted in are

identical to those used in the K* K 7t mode.
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Figure 4.53: Distribution of m¢ in the signal Monte Carlo sample of D;* —
D}y events where D} — KsK*. The plot is normalized so as to
directly read out the efficiency of the mpc selection criterion.

Structured backgrounds arising from incorrectly reconstructed D;* are sim-
ulated as done previously for the K*K~n* mode. Fig. shows the structure
of the D; matched and photon matched background, and our fit to parameter-
ize this shape. The background with the D matched and a photon that failed

matching is shown in Fig. along with our fit to parameterize the shape.

As a check on how well our background and signal estimation performs, we
present the overall fit to generic MC, as described for the K*K~n* mode, in Fig.

Our measurement of the signal selection efficiency and the signal yield
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Figure 4.54: Distribution of mpc in the signal Monte Carlo sample of D;" —
D}y events where D} — K¢K*.

Table 4.52: €, , is the efficiency of our selection criteria for the mode. Nj,
is the signal yield in generic Monte Carlo observed for this
mode. B(Di* — Dfy) is the branching fraction for D;* —
Dfe*e™ inferred from this mode. Error [1] on the inferred
branching fraction is the statistical error from the final fit. Error
[2] encapsulates the systematic uncertainties from the signal ef-
ticiency and the uncertainty in the number of produced generic

MC events.
i (Decay Mode of D}) B(D} — i) €.y Ny, B(D:* — D}y) Inferred
KKt 0.01465 0.25727 +0.00043 2006 +17 0.9581 +0.00831 + 0.0018™

is presented in Table We find the thus estimated value for B(D:* — D}y)
equal to 0.9616 + 0.0085 to be 2.30- away from the programmed value of 0.942 in

the Monte Carlo simulation.

We present the distribution of mgc in data and our fits to estimate the signal
yield over the backgrounds, as described for the K*K~n* mode, in Fig. .51 Our

measurements of the signal efficiency and signal yield are presented in Table
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Figure 4.55: Combinatorial background in the mgc distribution consisting
of events where the D;* has been reconstructed out of the D;
and the y, and where both the D} and the y have been matched
to their generated counterparts in the Monte Carlo simulation.
This distribution has been fitted to a shape described by Egq.

Table 4.53: €, , is the efficiency of our selection criteria for the mode. N},
is the signal yield in data observed for this mode.

sY

i (Decay Mode of DY) B(D! — i) eé)ﬁ Né)ﬁ
KsK* 0.0149 = 0.0009 0.2573 + 0.0004 1902 + 57 + 45
405
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Figure 4.56: Combinatorial background structured in the mgc distribution
consisting of events where the D;* has been reconstructed out
of the D7 and the y, and the D; has been matched to its gener-
ated counterpart but the y has failed to match the photon from
the D" decay at the generator level of the Monte Carlo simu-
lation. This distribution has been fitted to a shape described
by Eq.
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Figure 4.57: Distribution of mgc of D;* — D}y events where DY — KgK* in
586 pb~' of Generic Monte Carlo.

133



L S N 0 it [h_MBC_physics |
Mg Distribution in Data for D, — D;y, D] — Kg K Entries 9954

500 Mean 2.106
C RMS 0.02385
400 —
> B
= 300
E B
= B
g B
w 200—
= B
100 j
- t
H
b +H++++”+‘r++++++ww+ y
Il * Il Il ‘ Il Il Il Il Il ‘ Il Il ‘ Il Il ‘ Il +**1
£04 2.06 2.08 21 2.12 2.14 2.16

mg (GeV)

Figure 4.58: Distribution of mgc of D;* — D}y events where D} — KgK* in
586 pb~' of data.
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Table 4.54: Selection criteria for D" — D}y events where D! — nrn*;n —
vy. The 6m cut has been widened to accomodate the wider peak
for the signal in this distribution.

Selection Criterion Cut Center + Width

mp; 1.969 + 0.016 GeV
om 0.140 + 0.02 GeV

4103 D] - nratin— yy

We begin with a Monte Carlo signal sample of D;* — D}y events where D —
nnt;n — yy and the D7 is allowed to decay generically. The selection criteria
applied are tabulated in Table Fig. depicts the 6m distribution of this

signal sample and the region selected by our criterion.
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Figure 4.59: Distribution of ¢m in the signal Monte Carlo sample of D;" —
D}y events where D} — nn*;n — yy. The plot is normalized
so as to directly read out the efficiency of the ém selection cri-
terion.

To obtain the selection efficiency using the condition on mgc as our last se-
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lection criterion, we produce a plot of the mpc distribution of the signal sample,
having applied all other criteria, as shown in Fig. We extract the shape
of the peak from the plot of mgc where the D} and the photon are matched to
their generated counterparts in the Monte Carlo simulation as shown in Fig.
B.6Tl The equations that parameterize all fits and the range they are fitted in are

identical to those used in the K* K~ nt mode.
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Figure 4.60: Distribution of mpc in the signal Monte Carlo sample of D;" —
D}y events where D} — nn*;n — yy. The plot is normalized
so as to directly read out the efficiency of the mpc selection
criterion from the area under the fit within the signal region.

Structured backgrounds arising from incorrectly reconstructed D}* are sim-
ulated as done previously for the K*K~n* mode. Fig. shows the structure
of the D; matched and photon matched background, and our fit to parameter-
ize this shape. The background with the D; matched and a photon that failed

matching is shown in Fig. along with our fit to parameterize the shape.

As a check on how well our background and signal estimation performs, we

present the overall fit to generic MC, as described for the K"K~ 7" mode, in Fig.
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Figure 4.61: Distribution of mpc in the signal Monte Carlo sample of D;" —
Dty events where D! — nn*;n — yy.

Table 4.55: €, , is the efficiency of our selection criteria for the mode. Nj,
is the signal yield in generic Monte Carlo observed for this
mode. B(D;* — Dfy) is the branching fraction for D;* —
Dfe*e” inferred from this mode. Error [1] on the inferred
branching fraction is the statistical error from the final fit. Er-
ror [2] encapsulates the systematic uncertainties from the signal
efficiency, the integrated luminosity and the production cross
section for Di*D7.

i (Decay Mode of DY) B(D} — i) €Dy Np., B(D** — Dtvy) Inferred

Dt - qntin — yy 0.0061  0.3310 + 0.0015 998 +27 0.8933 + 0.0240!"! + 0.0043*!

Our measurement of the signal selection efficiency and the signal yield
is presented in Table We find the thus estimated value for B(D}* — D}y)
equal to 0.893 + 0.024 to be 20~ away from the programmed value of 0.942 in the

Monte Carlo simulation.

We present the distribution of mpc in data and our fits to estimate the signal

yield over the backgrounds, as described for the K* K~ 7" mode, in Fig. Our
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Figure 4.62: Combinatorial background in the mgc distribution consisting
of events where the D;* has been reconstructed out of the D;
and the y, and where both the D} and the y have been matched
to their generated counterparts in the Monte Carlo simulation.
This distribution has been fitted to a shape described by Eq.

measurements of the signal efficiency and signal yield are presented in Table

4,50
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Figure 4.63: Combinatorial background structured in the mgc distribution
consisting of events where the D;* has been reconstructed out
of the D7 and the y, and the D; has been matched to its gener-
ated counterpart but the y has failed to match the photon from
the D" decay at the generator level of the Monte Carlo simu-
lation. This distribution has been fitted to a shape described

by Eq.
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Figure 4.64: Distribution of mpc of D;* — D}y events where D} — nn*;n —

vy in 586 pb_1 of Generic Monte Carlo.
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Figure 4.65: Distribution of mpc of D;* — D}y events where D} — nn*;n —
vy in 586 pb_1 of data.

Table 4.56: €, ,, is the efficiency of our selection criteria for the mode. N,
is the signal yield observed in data for this mode. B(D;* — D}y)
is the branching fraction for D;* — D}e*e™ inferred from this
mode. Error [1] on the inferred branching fraction is the statis-
tical error from the final fit. Error [2] arises from the uncertainty
in the branching fraction for D} — i. Error [3] encapsulates
the systematic uncertainties from the signal efficiency, the inte-
grated luminosity and the production cross section for D;*D7?.
Error [4] encapsulates the systematic error arising from the fit.

i (Decay Mode of DY) B(D? — i) €, Ny,

D - yrtip—yy  0.00621 +0.00083 0.3310 = 0.0015 1037 + 46 + 37
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Table 4.57: Selection criteria for D" — DYy events where D — np'n*;n —
ntn~n;n — yy. The ém cut has been widened to accomodate the
wider peak for the signal in this distribution.

Selection Criterion Cut Center + Width

mp; 1.969 + 0.011 GeV
om 0.140 + 0.020 GeV

4104 D! —»ny'ntiy - atnTgn - vy

We begin with a Monte Carlo signal sample of D;* — D}y events where
D! — y'n*;n’ — n*n p;n — yy and the Dy is allowed to decay generically.
The selection criteria applied are tabulated in Table Fig. depicts the

om distribution of this signal sample and the region selected by our criterion.
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Figure 4.66: Distribution of ¢m in the signal Monte Carlo sample of D;* —
D'y events where D! — n'n*;n' — n*nn;n — yy. The plot is

normalized so as to directly read out the efficiency of the om
selection criterion.

To obtain the selection efficiency using the condition on mgc as our last se-
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lection criterion, we produce a plot of the mpc distribution of the signal sample,
having applied all other criteria, as shown in Fig. We extract the shape
of the peak from the plot of mgc where the D} and the photon are matched to
their generated counterparts in the Monte Carlo simulation as shown in Fig.
The equations that parameterize all fits and the range they are fitted in are

identical to those used in the K* K~ nt mode.
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Figure 4.67: Distribution of mpc in the signal Monte Carlo sample of D;" —
D'y events where D! — n'n*;n' — n*n n;n — yy. The plot is
normalized so as to directly read out the efficiency of the mgc
selection criterion from the area under the fit within the signal
region.

Structured backgrounds arising from incorrectly reconstructed D;* are sim-
ulated as done previously for the K*K~n* mode. Fig. shows the structure
of the D; matched and photon matched background, and our fit to parameter-
ize this shape. The background with the D matched and a photon that failed

matching is shown in Fig. along with our fit to parameterize the shape.

As a check on how well our background and signal estimation performs, we
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Figure 4.68: Distribution of mpc in the signal Monte Carlo sample of D;" —
Dty events where D! — 'z, — n*n n;n — vyy.

Table 4.58: €/, , is the efficiency of our selection criteria for the mode. Nj,
is the signal yield observed in generic Monte Carlo for this
mode. B(D;* — Dfy) is the branching fraction for D;* —
Dfe*e” inferred from this mode. Error [1] on the inferred
branching fraction is the statistical error from the final fit. Er-
ror [2] encapsulates the systematic uncertainties from the signal
efficiency, the integrated luminosity and the production cross
section for Di*D7.

i (Decay Mode of DY) B(DY — i) €Dy Nj, B(D:* — D?y) Inferred

Df > yntin > ntngn—yy 000633  0.2101 £ 0.0013 690 £ 11 0.9341 + 0.0149"! + 0.00582!

present the overall fit to generic MC, as described for the K*K~7* mode, in Fig.
BZT Our measurement of the signal selection efficiency and the signal yield
is presented in Table We find the thus estimated value for B(D:* — Dty)
equal to 0.934 + 0.016 to be 0.50- away from the programmed value of 0.942 in

the Monte Carlo simulation.

We present the distribution of mpc in data and our fits to estimate the signal
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Figure 4.69: Combinatorial background in the mgc distribution consisting
of events where the D;* has been reconstructed out of the D;
and the y, and where both the D} and the y have been matched
to their generated counterparts in the Monte Carlo simulation.
This distribution has been fitted to a shape described by Eq.

4,09
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yield over the backgrounds, as described for the K* K~ 7" mode, in Fig. Our

measurements of the signal efficiency and signal yield are presented in Table
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Figure 4.70: Combinatorial background structured in the mpc distribution
consisting of events where the D;* has been reconstructed out
of the D7 and the y, and the D; has been matched to its gener-
ated counterpart but the y has failed to match the photon from
the D" decay at the generator level of the Monte Carlo simu-
lation. This distribution has been fitted to a shape described
by Eq.
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Figure 4.71: Distribution of mpc of D" — D}y events where D} —
n'ntyn — atnn,n — yyin 586 pb_1 of Generic Monte Carlo.
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Figure 4.72: Distribution of mpgc of Di* — D}y events where D! —
'ty — ntrn;n — yy in 586 pb~' of data.

Table 4.59: €, , is the efficiency of our selection criteria for the mode. Nj,
is the signal yield in data observed for this mode. B(D;* — D?vy)
is the branching fraction for D;* — D}e*e™ inferred from this
mode. Error [1] on the inferred branching fraction is the statis-
tical error from the final fit. Error [2] arises from the uncertainty
in the branching fraction for DY — i. Error [3] encapsulates
the systematic uncertainties from the signal efficiency, the inte-
grated luminosity and the production cross section for D;*D7.
Error [4] encapsulates the systematic error arising from the fit.

i (Decay Mode of DY) B(D; — i) €Dy Ny,

DY - y'n*in - ntnnp;n — yy  0.00666 +0.00070 0.2101 + 0.0013 691 + 34 + 40
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Table 4.60: Selection criteria for D** — Dy events where DY — K*K " n°.
The 6m cut has been widened to accomodate the wider peak for
the signal in this distribution.

