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This dissertation presents four topics dealing with various aspects of gravita-

tion, from theoretical matters to practical issues.

Chapter 2 is about the quasilocal energy, which is a mathematical tool for

defining gravitational energy. We extend previous definitions so that they are

valid within the event horizon of a black hole. We find that the energy at the cen-

ter is finite rather than divergent, indicating that the nonlinearities of General

Relativity cause a sort of renormalization. We explore a number of examples

and point out a problem with some positivity theorems for this type of energy.

Chapter 3 considers the thermodynamics of a charged black hole in a canon-

ical ensemble. We calculate the thermodynamic phase diagram of a black hole

with a fixed temperature and charge that is confined in a cavity. We show that

the phase diagrams possess the same features as an AdS black hole, suggesting

that results such as the AdS/CFT conjecture are at least approximately valid for

the more realistic scenario of a black hole in a cavity.

Chapter 4 is about the measurement of gravitational radiation. Laser in-

terferometeric observatories are now in operation that can in principle detect

some likely astrophysical sources. We study the hyperboloidal family of light

beam shapes that have the potential of reducing the thermal noise and there-

fore increasing the sensitivity to gravitational waves. We show that finite mir-

ror effects are