Selection Criterion Cut Center + Width

mp; 1.969 + 0.010 GeV
om 0.140 + 0.020 GeV

4.10.5 D! —» K*K n*n°

We begin with a Monte Carlo signal sample of D;* — D}y events where
D! —» K*K n*n° and the D; is allowed to decay generically. The selection crite-
ria applied are tabulated in Table Fig. depicts the ém distribution of

this signal sample and the region selected by our criterion.
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Figure 4.73: Distribution of ¢m in the signal Monte Carlo sample of D;" —
D}y events where DY — K*K 7. The plot is normalized so

as to directly read out the efficiency of the om selection crite-
rion.

To obtain the selection efficiency using the condition on mgc as our last se-

147



lection criterion, we produce a plot of the mpc distribution of the signal sample,
having applied all other criteria, as shown in Fig. B74 We extract the shape
of the peak from the plot of mgc where the D} and the photon are matched to
their generated counterparts in the Monte Carlo simulation as shown in Fig.
The equations that parameterize all fits and the range they are fitted in are

identical to those used in the K* K~ nt mode.
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Figure 4.74: Distribution of mpc in the signal Monte Carlo sample of D;" —
D}y events where D! — K*K n*n’. The plot is normalized
so as to directly read out the efficiency of the mpc selection
criterion from the area under the fit within the signal region.

Structured backgrounds arising from incorrectly reconstructed D}* are sim-
ulated as done previously for the K*K~n* mode. Fig. shows the structure
of the D; matched and photon matched background, and our fit to parameter-
ize this shape. The background with the D; matched and a photon that failed

matching is shown in Fig. B.77 along with our fit to parameterize the shape.

As a check on how well our background and signal estimation performs, we

present the overall fit to generic MC, as described for the K"K~ 7" mode, in Fig.
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Figure 4.75: Distribution of mpc in the signal Monte Carlo sample of D;" —
D}y events where D} — K*K n*n"

Table 4.61: €, , is the efficiency of our selection criteria for the mode. Nj,
is the signal yield observed in generic Monte Carlo for this
mode. B(D;* — Dfy) is the branching fraction for D;* —
Dfe*e” inferred from this mode. Error [1] on the inferred
branching fraction is the statistical error from the final fit. Er-
ror [2] encapsulates the systematic uncertainties from the signal
efficiency, the integrated luminosity and the production cross
section for Di*D7.

i (Decay Mode of DY) B(D} — i) €Dy Np,, B(D:* — D}y) Inferred

DY - K*K n*n® 0.0525  0.1225+0.0010 3178 +49 0.8894 + 0.0138!" + 0.0073%

Our measurement of the signal selection efficiency and the signal yield
is presented in Table .61l We find the thus estimated value for B(D:* — Dy)
equal to 0.889 + 0.016 to be 3.30 away from the programmed value of 0.942 in

the Monte Carlo simulation.

We present the distribution of mgc in data and our fits to estimate the signal

yield over the backgrounds, as described for the K* K~ 7" mode, in Fig. Our
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Figure 4.76: Combinatorial background in the mgc distribution consisting
of events where the D;* has been reconstructed out of the D;
and the y, and where both the D} and the y have been matched
to their generated counterparts in the Monte Carlo simulation.
This distribution has been fitted to a shape described by Egq.

measurements of the signal efficiency and signal yield are presented in Table
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Figure 4.77: Combinatorial background structured in the mgc distribution
consisting of events where the D;* has been reconstructed out
of the D7 and the y, and the D; has been matched to its gener-
ated counterpart but the y has failed to match the photon from
the D" decay at the generator level of the Monte Carlo simu-
lation. This distribution has been fitted to a shape described
by Eq.
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Figure 4.78: Distribution of mpc of Di* — D}y events where D} —
K*K-7*n° in 586 pb~' of Generic Monte Carlo.
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Figure 4.79: Distribution of mpgc of Di* — D}y events where D! —
K*K 7*7° in 586 pb~' of data.

Table 4.62: €, , is the efficiency of our selection criteria for the mode. Nj,
is the signal yield observed in data for this mode. B(D;* — D?y)
is the branching fraction for D;* — D}e*e™ inferred from this
mode. Error [1] on the inferred branching fraction is the statis-
tical error from the final fit. Error [2] arises from the uncertainty
in the branching fraction for D} — i. Error [3] encapsulates
the systematic uncertainties from the signal efficiency, the inte-
grated luminosity and the production cross section for D;*D7.
Error [4] encapsulates the systematic error arising from the fit.

i (Decay Mode of DY)  B(D} — i) €Dy Np,

DY - K*K n*n® 0.056 +£ 0.005 0.1225 + 0.0010 3592 + 118 + 72
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Table 4.63: Selection criteria for Di* — D!y events where DY — n*n n*.
The 6m cut has been widened to accomodate the wider peak
for the signal in this distribution.

Selection Criterion Cut Center + Width

mp; 1.969 + 0.012 GeV
om 0.140 + 0.020 GeV

410.6 D] — n'nn"

We begin with a Monte Carlo signal sample of D;* — D}y events where D! —
n*n~n* and the D7 is allowed to decay generically. The selection criteria applied
are tabulated in Table Fig. depicts the om distribution of this signal
sample and shows why the corresponding selection criterion had to be widened

relative to the D;* — D}e*e™ signal selection.
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Figure 4.80: Distribution of ¢m in the signal Monte Carlo sample of D;" —
Dty events where D} — n*n~n*. The plot is normalized so as
to directly read out the efficiency of the ¢m selection criterion.

To obtain the selection efficiency using the condition on mgc as our last se-
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lection criterion, we produce a plot of the mpc distribution of the signal sample,
having applied all other criteria, as shown in Fig. 81l We extract the shape
of the peak from the plot of mgc where the D} and the photon are matched to
their generated counterparts in the Monte Carlo simulation as shown in Fig.
The equations that parameterize all fits and the range they are fitted in are

identical to those used in the K* K~ nt mode.
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Figure 4.81: Distribution of mpc in the signal Monte Carlo sample of D;" —
Dty events where D} — n*n~n*. The plot is normalized so as
to directly read out the efficiency of the mpc selection criterion
from the area under the fit within the signal region.

Structured backgrounds arising from incorrectly reconstructed D}* are sim-
ulated as done previously for the K*K~7n* mode. Fig. shows the structure
of the D; matched and photon matched background, and our fit to parameter-
ize this shape. The background with the D; matched and a photon that failed

matching is shown in Fig. .84 along with our fit to parameterize the shape.

As a check on how well our background and signal estimation performs, we

present the overall fit to generic MC, as described for the K*K~7* mode, in Fig.
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Figure 4.82: Distribution of mpc in the signal Monte Carlo sample of D;" —
D}y events where D} — n*nn*.

Table 4.64: ¢, , is the efficiency of our selection criteria for the mode. N},
is the signal yield observed in generic Monte Carlo for thls
mode. B(D;* — Dfy) is the branching fraction for D;* —
Dfe*e™ inferred from this mode. Error [1] on the inferred
branching fraction is the statistical error from the final fit. Er-
ror [2] encapsulates the systematic uncertainties from the signal
efficiency, the integrated luminosity and the production cross
section for Di*D7.

i (Decay Mode of D}) B(D} — i) €l Ni B(D** — D*y) Inferred
y s N Dyy Dyy s s

D! - ntnnt 0.0103  0.4583 £ 0.0018 2706 + 43 1.0327 + 0.0162!" + 0.0041)

Our measurement of the signal selection efficiency and the signal yield
is presented in Table We find the thus estimated value for B(D** — D}y)
equal to 1.0327 + 0.0167 to be 5.40- away from the programmed value of 0.942 in

the Monte Carlo simulation.

We present the distribution of mgc in data and our fits to estimate the signal

yield over the backgrounds, as described for the K* K~ 7" mode, in Fig. Our
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Figure 4.83: Combinatorial background in the mgc distribution consisting
of events where the D;* has been reconstructed out of the D;
and the y, and where both the D} and the y have been matched
to their generated counterparts in the Monte Carlo simulation.
This distribution has been fitted to a shape described by Eq.

measurements of the signal efficiency and signal yield are presented in Table
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Figure 4.84: Combinatorial background structured in the mgc distribution
consisting of events where the D;* has been reconstructed out
of the D7 and the y, and the D; has been matched to its gener-
ated counterpart but the y has failed to match the photon from
the D" decay at the generator level of the Monte Carlo simu-
lation. This distribution has been fitted to a shape described
by Eq.
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Figure 4.85: Distribution of mgc of Di* — DYy events where DY — n*n n*
in 586 pb™' of Generic Monte Carlo.
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Figure 4.86: Distribution of mgc of Di* — DYy events where DY — n*n n*
in 586 pb™' of data.

Table 4.65: €, , is the efficiency of our selection criteria for the mode. Nj,
is the signal yield observed in data for this mode. B(D;* — D?vy)
is the branching fraction for D;* — D}e*e™ inferred from this
mode. Error [1] on the inferred branching fraction is the statis-
tical error from the final fit. Error [2] arises from the uncertainty
in the branching fraction for DY — i. Error [3] encapsulates
the systematic uncertainties from the signal efficiency, the inte-
grated luminosity and the production cross section for D*D7.
Error [4] encapsulates the systematic error arising from the fit.

i (Decay Mode of DY) B(D! — i) €.y Ny,

D! - ntnnt 0.0111 + 0.0008 0.4583 + 0.0018 2745 + 93 £ 52
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Table 4.66: Selection criteria for D** — D}y events where D{ — K**K*.
The 6m cut has been widened to accomodate the wider peak
for the signal in this distribution.

Selection Criterion Cut Center + Width

mp+ 1.969 + 0.006 GeV
Mmpc 2.112 + 0.005 GeV
om 0.140 + 0.020 GeV

410.7 D! - K*K*;K** - Kdn*; K" — K™ n*

We begin with a Monte Carlo signal sample of D;* — D7y events where D} —
K**K** and the D; is allowed to decay generically. The selection criteria applied
are tabulated in Table Fig. .87 depicts the 6m distribution of this signal
sample and shows why the corresponding selection criterion had to be widened

relative to the D;* — D}e*e™ signal selection.
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Figure 4.87: Distribution of ¢m in the signal Monte Carlo sample of D;* —
D7y events where D} — K**K**. The plot is normalized so as
to directly read out the efficiency of the ¢m selection criterion.
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To obtain the selection efficiency using the condition on mgc as our last se-
lection criterion, we produce a plot of the mpc distribution of the signal sample,
having applied all other criteria, as shown in Fig. We extract the shape
of the peak from the plot of mzc where the D and the photon are matched to
their generated counterparts in the Monte Carlo simulation as shown in Fig.
The equations that parameterize all fits and the range they are fitted in are

identical to those used in the K* K~ 7t mode.
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Figure 4.88: Distribution of m¢ in the signal Monte Carlo sample of D;* —
Dy events where DY — K**K**. The plot is normalized so as
to directly read out the efficiency of the mpc selection criterion
from the area under the fit within the signal region.

Structured backgrounds arising from incorrectly reconstructed D}* are sim-
ulated as done previously for the K*K~n* mode. Fig. shows the structure
of the D7 matched and photon matched background, and our fit to parameter-
ize this shape. The background with the D] matched and a photon that failed

matching is shown in Fig. B9 along with our fit to parameterize the shape.
As a check on how well our background and signal estimation performs, we
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Figure 4.89: Distribution of mpc in the signal Monte Carlo sample of D;" —
D}y events where D} — K**K*.

Table 4.67: €, , is the efficiency of our selection criteria for the mode. Nj,
is the signal yield observed in generic Monte Carlo for this
mode. B(D;* — Dfy) is the branching fraction for D;* —
Dfe*e inferred from this mode. Error [1] on the inferred
branching fraction is the statistical error from the final fit. Er-
ror [2] encapsulates the systematic uncertainties from the signal
efficiency, the integrated luminosity and the production cross
section for Di*D7.

i (Decay Mode of D}) B(D} — i) €l Ni B(D** — D*y) Inferred
y s N Dyy Dyy s s

Df — K K*° 0.01628  0.1913 + 0.0012 1644 +22 0.9502 + 0.0129!! + 0.0058"*

present the overall fit to generic MC, as described for the K*K~n* mode, in Fig.
Our measurement of the signal selection efficiency and the signal yield
is presented in Table We find the thus estimated value for B(D;* — D}y)
equal to 0.950 + 0.014 to be 0.60 away from the programmed value of 0.942 in

the Monte Carlo simulation.

We present the distribution of mgc in data and our fits to estimate the signal
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Figure 4.90: Combinatorial background in the mgc distribution consisting
of events where the D;* has been reconstructed out of the D;
and the y, and where both the D} and the y have been matched
to their generated counterparts in the Monte Carlo simulation.
This distribution has been fitted to a shape described by Eq.

yield over the backgrounds, as described for the K* K~ 7" mode, in Fig. Our
measurements of the signal efficiency and signal yield are presented in Table
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Figure 4.91: Combinatorial background structured in the mgc distribution
consisting of events where the D;* has been reconstructed out
of the D7 and the y, and the D; has been matched to its gener-
ated counterpart but the y has failed to match the photon from
the D" decay at the generator level of the Monte Carlo simu-
lation. This distribution has been fitted to a shape described
by Eq.
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Figure 4.92: Distribution of mpc of D:* — D'y events where D} — K**K*°
in 586 pb~' of Generic Monte Carlo.
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Figure 4.93: Distribution of mpc of Di* — D'y events where D} — K**K*°
in 586 pb™' of data.

Table 4.68: €/, , is the efficiency of our selection criteria for the mode. Nj,
is the signal yield observed in data for this mode. B(D;* — D?vy)
is the branching fraction for D;* — D}e*e™ inferred from this
mode. Error [1] on the inferred branching fraction is the statis-
tical error from the final fit. Error [2] arises from the uncertainty
in the branching fraction for DY — i. Error [3] encapsulates
the systematic uncertainties from the signal efficiency, the inte-
grated luminosity and the production cross section for D;*D7.
Error [4] encapsulates the systematic error arising from the fit.

i (Decay Mode of DY) B(D! — i) €.y Ny,

Df — K**K*° 0.0164 + 0.0012 0.1913 +£0.0012 1570 +74 +13
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Table 4.69: Selection criteria for D" — D}y events where D! — np*. The
om cut has been widened to accomodate the wider peak for the
signal in this distribution.

Selection Criterion Cut Center + Width

mp; 1.969 + 0.015 GeV
om 0.140 + 0.020 GeV
0

4108 D] - np"in - yy;pt - n'n

We begin with a Monte Carlo signal sample of D;* — D}y events where D} —
no*;n — yy;pt — n*a and the Dy is allowed to decay generically. The selection
criteria applied are tabulated in Table Fig. depicts the om distribution
of this signal sample and shows why the corresponding selection criterion had

to be widened relative to the D;* — D}e*e™ signal selection.
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Figure 4.94: Distribution of ém in the signal Monte Carlo sample of D}* —
D}y events where D} — np*. The plot is normalized so as to
directly read out the efficiency of the ém selection criterion.

To obtain the selection efficiency using the condition on mgc as our last se-
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lection criterion, we produce a plot of the mpc distribution of the signal sample,
having applied all other criteria, as shown in Fig. We extract the shape
of the peak from the plot of mgc where the D} and the photon are matched to
their generated counterparts in the Monte Carlo simulation as shown in Fig.
The equations that parameterize all fits and the range they are fitted in are

identical to those used in the K* K~ nt mode.
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Figure 4.95: Distribution of mpc in the signal Monte Carlo sample of D;" —
Dy events where D} — np*;n — yy;p" — a*a’. The plot is
normalized so as to directly read out the efficiency of the mgc
selection criterion from the area under the fit within the signal

region.

Structured backgrounds arising from incorrectly reconstructed D;* are sim-
ulated as done previously for the K*K~n* mode. Fig. shows the structure
of the D; matched and photon matched background, and our fit to parameter-
ize this shape. The background with the D matched and a photon that failed

matching is shown in Fig. along with our fit to parameterize the shape.

As a check on how well our background and signal estimation performs, we
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Figure 4.96: Distribution of mpc in the signal Monte Carlo sample of D;" —

Dty events where D:* — D}y events where D} — np*;n —

yy;pt —

Table 4.70: ¢, ,, is the efficiency of our selection criteria for the mode. N,
is the signal yield observed in generic Monte Carlo for this
mode. B(D;* — D!y) is the branching fraction for D" —
Die*e” inferred from this mode. Error [1] on the inferred
branching fraction is the statistical error from the final fit. Er-
ror [2] encapsulates the systematic uncertainties from the signal
efficiency, the integrated luminosity and the production cross
section for Di*D7.

i (Decay Mode of D) B(D? — i) Eém N},ﬂ B(D:* — D7) Inferred

DY > nptin > yyipt > atn® 00298 0.1839 +£0.0013 2993 + 87 0.9829 + 0.028411 + 0.0070'

present the overall fit to generic MC, as described for the K*K~7* mode, in Fig.
Our measurement of the signal selection efficiency and the signal yield
is presented in Table We find the thus estimated value for B(D:* — Dty)
equal to 0.983 + 0.029to be 1.40- away from the programmed value of 0.942 in

the Monte Carlo simulation.
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Figure 4.97: Combinatorial background in the mgc distribution consisting
of events where the D;* has been reconstructed out of the D;
and the y, and where both the D} and the y have been matched
to their generated counterparts in the Monte Carlo simulation.
This distribution has been fitted to a shape described by Egq.

We present the distribution of mgc in data and our fits to estimate the signal
yield over the backgrounds, as described for the K*K~n* mode, in Fig. K100
Our measurements of the signal efficiency and signal yield are presented in Ta-

ble E711
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Figure 4.98: Combinatorial background structured in the mpc distribution
consisting of events where the D;* has been reconstructed out
of the D7 and the y, and the D; has been matched to its gener-
ated counterpart but the y has failed to match the photon from
the D" decay at the generator level of the Monte Carlo simu-
lation. This distribution has been fitted to a shape described
by Eq.
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Figure 4.99: Distribution of mpc of D;* — D}y events where D} — np*;n —
yy;p* — xt % in 586 pb_1 of Generic Monte Carlo.
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Figure 4.100: Distribution of mgc of D;* — D}y events where D! —
notin — yy;p* — n*n° in 586 pb~' of data.

Table 4.71: ¢, , is the efficiency of our selection criteria for the mode. N,
is the signal yield observed in data for this mode. B(D;* — D?y)
is the branching fraction for D;* — D}e*e™ inferred from this
mode. Error [1] on the inferred branching fraction is the statis-
tical error from the final fit. Error [2] arises from the uncertainty
in the branching fraction for D} — i. Error [3] encapsulates
the systematic uncertainties from the signal efficiency, the inte-
grated luminosity and the production cross section for D;*D7?.
Error [4] encapsulates the systematic error arising from the fit.

i (Decay Mode of D}) B(D? — i) €, Ni
y N s Dyy Dyy

D* = np*in — yyipt — otr®  0.0348 +0.0031 0.1839 + 0.0013 3170 + 161 + 313
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Table 4.72: Selection criteria for D:* — D!y events where D} — n'n*;n’ —
p%y. The 6m cut has been widened to accomodate the wider
peak for the signal in this distribution.

Selection Criterion Cut Center + Width

mp; 1.969 + 0.012 GeV
om 0.140 + 0.020 GeV

4109 D! — n'ntin — py

We begin with a Monte Carlo signal sample of D} — n'z*; — p’y and the
Dy is allowed to decay generically. The selection criteria applied are tabulated
in Table Fig. 10Tl depicts the 6m distribution of this signal sample and
shows why the corresponding selection criterion had to be widened relative to

the D;* — Dfe*e signal selection.
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Figure 4.101: Distribution of ém in the signal Monte Carlo sample of D;* —
D!y events where D} — n/'n*;17 — p'y. The plot is normal-
ized so as to directly read out the efficiency of the om selec-
tion criterion.
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To obtain the selection efficiency using the condition on mgc as our last se-
lection criterion, we produce a plot of the mgc distribution of the signal sample,
having applied all other criteria, as shown in Fig. We extract the shape
of the peak from the plot of mgzc where the D} and the photon are matched to
their generated counterparts in the Monte Carlo simulation as shown in Fig.
The equations that parameterize all fits and the range they are fitted in

are identical to those used in the K* K~ 7" mode.
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Figure 4.102: Distribution of mpc in the signal Monte Carlo sample of
D — Dy events where D! — n/n*;n — p’. The plot
is normalized so as to directly read out the efficiency of the
mpc selection criterion from the area under the fit within the
signal region.

Structured backgrounds arising from incorrectly reconstructed D}* are sim-
ulated as done previously for the K*K~ 7+ mode. Fig. E.104 shows the structure
of the D; matched and photon matched background, and our fit to parameter-
ize this shape. The background with the D; matched and a photon that failed

matching is shown in Fig. B.105 along with our fit to parameterize the shape.
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Figure 4.103: Distribution of mgc in the signal Monte Carlo sample of
D:* — D!y events where Di* — D!y events where D! —

nrtin - ply.

Table 4.73: ¢, , is the efficiency of our selection criteria for the mode. N,
is the signal yield observed in generic Monte Carlo for this
mode. B(D;* — D!y) is the branching fraction for D" —
Dfe*e inferred from this mode. Error [1] on the inferred
branching fraction is the statistical error from the final fit. Er-
ror [2] encapsulates the systematic uncertainties from the signal
efficiency, the integrated luminosity and the production cross
section for Di*D7.

i (Decay Mode of D) B(D} — i) Ez)ﬁ’ N;')W B(D:* — Diy) Inferred

Df > y'ntin — py 0.0111 0.3171 + 0.0015 1930 +45 0.9886 + 0.0231'1 + 0.0049*!

As a check on how well our background and signal estimation performs, we
present the overall fit to generic MC, as described for the K*K~n* mode, in Fig.
Our measurement of the signal selection efficiency and the signal yield
is presented in Table We find the thus estimated value for B(D:* — Dty)
equal to 0.989 + 0.024 to be about 20 away from the programmed value of 0.942

in the Monte Carlo simulation.
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Figure 4.104: Combinatorial background in the mge distribution consist-
ing of events where the D" has been reconstructed out of
the D] and the y, and where both the D] and the y have been
matched to their generated counterparts in the Monte Carlo
simulation. This distribution has been fitted to a shape de-
scribed by Eq.

We present the distribution of mpc in data and our fits to estimate the signal
yield over the backgrounds, as described for the K*K~n* mode, in Fig. K107
Our measurements of the signal efficiency and signal yield are presented in Ta-

ble 74
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Figure 4.105: Combinatorial background structured in the mpc distribu-
tion consisting of events where the D;* has been recon-
structed out of the D; and the y, and the D; has been
matched to its generated counterpart but the y has failed to
match the photon from the D;* decay at the generator level
of the Monte Carlo simulation. This distribution has been
fitted to a shape described by Eq.
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Figure 4.106: Distribution of mpzc of D;* — D}y events where D} —
n'nt;n — py in 586 pb_1 of Generic Monte Carlo.
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Figure 4.107: Distribution of mpc of D;* — D}y events where D} —
't — plyin 586 pb~! of data.

Table 4.74: €, , is the efficiency of our selection criteria for the mode. N,
is the signal yield observed in data for this mode. B(D;* — D?y)
is the branching fraction for D;* — Dje*e™ inferred from this
mode. Error [1] on the inferred branching fraction is the statis-
tical error from the final fit. Error [2] arises from the uncertainty
in the branching fraction for D} — i. Error [3] encapsulates
the systematic uncertainties from the signal efficiency, the inte-
grated luminosity and the production cross section for D;*D7.
Error [4] encapsulates the systematic error arising from the fit.

i (Decay Mode of DY) B(D? — i) Gf)xy N iDsy

DY - np'nt;n — p%  0.0112 +0.0012 0.3171 + 0.0015 1531 + 80 + 122
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411 Un-blinding Data and Results

Having estimated, for each decay mode of the D, the background levels in the
signal region for the reconstruction of D:* — Dfe*e™ (Section L.9), the efficiency
of our selection criteria in reconstructing the D:* — D}e*e™ (Section L), and the
yields and efficiencies of our selection criteria in reconstructing the D;* — D}y
(Section L 10), we are now in a position to unblind our data and observe the
yield in the signal region of D* — Dfe*e”. We unblind our data in the mgc
kinematic variable, as that is the variable we obtained our primary estimate of
the background from. We count the yield in the signal region and subtract off
the estimated background to determine the background subtracted yield. This
is tabulated in Table along with the significance of observing such a signal
over the background and the number of signal events expected from Monte
Carlo simulations. The unblinded distributions of mpc for the individual modes

are presented in the following sub-sections.

The statistical and systematic uncertainties in the estimated backgrounds
have been derived in Section The systematic uncertainties from the esti-
mated backgrounds simply carry over as the systematic uncertainties in the es-
timated number of signal events. The statistical uncertainties in the estimated
number of signal events is the quadrature sum, denoted by the symbol &, of the
statistical uncertainties in the estimated background and one standard devia-

tion of the Poisson distribution with mean equal to the yields. That is,
AN, (stat) = AB.., (stat) ® AY". -

where i refers to a hadronic decay mode of the D7, AY;;E, = /Yé+e, is the sta-
tistical uncertainty in the signal yield of data found in the signal region for the

i mode, AB!, (stat) is the statistical uncertainty in the number of background
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Table 4.75: Data and estimated backgrounds in the signal region used to
estimate the numbers of signal events found in each mode and
the corresponding significance of the signal. Expected numbers

of signal events from Monte Carlo simulations also listed.

Mode Yield Found in the Estimated Background Subtracted Expected Signal Yield Signal
Signal Region Background Yield in Signal Region from Monte Carlo  Significance
i N,
+ stat + syst + stat + syst + stat

K*K-n* 14 1.05+0.37 +0.79 12.95 £ 3.76 + 0.79 13.65 + 0.65 513
KsK* 1 0.85+0.43 + 0.74 0.15+1.09 = 0.74 3.02+0.15 0.73
nr* 4 1.40 £ 0.70 + 0.49 2.60 +2.12 +0.49 1.81+0.08 1.66
nntiy =ty 4 0.00 + 0.63 + 0.00 4.00 +2.10 = 0.00 1.20 + 0.06 2.68
K*K-r*n® 6 1.70 + 0.47 + 0.56 4.30 £2.49 + 0.56 4.85+0.29 2.34
ot 7 1.57 +0.45 + 0.59 5.43 +2.68 + 0.59 3.75+0.17 2.79
KK 4 1.58 + 0.53 + 0.40 2.42 +2.07 +0.40 1.99 £ 0.11 1.65
no* 7 2.62 +0.59 +0.23 4.38+271+0.23 5.49 + 0.31 2.23
nrtin - ply 4 1.84+0.49 £ 0.25 2.16 +2.06 + 0.25 242 +0.12 1.52
Sum of all modes 51 12.61 +2.50 + 1.08 38.39 +7.32+1.53 38.18 +0.83 6.39

events to Di* — Die*e” we expected in the signal region for the i/ mode, and

AN, _(stat) is the statistical uncertainty in the background subtracted yield in

our signal region for the i mode.

We tabulate the signal yields and efficiencies for D;* — Dje*e™ and D;* —

Dty in Table .76 In it we compute and tabulate the ratio of branching fractions

K =

_ B(D" — Diete)

B(D{ — Dyy)

for each mode using Eq. and with all modes using Eq.

(N;;e_
K =|\——
Nz

Y

EDi Y

Dtete

% € BIDT - i)

Zi Né*e’
2Ny J\Zi €y, -B(DF — i)
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where K is the aforementioned ratio of branching fractions we’re trying to
measure, N, is the background subtracted yield of D;* — D}y events we find
in our signal region for the i mode of D} decay, and e&y encodes the detection
and selection efficiency for the D:* — D}y selection criteria, for the i mode of

Dy decay.

Uncertainties in the ratio of branching fractions, K, are calculated for each

mode using Eq. and Eq.

2 (AN, (stat)\> (ANi(stat))
AK(stat)|" _ (AN, (stab))" (AN, (stat) (4.28)
K Ny Ny
. | ] 2 / 2
AK(syst)\>  [AN'. (syst)\’ (ANi(syst)) (Ae,..., Aep,
(syst) _ e (syst) 4 A _y ) I 4|2 (4.29)
K N, Ny €Dierer b;
ete Tete sY

Uncertainties in the ratio of branching fractions, K, are calculated using the
sum of all modes as follows. The statistical uncertainty depends solely on the
statistical uncertainties associated with the signal yields, N..,. and N;. These
statistical uncertainties for each mode are tabulated in Table Therefore, the

statistical uncertainty in K is calculated using Eq. £.30

) . i 2 AN! 2
(AK(stat)) _ ZiAN.(stah)’ NN (4.30)

K (XN, ) (ZiNy)?
For an estimate of the systematic error, we decompose Eq. as

K:(Z,N;;e)( € ) 3 €, B(D} = i) @31
LN, J\eee ]\ 5 €, BID} — i) '

where €, and ¢,+.- are the reconstruction efficiencies for the photon and the e*e”

which are common to all modes of the D decay, and e;')f is the reconstruction
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Table 4.76: The ratio of branching fractions B(D;* — Die*e”)/B(D;" —
D!y) inferred from the signal yields and efficiencies of each and

all modes.
D? Decay B(DY — i) D" — Diete” D" — Dy
Mode Signal Events Selection Efficiency Signal Events Selection Efficiency K = %
i M. N, &
+ stat + syst + stat + syst + stat + syst

K*K n* 0.0550 + 0.0028 12.95 + 3.76 + 0.79 0.0730 + 0.0019 9114 + 110 + 201 0.339 + 0.002 0.0066 + 0.0019 + 0.0005
KsK* 0.0149 + 0.0009 0.15+1.09 +0.74 0.0597 + 0.0017 1902 + 57 + 45 0.2573 + 0.0004 0.0003 + 0.0025 + 0.0017
ntin — yy 0.0062 + 0.0008 2.60 +2.12 + 0.49 0.0855 + 0.0021 1037 + 46 + 37 0.3310 + 0.0015 0.0097 + 0.0079 + 0.0019

nrtn -t - yy
K*K n*tn®

+ +

T
K*+K*O
+ 0

netin - yy;pt >t

nmtin - ply

0.0067 + 0.0007
0.056 + 0.005
0.0111 + 0.0008
0.0164 + 0.0012
0.0298 + 0.0051
0.0112 + 0.0012

4.00 +2.10 + 0.00
430 +2.49 + 0.56
5.43 +2.68 + 0.59
242 +2.07 +£0.40
4.38 +2.71 +0.23
216 £2.06 £ 0.25

0.0530 + 0.0016
0.0255 + 0.0011
0.0992 + 0.0022
0.0356 + 0.0013
0.0316 + 0.0013
0.064 + 0.0018

691 + 34 + 40
3592 £ 118 + 72
2745 + 93 £ 52

1570 £+ 74 £ 13
3170 = 161 + 313
1531 + 80 + 122

0.2101 + 0.0013
0.1225 + 0.0010
0.4583 + 0.0018
0.1913 + 0.0012
0.1839 + 0.0013
0.3171 + 0.0015

0.023 + 0.0123 + 0.0015
0.0058 + 0.0033 + 0.0008
0.0091 + 0.0045 + 0.0010
0.0083 + 0.0071 + 0.0014
0.0080 + 0.0050 + 0.0010
0.0070 + 0.0067 + 0.0010

Sum of all modes

38.39 +7.32+1.53

25351.03 + 280.93

0.0072 + 0.0014 + 0.0003




efficiency for the D} as it decays into the i hadronic decay mode. This can be

o [25 e

Therefore, we may estimate the systematic uncertainty in K as given in Eq.

simplified to

(AK(syst))2 _ Zi(AN£+e-(SYSt))2@Zi(AN;(SYSt))Z@(A(ey/em)

2
. . 4.33
K (ZiNéJre—)z (ZzN)l/)2 Ey/eﬁe’ ) ( )

A plot of the mgc and om distributions in unblinded data summed over all
modes are presented in Fig. and Fig. The data points are marked
by magenta points with error bars. The data-driven estimated backgrounds
are marked by the black and magenta curves. The cyan histograms mark the
expected signal yield. The agreement with data is remarkable. Histograms of
unblinded data in each of the individual modes are presented in the following

subsections.

Table summarizes the signal yield observed in all modes and their sig-
nificances. The total signal yield of 51 events carries a significance of 6.39 ¢
The signal yields and efficiencies for D" — Dje*e” that we just unblinded and
D" — DYy discussed in Section are tabulated together in Table The
ratio of branching fractions B(D;* — D}e*e™)/B(D;* — D}y) are calculated from
each mode and with all modes combined. The measurement of this ratio us-
ing the combination of all modes is given in Eq. B34 However, the systematic
uncertainty in K has been estimated only using the systematic uncertainties in
the signal yields for D;* — Dfe*e” and D;* — D}y. We must also include the
systematic uncertainty arising from the reconstruction of soft e*e™ pairs and the
y as indicated in Eq. for a complete result.

_ B(Dy" - Dje*e)
~ B(D** — Dty)

N

= (0.72 + 0.14(stat) + 0.03(syst))% (4.34)

181



This last source of systematic uncertainty is estimated in Section There we
measure this fractional uncertainty to be 6.51%. 6.51% of 0.72% is 0.047% and
therefore, our final result stands to be:

K- B(D:* — Dte*e™)
~ B(Dy - Dyy)

= (0.72 + 0.14(stat) + 0.06(syst))% (4.35)

where

e (stat) is the statistical uncertainty arising from the limited signal yields of

D" — D}e*e” and D;* — D;y. Larger datasets will decrease this error.

N

e (syst)is the systematic uncertainty arising from systematic uncertainties in
the estimated background for the D;* — D}e*e” signal, systematic uncer-
tainties in the signal yield for D;" — D7y, and the systematic uncertainty
arising from the e*e™ and y reconstruction efficiencies in the energy range

relevant for this analysis.
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Figure 4.108: Distribution of mp¢ in data after unblinding.
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Figure 4.109: Distribution of ém in data after unblinding.



4111 D! > K*'Kn*

The distributions of mpc and 6m in data after unblinding are presented overlaid
with Monte Carlo in Fig. B IT0land E.TTTl A mean of 14.7 events were expected
from Monte Carlo simulations and 14 events were observed. The significance

for this observation is 5.13 o
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Figure 4.110: Distribution of mgc in data after unblinding overlaid with
prediction from Monte Carlo.

| 5m Distributions in Mode D - K* K * |

—— Ssignal MC: 16 Entries

[ LR v—

Generic MC: 4 Entries

14

12
- Conversion MC: 8 Entries

10

Data: 38 Entries

Number of Events / 5 MeV

©
|||IIIIIIIIIIIIIIIIIIIIIIIIII

o o005 01 015 02 025 03 035 04
om (GeV)

Figure 4.111: Distribution of ém in data after unblinding overlaid with pre-
diction from Monte Carlo.
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4112 D! - KsK*

The distributions of mgc and 6m in data after unblinding are presented overlaid
with Monte Carlo in Fig. and A mean of 3.87 events were expected
from Monte Carlo simulations and 1 events was observed. The significance for

this observation is 0.73 o.
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Figure 4.112: Distribution of mgc in data after unblinding overlaid with
prediction from Monte Carlo.
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Figure 4.113: Distribution of ém in data after unblinding overlaid with pre-
diction from Monte Carlo.

185



4113 D! - nat;n > yy

The distributions of mpc and 6m in data after unblinding are presented overlaid
with Monte Carlo in Fig. ETT4and 115 A mean of 3.21 events were expected
from Monte Carlo simulations and 4 events were observed. The significance for

this observation is 1.66 o.
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Figure 4.114: Distribution of mgc in data after unblinding overlaid with
prediction from Monte Carlo.
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Figure 4.115: Distribution of ém in data after unblinding overlaid with pre-
diction from Monte Carlo.
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4114 D! -»ny'ntiy - ntnmgn - yy

The distributions of mpc and ém in data after unblinding are presented over-
laid with Monte Carlo in Fig. E1T6land EETTZ 1.20 events were expected from
Monte Carlo simulations and 4 events were observed. The significance for this

observation is 2.68 o
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Figure 4.116: Distribution of mpc in data after unblinding overlaid with
prediction from Monte Carlo.
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Figure 4.117: Distribution of ém in data after unblinding overlaid with pre-
diction from Monte Carlo.
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4115 D! —» K"K n*n°

The distributions of mpc and ém in data after unblinding are presented over-
laid with Monte Carlo in Fig. B.118 and K.119. 6.55 events were expected from
Monte Carlo simulations and 6 events were observed. The significance for this

observation is 2.34 o
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Figure 4.118: Distribution of mpc in data after unblinding overlaid with
prediction from Monte Carlo.
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Figure 4.119: Distribution of ém in data after unblinding overlaid with pre-
diction from Monte Carlo.
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4116 D] ->n'nn*

The distributions of mpc and ém in data after unblinding are presented over-
laid with Monte Carlo in Fig. E120land E.12]1 5.32 events were expected from
Monte Carlo simulations and 7 events were observed. The significance for this

observation is 2.79 o
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Figure 4.120: Distribution of mgc in data after unblinding overlaid with
prediction from Monte Carlo.
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Figure 4.121: Distribution of ém in data after unblinding overlaid with pre-
diction from Monte Carlo.
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4117 D! - K"K K** - K{n"; K" — K™ n*

The distributions of mpc and ém in data after unblinding are presented over-
laid with Monte Carlo in Fig. E122/ and 3.57 events were expected from
Monte Carlo simulations and 4 events were observed. The significance for this

observation is 1.65 o
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Figure 4.122: Distribution of mgc in data after unblinding overlaid with
prediction from Monte Carlo.
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Figure 4.123: Distribution of ém in data after unblinding overlaid with pre-
diction from Monte Carlo.
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4.11.8 D! — nptin — yy;pt — ntad
The distributions of mpc and ém in data after unblinding are presented over-
laid with Monte Carlo in Fig. E124 and 8.11 events were expected from

Monte Carlo simulations and 7 events were observed. The significance for this

observation is 2.23 o
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Figure 4.124: Distribution of mgc in data after unblinding overlaid with
prediction from Monte Carlo.
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Figure 4.125: Distribution of ém in data after unblinding overlaid with pre-
diction from Monte Carlo.
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4119 D! — 'zt — py

The distributions of mpc and ém in data after unblinding are presented over-
laid with Monte Carlo in Fig. E126/ and 4.26 events were expected from
Monte Carlo simulations and 4 events were observed. The significance for this

observation is 1.52 ¢
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Figure 4.126: Distribution of mgc in data after unblinding overlaid with
prediction from Monte Carlo.
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Figure 4.127: Distribution of ém in data after unblinding overlaid with pre-
diction from Monte Carlo.
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4.11.10 Comparison of m,:.- between Data and Monte Carlo

Simulation

Fig. shows the distribution of the invariant mass of the e*e™ in the 51 data
points uncovered when compared to the general shape predicted by our Monte
Carlo simulations. It must be noted that we did not depend on the numbers
from Monte Carlo for our estimation of the backgrounds. This plot is presented
as a rough check. The Kolmogorov probability for the data and Monte Carlo

points to have come from the same distribution is found to be 0.86.
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Figure 4.128: Distribution of m,:.- in data after unblinding overlaid with
prediction from Monte Carlo.
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4.11.11 A Re-evaluation of All D" Branching Fractions

Now that we have a measurement of the ratio of branching fractions B(D;" —
Die*e”)/B(D:* — D}y), we may combine it with the measurement of B(D}* —
Din")/B(D:* — D}y) as measured by the BABAR collaboration [B] to re-evaluate
the absolute branching fractions B(D:* — D?y), B(D:* — D{zn") and B(D:* —
Die*e”). For notational convenience, we shall denote B(D;" — Djy) by b,,
B(D:* — D!a°) by b and B(D:* — Dfe*e”) by b,.-. If we call our measure-

ments of the ratios m; and m, as indicated in Eq. &HE37

b
m = bi° = 0.062 = 0.005 + 0.006 (4.36)
Y
be*e‘
my = = = 0.0072  0.0014  0.0006 (4.37)
Y

and have the absolute branching fractions add up to unity, we may write

1

= — 4.38
by 1+m +m, ( )
Ab, = 0b, Amy @ 0b, A (4.39)
[ 6m1 m 81’)’[2 e '
where
ob, 0b, -1

aml B sz - (1 + my +m2)2

In a similar vein, one may write the solutions for b,0 and b,-.- as follows.

n,
by = —m— 4.40
’ 1+m;+m, ( )
ob
Aby = Obro Amy & —= Ams (4.41)
6m1 6m2
where
abﬂo _ 1+ m,

(9m1 B (1 +m; + ﬂlz)2
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8bﬂ0 _ —nm;
81’)’[2 B (1 +m + I’I12)2

and
n
bpro- = —————— 4.42
1+m +my ( )
abe*e’ abe*e’
Abyi = Am; & Am, (4.43)
6m1 0 2
where
abe*e’ _ —ny
(9m1 B (1 + m; + m2)2
abe*e— _ 1+ my

81’)’[2 B (1 + my +m2)2

We evaluate these derivatives using the central values of the measurements
my and m, and propagate the statistical and systematic errors independently to
give us absolute measures for the branching fractions of the D* thus far discov-

ered.

B(D* - Dly) = (93.5+0.5+0.5)% (4.44)
B(D:* - Din") = (5.8+04+0.5% (4.45)
B(D:* — Dfe*e”) = (0.67+0.13+0.05)% (4.46)

195



412 Systematic Uncertainties from the Tracking of Soft Elec-

trons and Photons

As reported in Section L11] systematic errors in the measurement of €. /¢,
will contribute to the systematic uncertainty in our measurement of the ratio
of branching fractions B(D;* — D}e*e™)/B(D;" — D}y). In this section, we seek
to estimate the systematic uncertainty in the measurement of €. /¢, in the en-
ergy range relevant for our analysis by studying the decay of ¥(25) mesons to
J/yn®n’. We estimate this systematic error by measuring the ratio of the num-
bers of events where one of the 7° Dalitz decays to ye*e™ to the number of events
where both n” decay to yy and comparing this to the ratio expected from the cur-

rently accepted branching fractions for 7° — ye*e™ and 7° — yy.

Dataset 42, which contains 53 pb_1 of data taken at the ¥/(2S) resonance, was
used for this study. Since soft electrons from the Dalitz decay of the 7° would
also suffer from the systematic deviation in their energy and other track pa-
rameters if their tracks are fitted to the pion mass hypothesis, we reprocessed
this dataset to include track fits to the electron mass hypothesis. This has been

described in Section

In the following paragraphs, we describe a method that completely recon-
structs the (25 ) from its decay into J/yn’z° in order to estimate our systematic

error in the measurement of €,+.- /¢,.

For our convenience, events where one of the 7° Dalitz decays to e*e™y will
be called events of Type 1. Events where both n° decay to yy will be called events
of Type II. The latest fit in the Review of Particle Physics 2010 establishes the
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ratio B(n" — ye*e™)/B(n’ — yy) to be (1.188 + 0.034) x 1072 [11, B]]. From this, we
can establish that the ratio of numbers of these two types of events produced in

our dataset should be (2.376 + 0.068) x 10 from Eq. E47

ny B(n® — yete)

r= =2X

- = 0.02376 + 0.00068 (4.47)
ni B(ﬂ -7y

In our method, we obtain a measurement of this ratio from data and com-
pute the branching fraction B(r° — ye*e™). The deviation of this measurement
from the currently accepted value of the branching fraction translates to the sys-

tematic uncertainty in our measurement of €+, /¢€,:

A€se-/€ AB(n" — yete™) (4.48)

€re € B(#® — yeter)

Our method reconstructs the y¥(2S) through events of Type I (¥(25) —
Jyn'n% 7’ - yy;n° — e*ey) and events of Type I (y(2S) — J/yn’n%x® —
yy; ©° — yy). We estimate the reconstruction efficiencies for both types of events
using Monte Carlo samples. First, we establish a set of criteria to reconstruct
Type I events in our data. To illustrate our method, we shall call the efficiency
of selecting Type I events from an MC sample of Type I events ¢,. The efficiency
of keeping Type Il events in the signal region of these criteria from an MC sam-
ple of Type II events shall be called €. For n; produced Type I and n;, produced
Type II events, we can expect an yield of y events after applying this set of se-

lection criteria to our data as expressed in Eq.
ni€ + N, € =y (4.49)

Using the currently accepted ratio of n;/n;; from Eq. B.47] we may calculate n;,

the number of Type I events in our data, from this.
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Hereafter, we construct a set of selection criteria to reconstruct Type II events
in our data. Using Type II Monte Carlo event samples, we find the reconstruc-
tion efficiency ¢, for this set of criteria. Then we estimate the number of pro-

duced Type II events in our data with this method as n;; using

ni€ =Yy (4.50)

where y, is the yield of our set of criteria on data to isolate Type II events.

Having estimated the numbers of Type I and II events in our data, we may

estimate the branching fraction B(n" — e*e™y) using

B(n® = yy) n

B(n’ - etey) = (4.51)

2 ny

In order to establish a systematic uncertainty in our measurement of B(z° —
e*e”y), we implement a second method for measuring this branching fraction.
In this method, we use Type I and Type Il events in our data that are most likely
conversion events, events where one of the photons from the 7° converts to a
e*e” in material, in combination with Eq. to estimate the total number of
Type I and Type II events in the data. In order to select events that are most
likely to be conversion events, we select events that are rejected by the Ad, and
A¢, criteria on the tracks of the e*e™ pair. These selection criteria have been de-
scribed in Sections and The efficiency of selecting such conversion-
type events from a Monte Carlo sample of Type I events shall be called €;. The
efficiency of selecting such events from a Monte Carlo sample of Type II events

shall be called €/. Thus, upon the application of our selection criteria (that in-
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verts the standard Ad, and d¢, requirements), the yield in data may be denoted
by y’ as expressed in Eq.

nie; +nye, =y (4.52)

Solving Equations .49 and simultaneously gives us the number of Type
I events in the data. The number of Type II events is used as deduced earlier
from the selection of Type II events. This ratio, n;/ny;, is plugged into Equation

EX5Tto give us a second estimate for the 7 Dalitz decay branching fraction.

Now we shall discuss the details of implementation of the two methods.

4.12.1 Method 1

First, we shall describe the selection criteria used to select events from data in

our first method.

The J/y is reconstructed from its decays to e*e™ and u~u*. The tracks of these
leptons are fitted with the Kalman fitter using electron and muon mass hypothe-
ses respectively. 50% of the expected number of hits on a track are required to be
present. The momentum of each track is required to be between 500 MeV and
10 GeV. They may be reconstructed upto a cos 6 of 0.93. The track parameter d,
must be less than 5 mm and z, must be less than 5 cm. The dE/dx of electron
and muon tracks are required to be within 3 o of their expected values. The J/y
has a mass of 3096.92 + 0.001 MeV and a full natural width of 93.2 + 2.1 keV. In
our study, we require the invariant mass of the e*e™ pair to be within 30 MeV

of 3.09200 GeV, and the invariant mass of the u~u* pair to be within 30 MeV of
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Figure 4.129: Invariant mass of the J/i reconstructed from its decay to e*e”
(top plots) and u*u~ (bottom plots). The column on the left is
from signal MC of Type I events. The column at the center is
from signal MC of Type Il events. The column on the right is
from data.

3.09692 GeV as depicted in Fig

The first 7° in Type I events is reconstructed from its decay to two photons.
The photons must not have showered in known noisy crystals and must not
have tracks matched to them. Each of their shower energies are required to be
between 10 Mev and 2 Gev. The pull mass of the #° is required to be within +

2.5 0. This is shown in Fig.

The second #° in Type II events is reconstructed from its decay to a photon
and a soft e*e” pair. Requirements on the photon are identical to those of the
photons from the first 7°. The electron is Kalman fitted using the electron mass
hypothesis and is required to have a momentum between 10 Mev and 2 GeV. It

must be reconstructed within an angle of cos@ = 0.93. The track parameter d,
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Figure 4.130: The invariant mass of the first 7°. The column on the left is
from signal MC of Type I events. The column at the center is
from MC of Type Il events. The column on the right is from
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Figure 4.131: The invariant mass of the second 7%, The column on the left
is from signal MC of Type I events. The column at the center
is from MC of Type Il events. The column on the right is from
data.

must be less than 5 mm and zy, must be less than 5 cm. The dE/dx of the track
is required to be within 3 o of the value expected of an electron. The invariant
mass of the ye*e™ is required to be within 18 MeV of the nominal mass of the 7°
which is 134.9766 MeV. The distribution of this invariant mass and the selection

range is shown in Fig. L1371

The electron and the positron are each required to have an energy less than
144 MeV as indicated in Fig. B.132l This is the range of energies of the positron

and the electron from the decay D;* — D}e*e".
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Figure 4.132: The distribution of energy of the positron and the electron
from the Dalitz decay of the 7° in the MC. Events contain-
ing positron and electrons with energy less than 144 MeV, as
indicated, are accepted.

Next, we combine the four-momenta of the J/y and two n° to get the four-
momentum of the ¥(2S) meson. This must be close to the four-momentum of
the colliding e*e™ pair at the center of the CLEO-c detector. Hence, we apply
selection criteria constraining each component of the momentum of the y(25)

to be within 40 MeV of that of the collision momentum. This is shown in Fig.

We select events where the difference between the invariant masses of the
reconstructed y(2S) candidate and the J/y candidate is within 30 MeV of the

nominal difference in masses. This is depicted in Fig. £.134

A background to the selection of Type I events are Type II events where one
of the photons from a 7° converts in material to produce an e*e™ pair. We reject
this background using the Ady > —5mm and A¢, < 0.12 criteria used in our

Dt — Dte*e™ reconstruction. This is shown in Fig. E.135and

The aforementioned selection criteria are found to accept 1,069 Type I events
out of a Monte Carlo sample of 299,794. Thus, we record the efficiency €, =
0.0357 + 0.0011 as applicable in Eq. They are also found to accept 10 Type
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Figure 4.133: Four momenta of (25 ) relative to the e*e™ collision four mo-
menta. The column on the left is from signal MC of Type
I events. The column at the center is from MC of Type II
events. The column on the right is from data.

IT events out of a Monte Carlo sample of 149,888 and thus we may write €, =
2/149,888 = (1.33 £ 0.94) x 10~°. When these selection criteria are applied to our

data, we get an yield of y = 306 events.

Assuming the established ratio of Type I to Type II events detailed in Eq.
B.47to hold true, we may solve Eq. for n;. The solution is given in Eq.

and The & symbol is used to denote addition in quadrature. This gives us
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Figure 4.134: Difference between the invariant masses of the ¥(2S) and

the J/y. The column on the left is from signal MC of Type
I events. The column at the center is from MC of Type II
events. The column on the right is from data.
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Figure 4.135: The Ad, between the e*e™ pair from the second 7°. The col-
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Figure 4.136: The A¢, between the e*e™ pair from the second 7°. The col-

umn on the left is from signal MC of Type I events. The col-
umn at the center is from MC of Type II events. The column
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n; = 8447 + 554.

Yy
&+ er (453)
% _ g@AESGB(GC/I‘)(AEC/ECGBAI‘/I’) (4.54)

ny y € +E€[r

Having calculated the number of Type I events in our data, we may now
estimate the number of Type II events present in the data sample. The recon-
struction of Type II events is similar to the reconstruction of Type I events. The
second 7¥ is reconstructed from photons with the same selection criteria as the
first 7°. The Ad, and A¢y cuts are not used as they are clearly inapplicable. A
signal MC for Type II events was generated to calculate the signal efficiency of
our criteria. Distributions of the J/¥ mass, the pull masses of the two 7°, the
momentum of the (25) relative to the collision momentum and the mass dif-
ference between the y(25) and the J/y are presented in Fig. .137]
and L1411

25,713 events out of 149,888 signal MC events were seen to be accepted by
our criteria. This gives a signal efficiency €, = 0.1716 + 0.0011. We find the yield
in data to be y; = 58,602 events. Using Eq. we infer that the number of

Type Il events is our data is n;; = 341,607 + 2,555.

Now, we may calculate the ratio of Type I to Type II events in our data as

n;/n;; and from that estimate the branching fraction B(n’ — ye*e™) thus:

ng  8447+554 2B(n° — e*ey)
ny 341607 £2555  (98.823 + 0.034) x 102"

(4.55)
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Figure 4.137: Invariant mass of the J/y reconstructed from its decay to e*e”
(top plots) and u*u~ (bottom plots). The column on the left is
from signal MC of Type II events. The column on the right is
from data.

From this, we calculate B(n° — e*e™y) = 0.01222 + 0.00081(stat). In order to
establish a systematic uncertainty in this measurement, we use a second method

to estimate B(7° — e*e7y).
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Figure 4.138: The invariant mass of the first Y. The column on the left is
from signal MC of Type Il events. The column on the right is
from data.

7.l:() Pull Mass h_pi0_2_Mass_Pull TEO Pull Mass h_pi0_2_Mass_Pull
Entries 31776 Entries 109152

- Mean -0.1688 [ Mean -0.224
I RMS 1.192 rC RMS 1.352
10001 30001
aooi 2500
i 2000
600 r
5 1500~
400? i_|"J
200;; 10001
O:HH\HH\HH\HH\HH\HH 500}\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\'—\L‘\_L
3 2 -1 0 1 2 3 3 2 -1 0 1 2 3
[} (e}

Figure 4.139: The invariant mass of the second 7. The column on the left
is from signal MC of Type Il events. The column on the right
is from data.
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Figure 4.140: Four momenta of (25 ) relative to the e*e™ collision four mo-
menta. The column on the left is from signal MC of Type II

events. The column on the right is from data.
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Figure 4.141: Difference between the invariant masses of the (25 ) and the
J/y. The column on the left is from signal MC of Type II
events. The column on the right is from data.
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Figure 4.142: The A¢, between the e*e™ pair. Now we accept events with
A¢y greater than 0.12. These were previously rejected as
likely to be conversion-type events. The column on the left is
from signal MC of Type I events. The column at the center is
from MC of Type Il events. The column on the right is from
data.

4.12.2 Method 2

Our second method for estimating B(r’ — e*e™y) uses conversion-type events
found in data. Conversion-type events are those where both 7° decay to yy but
at least one photon converts in material to form a e*e™ pair. We select for such
events by requiring all the criteria on J/¢ and the invariant masses of the 7° used
to select Type I events, except now we look at the “wrong side” of the Ad, and
Agy criteria. In other words, we keep events which were previously rejected
by both the Ady and the A¢, criteria. The distribution of Ad, is the same as
Fig. since all preceding criteria are identical. The distribution of A¢, after

having accepted tracks on the “wrong side” of Ad, is presented in Fig. .142

The efficiency of such a set of selection criteria for Type I events is found to
be €, = 10/29,974 = (3.34 + 1.1(stat)) x 107™*. The efficiency for Type II events
is found to be €, = 54/149,888 = (3.60 + 0.49(stat)) x 107*. On applying these
selection criteria to our data, we are left with an yield of y* = 141 events. These

values may be plugged into Eq. and solved simultaneously with Eq.
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to get n; = 8437 + 342. The solution for n; is given in Eq. .56 and

€/_ /€C
=t (4.56)
€€, — €€,
5111 611] 5111 611] 611] 5111
Anj= —Ay® —AY & —Ae. ® —Ae, ® —Ae. & — A€, 4.57
"™ 5y Y oy Y J€, : O, “ O€! K o€ & (457)
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Now, we may calculate the ratio of Type I to Type II events in our data as

n;/ny; and from that estimate the branching fraction B(n® — ye*e™) thus:
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ng  8437+342 2B(n° — etey)
ny 341607 £2555  (98.823 + 0.034) x 102"

(4.58)

From this, we calculate B(7° — e*e~y) = 0.01220 + 0.00050(stat).

Now, we may combine our results from the two methods to establish a sys-
tematic error. Result from method 1: B(n’ — e*ey) = 0.01222 + 0.00081(stat).
Result from method 2: B(n° — e*e™y) = 0.01220 + 0.00050(stat). The result of
method 2 has the smaller uncertainty and will, therefore, be quoted as the cen-
tral value of our measurement. The statistical uncertainty will quoted as the
quadrature sum of the uncertainties in the two results. The absolute differ-
ence between the central values of the two results will be quoted as the sys-
tematic uncertainty in our measurement. Hence, we report B(n’ — etey) =

(1.222 + 0.081(stat) + 0.002(syst)) x 1072

The currently accepted branching fraction for the Dalitz decay of the n° is
(1.174 + 0.035) x 1072 [6, 22, 21,7, B]. The difference between this and our result
is 0.046%. Hence, we cannot motivate a correction to the tracking efficiency and
must settle for an uncertainty. We add the difference between our measured
branching fraction and the currently accepted measurement, and the uncertain-
ties in our result in quadrature to get a total uncertainty of 0.077%. Thus, the
fractional uncertainty that we set out to estimate is found to be 6.51% as shown

in Eq.

A€o €, B AB(n" — yete) _0.077%
€€ B —yeter)  1.174%

= 6.51% (4.59)
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CHAPTER 5
RESULTS AND CONCLUSION
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We conclude this dissertation with a compilation of the results of our analy-

sis.

We have observed the Dalitz decay D;* — D}e*e” with a signal significance
of 6.4 o using nine hadronic decays of the D} as tabulated in Table It is
the first instance of a Dalitz decay that has been observed in the electromagnetic

decay of mesons containing the heavy charm or bottom quark.

We have also measured the ratio of branching fractions B(D;* —
Diete”)/B(D;" — DYy) to be (0.72 + 0.14(stat) + 0.06(syst))% as presented in Eq.
of Section LTIl The statistical uncertainty arises from the limited signal
yields of D;* — Dfe*e” and D;* — D}y. Larger datasets will decrease this error.
The systematic uncertainty arises from systematic uncertainties in the estimated
background for the Di" — D}e*e™ yield, systematic uncertainties in the signal
yield for D;* — D}y, and the systematic uncertainty from the e*e™ and y recon-

struction efficiencies in the energy range relevant for this analysis.

Finally, in Section LETT.TT] we have recomputed the absolute branching frac-

tions of the D" meson in light of our discovery and measurement as follows.

B(D{" — Dyy)

(93.5+0.5+0.5)%

B(D:* — D% (5.8+0.4+0.5%

B(D:" — Dle*e)

(0.67 £0.13 £0.05)%
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APPENDIX A
PLOTS USED TO OPTIMIZE SELECTION CRITERIA FOR D;* — Dfe*e”
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Optimization plots for the my: selection criterion in the D7 — KgK* mode. Plots
on the left grouped as Fig. [AJlcorrespond to pion-fitted tracks in the simulated
samples. Plots on the right grouped as Fig. correspond to electron-fitted
tracks in the samples. The top left plots, for both samples, is the distribution
of mp: in the signal Monte Carlo sample. The top right plot graphs the signal
MC sample accepted by the criterion as we increase the cut width plotted on
the x-axis. For the pion-fitted samples on the left, the plots in the second and
third rows correspond to the generic and continuum MC samples, respectively.
For the electron-fitted samples on the right, the plots in the second, third and
fourth rows correspond to the D}* — D}y, generic and continuum MC samples,
respectively. For both sets of plots, the bottom left shows the significance of the
signal over background. The bottom right plot shows the precision of the signal.
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Figure A.1: mp:, KsK*, pion-fit Figure A.2: mp:, KsK*, electron-fit
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Optimization plots for the mpc selection criterion in the D} — KsK* decay
mode. Plots on the left grouped as Fig. correspond to pion-fitted tracks
in the simulated samples. Plots on the right grouped as Fig. [A.4] correspond
to electron-fitted tracks in the samples. The top left plots, for both samples, is
the distribution of mgc in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.3: mpc, KsK*, pion-fit Figure A.4: mpc, KsK*, electron-fit
218



Optimization plots for the 6m selection criterion in the DY — KgK* decay
mode. Plots on the left grouped as Fig. correspond to pion-fitted tracks
in the simulated samples. Plots on the right grouped as Fig. correspond
to electron-fitted tracks in the samples. The top left plots, for both samples,
is the distribution of ¢m in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Optimization plots for the selection criterion on the Ad, between the e*e™ in
the D} — KsK* decay mode. Plots on the left grouped as Fig. [A7 correspond
to pion-fitted tracks in the simulated samples. Plots on the right grouped as
Fig. correspond to electron-fitted tracks in the samples. The top left plots,
for both samples, is the distribution of Ad, in the signal Monte Carlo sample.
The top right plot graphs the signal MC sample accepted by the criterion as
we vary the cut on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.7: Ad,, KsK*, pion-fit Figure A.8: Ady, KsK*, electron-fit
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Optimization plots for the selection criterion on the A¢, between the e*e™ in
the D} — KgK* decay mode. Plots on the left grouped as Fig. correspond
to pion-fitted tracks in the simulated samples. Plots on the right grouped as
Fig. [A10 correspond to electron-fitted tracks in the samples. The top left plots,
for both samples, is the distribution of A¢, in the signal Monte Carlo sample.
The top right plot graphs the signal MC sample accepted by the criterion as
we vary the cut on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Optimization plots for the mp: selection criterion in the D] — nz* mode. Plots
on the left grouped as Fig. [A.Tlcorrespond to pion-fitted tracks in the simulated
samples. Plots on the right grouped as Fig. correspond to electron-fitted
tracks in the samples. The top left plots, for both samples, is the distribution
of mp: in the signal Monte Carlo sample. The top right plot graphs the signal
MC sample accepted by the criterion as we increase the cut width plotted on
the x-axis. For the pion-fitted samples on the left, the plots in the second and
third rows correspond to the generic and continuum MC samples, respectively.
For the electron-fitted samples on the right, the plots in the second, third and
fourth rows correspond to the D}* — D}y, generic and continuum MC samples,
respectively. For both sets of plots, the bottom left shows the significance of the
signal over background. The bottom right plot shows the precision of the signal.
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Figure A.11: mp:, nn*, pion-fit Figure A.12: mp:, nn*, electron-fit
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Optimization plots for the mgc selection criterion in the D} — nn* decay mode.
Plots on the left grouped as Fig. correspond to pion-fitted tracks in the
simulated samples. Plots on the right grouped as Fig. [A4 correspond to
electron-fitted tracks in the samples. The top left plots, for both samples, is
the distribution of mgc in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.13: mpc, nr*, pion-fit Figure A.14: mpc, nr*, electron-fit
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Optimization plots for the ém selection criterion in the D} — nr* decay mode.
Plots on the left grouped as Fig. correspond to pion-fitted tracks in the
simulated samples. Plots on the right grouped as Fig. correspond to
electron-fitted tracks in the samples. The top left plots, for both samples, is
the distribution of ém in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.15: om, nrn*, pion-fit Figure A.16: om, nn*, electron-fit
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Optimization plots for the selection criterion on the Ad, between the e*e™ in
the D} — nn* decay mode. Plots on the left grouped as Fig. [AJ7 correspond
to pion-fitted tracks in the simulated samples. Plots on the right grouped as
Fig. [A18 correspond to electron-fitted tracks in the samples. The top left plots,
for both samples, is the distribution of Ad, in the signal Monte Carlo sample.
The top right plot graphs the signal MC sample accepted by the criterion as
we vary the cut on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Optimization plots for the selection criterion on the A¢, between the e*e™ in
the D} — nr* decay mode. Plots on the left grouped as Fig. correspond
to pion-fitted tracks in the simulated samples. Plots on the right grouped as
Fig. [A20l correspond to electron-fitted tracks in the samples. The top left plots,
for both samples, is the distribution of A¢, in the signal Monte Carlo sample.
The top right plot graphs the signal MC sample accepted by the criterion as
we vary the cut on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Optimization plots for the mp: selection criterion in the DY — n'n*;np —
ntn m;m — yy mode. Plots on the left grouped as Fig. [AZIl correspond to
pion-fitted tracks in the simulated samples. Plots on the right grouped as Fig.
correspond to electron-fitted tracks in the samples. The top left plots,
for both samples, is the distribution of my: in the signal Monte Carlo sample.
The top right plot graphs the signal MC sample accepted by the criterion as
we increase the cut width plotted on the x-axis. For the pion-fitted samples
on the left, the plots in the second and third rows correspond to the generic
and continuum MC samples, respectively. For the electron-fitted samples on
the right, the plots in the second, third and fourth rows correspond to the
D" — D}y, generic and continuum MC samples, respectively. For both sets of
plots, the bottom left shows the significance of the signal over background. The
bottom right plot shows the precision of the signal.
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Optimization plots for the mpc selection criterion in the DY — n'z*;n —
n*n m;n — yy decay mode. Plots on the left grouped as Fig. correspond
to pion-fitted tracks in the simulated samples. Plots on the right grouped as
Fig. [A24] correspond to electron-fitted tracks in the samples. The top left plots,
for both samples, is the distribution of mgc in the signal Monte Carlo sample.
The top right plot graphs the signal MC sample accepted by the criterion as
we increase the cut width plotted on the x-axis. For the pion-fitted samples
on the left, the plots in the second and third rows correspond to the generic
and continuum MC samples, respectively. For the electron-fitted samples on
the right, the plots in the second, third and fourth rows correspond to the
D" — D}y, generic and continuum MC samples, respectively. For both sets of
plots, the bottom left shows the significance of the signal over background. The
bottom right plot shows the precision of the signal.
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Optimization plots for the dm selection criterion in the D} — n'zn*;y —
n*a m;n — yy decay mode. Plots on the left grouped as Fig. correspond
to pion-fitted tracks in the simulated samples. Plots on the right grouped as
Fig. [A.26] correspond to electron-fitted tracks in the samples. The top left plots,
for both samples, is the distribution of 6m in the signal Monte Carlo sample.
The top right plot graphs the signal MC sample accepted by the criterion as
we increase the cut width plotted on the x-axis. For the pion-fitted samples
on the left, the plots in the second and third rows correspond to the generic
and continuum MC samples, respectively. For the electron-fitted samples on
the right, the plots in the second, third and fourth rows correspond to the
D" — D}y, generic and continuum MC samples, respectively. For both sets of
plots, the bottom left shows the significance of the signal over background. The
bottom right plot shows the precision of the signal.
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Optimization plots for the selection criterion on the Ad, between the e*e™ in
the DY — ny'n*;n’ — n*n"p;n — yy decay mode. Plots on the left grouped
as Fig. correspond to pion-fitted tracks in the simulated samples. Plots
on the right grouped as Fig. correspond to electron-fitted tracks in the
samples. The top left plots, for both samples, is the distribution of Ad, in
the signal Monte Carlo sample. The top right plot graphs the signal MC
sample accepted by the criterion as we vary the cut on the x-axis. For the
pion-fitted samples on the left, the plots in the second and third rows cor-
respond to the generic and continuum MC samples, respectively. For the
electron-fitted samples on the right, the plots in the second, third and fourth
rows correspond to the D;* — DYy, generic and continuum MC samples,
respectively. For both sets of plots, the bottom left shows the significance of the
signal over background. The bottom right plot shows the precision of the signal.

Ad, Signal Sample 3, Signal Sample 23, STgrat Sample vs Cut Width|
2 2 X3 g
£ £ H H
0.1}~ 9 S0.07f @ 07
S04 2 F H =
= * HE osf
0.08f- 08k =005 (3
0.0 0.4F
0.06- 0.6 003 03
o02f- o0zf
0.04f~ o4l onf ol
8 G070 506 5004 0005 0038 001 e 6700002 5004 0005 5008 001
0.02 02k ‘Ad, (m) ‘Cut Width (m)
IR IETIN A PPN PR PP PV 1O PO T TPRTIRTE I DY P IPST PO Y- PO TP 2d, Conversion MC Sample B fon W T Width
-B.676:00%:0060:0040.00% 0 0.002.002.0080.008 0,01 -B.676:00%:00%0040.002 0 0.002.0040.008.008 0.01 L] P 29, Conversion MC Sample vs Cut Width]
Ad_ (m) Cut Width (m) £ F 2 F
- H H
'Ad, Generic MC Background Sample a9, WC Background Sample vs Cut Width € osf- osf
2 H
g
S04
&
=
0.08f 0sf s
04f
0.06- i v L L L L L L L L b Y L L L L L L L L
03f s d daaa s 'tk ook o3 don s S s a0k oo ‘o nk on
s, (m) “Gut Width (m)
0.04f 02k
3d, Generic MC Sample
0.02f- o1F EF £ 9F s
FTITN B NN TTRNT FT £ ok E
-B070.000:00€0.0046.002 0 0.002.002.0063.008 0.01 -B670.008.008.0040.002 0 0.002.004.008.008 0.01 &0 °
Ad, (m) Cut Width (m) H
of of——
™, Wic Sample | [LEm0con)
Entries 0
2 leal 0 o5 o5
c 1 [RMS 0
2
&
* b v L L L L L L L L b v L L L L L L L L
0,670 006-0.006-0.004-0.002 00002 0004 0005 0.008. 501 0,670 006-0.006-0.004-0.002 0 0.002 0004 0006 0.005- 0.01
osl osl 30, () "Gut Width (m)
[2d, Continuum MC Background Sample,
€
EqF
0.5 0.5 5 osf- osf-
A TN NN TN NN A TN NN NN TN
-0.070.008.0060.0040.002 0 0.0020.0020.0060.008 0.01 -0.070.008.008.0040.002 0 0.0020.0040.008.008 0.01
Ad, (m) Cut Width (m) s o0sf
Ad Precision vs Cut Width [ P T T P T TV VU TR T j P T T P T T P
067 3005'3005 00040002 00,002 6,004 6:008 0,088 001 -0.67-0006-0.006-0.004-0.002 0 0.002 0004 006, 0.006- 3.01
- ‘ad, (m) ‘Cut Width (m)
£
|3 -
f
Y E [ Ad_ Significance vs Cut Wld(h] [ Ad, Precision vs Cut WIdth]
12) 2 209E
5T o §
E H 2osE
1 : :
SE sk orf
0| osf
ol osf
£ 04F
0.4] E 03F
: 0.5
02| E o0zf
oif
Lol b, Ll AN 1k
-B676.008:006.0040.002 0 0.002.002.0080.008 0.01 -B076.008:008:0040.002 0 0.002.0040.008.008 0.01 B e e TR e T TR T T T
Cut Width (m) Cut Width (m) Cut Width (m) “Gu Widh (m)

Figure A.27: Ady, n'n*;n" — n*n™n, pion- Figure A.28: Ady, n'n*;n’ — n*n™n, e-fit
fit 230



Optimization plots for the selection criterion on the A¢, between the e*e™ in
the DY — ny'n*;n — n*n"p;n — yy decay mode. Plots on the left grouped
as Fig. correspond to pion-fitted tracks in the simulated samples. Plots
on the right grouped as Fig. correspond to electron-fitted tracks in the
samples. The top left plots, for both samples, is the distribution of A¢, in
the signal Monte Carlo sample. The top right plot graphs the signal MC
sample accepted by the criterion as we vary the cut on the x-axis. For the
pion-fitted samples on the left, the plots in the second and third rows cor-
respond to the generic and continuum MC samples, respectively. For the
electron-fitted samples on the right, the plots in the second, third and fourth
rows correspond to the D;* — DYy, generic and continuum MC samples,
respectively. For both sets of plots, the bottom left shows the significance of the
signal over background. The bottom right plot shows the precision of the signal.
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Optimization plots for the mp; selection criterion in the D} — K*K n*7” mode.
Plots on the left grouped as Fig. [A31l correspond to pion-fitted tracks in the
simulated samples. Plots on the right grouped as Fig. correspond to
electron-fitted tracks in the samples. The top left plots, for both samples, is
the distribution of mp: in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.31: mp:, K*K n*n", pion-fit Figure A.32: mp:, K*K n*n°, electron-fit
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Optimization plots for the mpc selection criterion in the D} — K*K n*n" decay
mode. Plots on the left grouped as Fig. correspond to pion-fitted tracks
in the simulated samples. Plots on the right grouped as Fig. [A.34 correspond
to electron-fitted tracks in the samples. The top left plots, for both samples, is
the distribution of mgc in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.

'mg Signal Sample]

3
2 K
o3 5 oaf
g g
I S0k
0.25F 2 oaf
oasf-
02 3
ossf-
0.5
oaf
oib oosf
S 3 R L e R X SOEG0T SU0% G b1 00T EATE00TE DOE S
e (GOV) ut Width (GeV)
0.05F
L 1 1 Lo Lot ion M 11 [RWBC_conver | I ‘Width
8972905 217 2115 2.12 2125 218 2135 2.14 0" 51902.00/0080.008 0.010.01.0140.018.0160.02 ";EC Conversion MC Sample B | (e conver Sample vs Cut Widtl
mg (GeV) Cut Width (GeV) E 3 ean 2106 % 22F
Yos 3
< 18F
m,, Generic MC Background my §0.25 16
2 2 B raf
& s 12
u)-‘o.7- E 1E
10F 015
o6 * osf
01 osf
8 E
osf o0s| o4l
ozf
o4F g 2 3 6 ot st s i st e e B e
™, (GoV) (@ev)
osf
W
0.2f g Generic MC Background o WMC Background vs Cut Width
3 w2101
o 2 S0F H
3 (3
Il 1. Il L g
foa 206 208 21 212 214 216 0.0020.0020.00@.008 0.010.0120.014).0180.0180.02 3 L3
sc (GeV) Cut Width (GeV) & osf sE
025
W
02
B3
015
0.1) 2E
0.05| 1
D T X R T 6 ‘G352 G007 0005 006 umaoueuunmsnmn 2
e (o) Ut Width (GV)

§ oz
Soraf-
2o16f-
Zoaaf
oz
o
PG5t 208 - 21 Hi2 244 16 90200 3081005 0.090.072 310701 (3
Mg (GeV) Cut Width (GeV) o6
o0af
oo2f
o076~ T ~ 21—zl z‘w el 90002 G007 365 D006 D51 TOZOTEEROE G2

Mgc Signal Significance vs Cut Width

Y

Loiliil
05" '002.004-000.008 0.070.012.012.016.0180.02 55:0025:004-0060.008 0.070.012.0140.018.03 n n
St Width (GeV) St Vitdth (Gev) 000700043005 0005 55 W”“"”v‘vsumg 5 0000003005 0 006 5510107 eouoo‘}vsdmg foe

Figure A.33: mpc, K*K n*n°, pion-fit Figure A.34: mpc, K*K n*n°, electron-fit
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Optimization plots for the m selection criterion in the D} — K*K n*n® decay
mode. Plots on the left grouped as Fig. correspond to pion-fitted tracks
in the simulated samples. Plots on the right grouped as Fig. correspond
to electron-fitted tracks in the samples. The top left plots, for both samples,
is the distribution of ¢m in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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237



Optimization plots for the selection criterion on the Ad, between the e*e™ in the
D! - K*K n*n° decay mode. Plots on the left grouped as Fig. [A:37 correspond
to pion-fitted tracks in the simulated samples. Plots on the right grouped as
Fig. [A.38 correspond to electron-fitted tracks in the samples. The top left plots,
for both samples, is the distribution of Ad, in the signal Monte Carlo sample.
The top right plot graphs the signal MC sample accepted by the criterion as
we vary the cut on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.37: Ady, K* K n*n°, pion-fit Figure A.38: Ady, K*K n*n°, electron-fit
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Optimization plots for the selection criterion on the A¢, between the e*e™ in the
D! - K*K n*n° decay mode. Plots on the left grouped as Fig. [A:39 correspond
to pion-fitted tracks in the simulated samples. Plots on the right grouped as
Fig. correspond to electron-fitted tracks in the samples. The top left plots,
for both samples, is the distribution of A¢, in the signal Monte Carlo sample.
The top right plot graphs the signal MC sample accepted by the criterion as
we vary the cut on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.39: Ago, K*K n*n®, pion-fit Figure A.40: Agy, K* K n*n°, electron-fit
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Optimization plots for the mp: selection criterion in the D} — n*n~n" mode.
Plots on the left grouped as Fig. [A.41l correspond to pion-fitted tracks in the
simulated samples. Plots on the right grouped as Fig. correspond to
electron-fitted tracks in the samples. The top left plots, for both samples, is
the distribution of mp: in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.41: mp:, n*n~n*, pion-fit Figure A.42: mp:, n*tn~n*, electron-fit
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Optimization plots for the mpc selection criterion in the D} — n*n™n* decay
mode. Plots on the left grouped as Fig. correspond to pion-fitted tracks
in the simulated samples. Plots on the right grouped as Fig. [A.44 correspond
to electron-fitted tracks in the samples. The top left plots, for both samples, is
the distribution of mgc in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.43: mpc, n*n~n*, pion-fit Figure A.44: mpc, n*n~n*, electron-fit
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Optimization plots for the dm selection criterion in the D! — #*n 7" decay
mode. Plots on the left grouped as Fig. correspond to pion-fitted tracks
in the simulated samples. Plots on the right grouped as Fig. correspond
to electron-fitted tracks in the samples. The top left plots, for both samples,
is the distribution of ¢m in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.45: 6m, n*n~n*, pion-fit Figure A.46: 6m, n*n~n*, electron-fit
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Optimization plots for the selection criterion on the Ad, between the e*e™ in the
D! — n*nn* decay mode. Plots on the left grouped as Fig. [A.47 correspond
to pion-fitted tracks in the simulated samples. Plots on the right grouped as
Fig. [A4§ correspond to electron-fitted tracks in the samples. The top left plots,
for both samples, is the distribution of Ad, in the signal Monte Carlo sample.
The top right plot graphs the signal MC sample accepted by the criterion as
we vary the cut on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.

Ad, Signal Sample Ad, Signal Sample vs Cut Width |  [== [3d, Signal Sample [2d, Signal Sample vs Cut Width
e ] -
P oS mus oonoes] £ F——
H s s 2 aof
g S oaf H
disf F s
= So2sf
H 25f
0.2 02fF
o
orsf- £
0.15F A
o E
o1f oosf- sk
G070 5062 5004 0005 0038 301 e 30330070002 6004 000 51008 001
0.0sf- ', (m) Gt Wit (m)
ANTPATIR I NIV N RSN 5, Conversion MC Sampl on W i Width
-B.676700:0060:0040.002 0 0.002.002.0080.008 0,01 -B.676:00%:00%:0040.002 0 0.002.0040.008.008 0.01 o Conversion T Same® 29, Conversion MC Sample vs Cut Width]
Ady (m) Cut Width (m) £ H
S ol Goasf
2
Ad, Generic NIC Background Sample | [-am , WG Backqround Sample vs Cut Vit H o
Ent @008 F
P H
S0.2f oosf- o5
@
a1af-
y oosf- oaf
0.16F
0.14f oozf- oosf-
o6l
012 L L L L L L L I L L L L
L L o g
01f 3, (m) "Cut Width (m)
0.08f 04
0.06f- 34, Generic MG Sample I Car v
E 02f € B
004 Eoosf-
0.02F <
RPN IN N1 R0 N1V Sootf
-B070.008.00€0.0040.002 0 0.002.002.0063.008 0.01 -B670.008.008.0040.002 0 0.002.0020.008.008 0.01 H
4d, (m) Cut Width (m) H
oosf-
Ad; i 9 Sample [ 002
L] [Entri
Py e
g ootf-
@
351 L L L 1 L L L L L L L 1 L L
X 0 0.002 0.004 0.006 0.008 0.01 0. X X X X 0 0.002 0.004 0.006 0.008 0.01
03k "ad, (m) “Cut Width (m)
025f
3d, Confinuum MC Background Sample
53 o
0.15F Sosp
Zo16f
01 Go.1af-
* 012
0.05f-
orf
AT b
-B675.008'00%.0040.002 0 0.002.002.0063.008 0,01 -B67.00%:006:0040:002 0 0.002.0040.008.008 0.01 006
Ad, (m) Cut Width (m) oosf-
oosf-
oozf-
Ad, Significance vs Cut Width Precision vs Cut Width | 3 Lt Ly N TR
B L o R e
Ay "Cut Width (m)
33, Staniicance vs Cut Wiath) 33, Precision vs Cut wiath]
= =
S2sfF H
& @ q.af
2f 12
E
1sf
osf
s sk
oaf
osf
o2
-B076.008:006.0040.002 0 0.002.0020.0060.008 0.01 -B676.008:008:0040.002 0 0.002.0040.008.008 0.01 T e ; T "
Cut Width (m) Cut Width (m) T cut Width (m) A ST cut width (m)

Figure A.47: Ady, n*n~n*, pion-fit Figure A.48: Ady, n*n~n*, electron-fit
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Optimization plots for the selection criterion on the A¢, between the e*e™ in the
D} — n*n~n* decay mode. Plots on the left grouped as Fig. correspond
to pion-fitted tracks in the simulated samples. Plots on the right grouped as
Fig. [A.50 correspond to electron-fitted tracks in the samples. The top left plots,
for both samples, is the distribution of A¢, in the signal Monte Carlo sample.
The top right plot graphs the signal MC sample accepted by the criterion as
we vary the cut on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.49: A¢y, n*n~n*, pion-fit Figure A.50: A¢y, n*n~n*, electron-fit
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Optimization plots for the mp: selection criterion in the D} — K**K** mode.
Plots on the left grouped as Fig. [A.51l correspond to pion-fitted tracks in the
simulated samples. Plots on the right grouped as Fig. correspond to
electron-fitted tracks in the samples. The top left plots, for both samples, is
the distribution of mp: in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.51: mp:, K**K*°, pion-fit Figure A.52: mp:, K**K*°, electron-fit
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Optimization plots for the mpc selection criterion in the D} — K*K* decay
mode. Plots on the left grouped as Fig. correspond to pion-fitted tracks
in the simulated samples. Plots on the right grouped as Fig. correspond
to electron-fitted tracks in the samples. The top left plots, for both samples, is
the distribution of mgc in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.53: mgc, K**K*°, pion-fit Figure A.54: mgc, K** K™, electron-fit
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Optimization plots for the ém selection criterion in the D} — K**K*° decay
mode. Plots on the left grouped as Fig. correspond to pion-fitted tracks
in the simulated samples. Plots on the right grouped as Fig. correspond
to electron-fitted tracks in the samples. The top left plots, for both samples,
is the distribution of ¢m in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.55: 6m, K**K*°, pion-fit Figure A.56: 5m, K**K*°, electron-fit
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Optimization plots for the selection criterion on the Ad, between the e*e™ in the
D! — K**K* decay mode. Plots on the left grouped as Fig. correspond
to pion-fitted tracks in the simulated samples. Plots on the right grouped as
Fig. [A.58 correspond to electron-fitted tracks in the samples. The top left plots,
for both samples, is the distribution of Ad, in the signal Monte Carlo sample.
The top right plot graphs the signal MC sample accepted by the criterion as
we vary the cut on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.57: Ady, K**K*°, pion-fit Figure A.58: Ady, K**K*°, electron-fit
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Optimization plots for the selection criterion on the A¢, between the e*e™ in the
D! — K**K* decay mode. Plots on the left grouped as Fig. correspond
to pion-fitted tracks in the simulated samples. Plots on the right grouped as
Fig. [A.60l correspond to electron-fitted tracks in the samples. The top left plots,
for both samples, is the distribution of A¢, in the signal Monte Carlo sample.
The top right plot graphs the signal MC sample accepted by the criterion as
we vary the cut on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.59: Ago, K** K*°, pion-fit Figure A.60: Ago, K**K*°, electron-fit
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Optimization plots for the mp: selection criterion in the D} — np*;n — yy;p* —
n*n” mode. Plots on the left grouped as Fig. [A6]] correspond to pion-fitted
tracks in the simulated samples. Plots on the right grouped as Fig. [A.62
correspond to electron-fitted tracks in the samples. The top left plots, for both
samples, is the distribution of mp: in the signal Monte Carlo sample. The top
right plot graphs the signal MC sample accepted by the criterion as we increase
the cut width plotted on the x-axis. For the pion-fitted samples on the left, the
plots in the second and third rows correspond to the generic and continuum
MC samples, respectively. For the electron-fitted samples on the right, the plots
in the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.61: mp;, np*, pion-fit Figure A.62: mp;, np*, electron-fit
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Optimization plots for the mpc selection criterion in the D} — np* decay mode.
Plots on the left grouped as Fig. correspond to pion-fitted tracks in the
simulated samples. Plots on the right grouped as Fig. correspond to
electron-fitted tracks in the samples. The top left plots, for both samples, is
the distribution of mgc in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.63: mpc, np*, pion-fit Figure A.64: mpc, np*, electron-fit
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Optimization plots for the ém selection criterion in the D — np* decay mode.
Plots on the left grouped as Fig. correspond to pion-fitted tracks in the
simulated samples. Plots on the right grouped as Fig. correspond to
electron-fitted tracks in the samples. The top left plots, for both samples, is
the distribution of ém in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.

5m Signal Sample 5m Signal Sample vs Cut Width [m Signal Sample [5m Signal Sample vs Cut Width
s g 001077
@ 2 .F 3 fws ooosis| & ws_ososser
H H g osb HE 3
@25 @& H -
H = 6F £ oaf °F
& £
02f E H
5| 03
W
0.15F T ozf- 3F
oF
3 01
01 4
o po el L L NUOTI NSO T IO
$T26125 073 0% o 0ias 015 0155016 '5002'0:004 0:005 0:005 001 01012 0:074 6076 5078 02
0.05F- m (GeV) ‘Cul Width (GeV)
£
TP T e T FPP
$75" 67257073 0.135 0.14 0.145 0.15 0.155 016 00" 5'002:004:0060:008 0.010.0125.012.0180.0180.02
5m (GeV) Cut Width (GeV) 3029
202
= 02
5m Generic MC Background Sample [6m Generic MC Background vs Cut Width i goae)
Enries W Son
2 P ooe| o E
Gask- g ws_o.00i168 o
@ o 15F
=04 * 5 o
008
0.35F- 006
ar 0.04| 05F
03f 0.02]
0.25F- 3k 2 3 % St oo s st e s dd e
m (GeV) Cut Width (GeV)
02f
0.15f 2r -
m Generic MC Background vs Cut Width,
o1f £ 2 4
0.05F @
H
Il 1 L L L 25F
o8~ "o1 o012 0fa 016 018 02 0.0020.009).0060.008 0.010.0120,0140.018.0180.02
m (GeV) Cut Width (GeV) y 2F
015 15F
o1 £
2
£ g
3 oosf- osf
o
* 7| L L L L L L L L L L L L L L
0.08 0.7 012 0.13 016 018 0. 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
s m (GeV) ‘Cul Width (GeV)
5
im MC Background vs Cut Width
4
3 E
) E
1)
Ll
#0101z 01d G016 018 02 0.0020.002).0060.008 0.010.0120.014.0180.01 E
5

5m (GeV) Cut Width (GeV)
Sm Signal Signifi vs Cut Width 3m Signal Precision vs Cut Width n
Lo Sig [om Sig R B e e S B GO O O e
2.4 ” m (GeV) ‘Cut Width (GeV)
€ ]
Saf Sef
= 2f = b [5m Signal Significance vs Cut Width 5m Signal Precision vs Cut Width
1.8F : 235F
E 1.2F 3
1.6 o of
14F e b
1.2F §
osf-
'3 2F
0.8F 0.6 15}
06f 04f E
04f !
0.2 02F osf
00 "6.:0025:005-006-008 0.010.012.010).0160.0160.02 05 5100.00'008:008 0.010.07 01075
.0020.0020.006.008 0.010.012).012.0160.0180. -002.0020.0080.008 0.0%0.0120.012.01.01 ‘Utz 330 008 005 BT 0 T a0 B O3t ‘Ttz dd0r o 0E Tt BT ST AT U Ut S0
Cut Width (GeV) Cut Width (GeV) ut Wit (GeV) ‘it Width (Gov)

Figure A.65: om, np*, pion-fit Figure A.66: 6m, np*, electron-fit
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Optimization plots for the selection criterion on the Ad, between the e*e™ in
the D} — np* decay mode. Plots on the left grouped as Fig. correspond
to pion-fitted tracks in the simulated samples. Plots on the right grouped as
Fig. [A.68 correspond to electron-fitted tracks in the samples. The top left plots,
for both samples, is the distribution of Ad, in the signal Monte Carlo sample.
The top right plot graphs the signal MC sample accepted by the criterion as
we vary the cut on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.67: Ady, np*, pion-fit Figure A.68: Ady, np*, electron-fit
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Optimization plots for the selection criterion on the A¢, between the e*e™ in
the D} — np* decay mode. Plots on the left grouped as Fig. correspond
to pion-fitted tracks in the simulated samples. Plots on the right grouped as
Fig. [A.70 correspond to electron-fitted tracks in the samples. The top left plots,
for both samples, is the distribution of A¢, in the signal Monte Carlo sample.
The top right plot graphs the signal MC sample accepted by the criterion as
we vary the cut on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Optimization plots for the my: selection criterion in the DY — p'z*;n’ — Py
mode. Plots on the left grouped as Fig. [AZI] correspond to pion-fitted tracks
in the simulated samples. Plots on the right grouped as Fig. correspond
to electron-fitted tracks in the samples. The top left plots, for both samples, is
the distribution of mp: in the signal Monte Carlo sample. The top right plot
graphs the signal MC sample accepted by the criterion as we increase the cut
width plotted on the x-axis. For the pion-fitted samples on the left, the plots
in the second and third rows correspond to the generic and continuum MC
samples, respectively. For the electron-fitted samples on the right, the plots in
the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.71: mp:, n'n*; — ply, pion-fit  Figure A.72: mp:, 'n*;10 — ply, e-fit
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Optimization plots for the mpc selection criterion in the DY — p'z*;n’ — Py
decay mode. Plots on the left grouped as Fig. correspond to pion-fitted
tracks in the simulated samples. Plots on the right grouped as Fig. [AZ4
correspond to electron-fitted tracks in the samples. The top left plots, for both
samples, is the distribution of mgc in the signal Monte Carlo sample. The top
right plot graphs the signal MC sample accepted by the criterion as we increase
the cut width plotted on the x-axis. For the pion-fitted samples on the left, the
plots in the second and third rows correspond to the generic and continuum
MC samples, respectively. For the electron-fitted samples on the right, the plots
in the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.73: mpc, n'n*;n’ — p'y, pion-fit  Figure A.74: mpc, n'n*; 7 — ply, e-fit
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Optimization plots for the ém selection criterion in the D! — n'z*;n’ — Py
decay mode. Plots on the left grouped as Fig. correspond to pion-fitted
tracks in the simulated samples. Plots on the right grouped as Fig. [A.76
correspond to electron-fitted tracks in the samples. The top left plots, for both
samples, is the distribution of ém in the signal Monte Carlo sample. The top
right plot graphs the signal MC sample accepted by the criterion as we increase
the cut width plotted on the x-axis. For the pion-fitted samples on the left, the
plots in the second and third rows correspond to the generic and continuum
MC samples, respectively. For the electron-fitted samples on the right, the plots
in the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.75: 6m, 'n*;n — p'y, pion-fit  Figure A.76: 6m, n'n*;n — p'y, e-fit
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Optimization plots for the selection criterion on the Ad, between the e*e™ in
the DY — n'n*;n — p’y decay mode. Plots on the left grouped as Fig. [A77
correspond to pion-fitted tracks in the simulated samples. Plots on the right
grouped as Fig. correspond to electron-fitted tracks in the samples. The
top left plots, for both samples, is the distribution of Ad, in the signal Monte
Carlo sample. The top right plot graphs the signal MC sample accepted by the
criterion as we vary the cut on the x-axis. For the pion-fitted samples on the left,
the plots in the second and third rows correspond to the generic and continuum
MC samples, respectively. For the electron-fitted samples on the right, the plots
in the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.77: Ady, 'n*;n — p'y, pion-fit Figure A.78: Ady, n'n*;n — p°y, e-fit
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Optimization plots for the selection criterion on the A¢, between the e*e™ in
the DY — n'n*;n — p’y decay mode. Plots on the left grouped as Fig.
correspond to pion-fitted tracks in the simulated samples. Plots on the right
grouped as Fig. correspond to electron-fitted tracks in the samples. The
top left plots, for both samples, is the distribution of A¢, in the signal Monte
Carlo sample. The top right plot graphs the signal MC sample accepted by the
criterion as we vary the cut on the x-axis. For the pion-fitted samples on the left,
the plots in the second and third rows correspond to the generic and continuum
MC samples, respectively. For the electron-fitted samples on the right, the plots
in the second, third and fourth rows correspond to the D;* — D}y, generic and
continuum MC samples, respectively. For both sets of plots, the bottom left
shows the significance of the signal over background. The bottom right plot
shows the precision of the signal.
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Figure A.79: Ago, n'n*;’ — ply, pion-fit Figure A.80: Ago, n'n*;1 — ply, e-fit
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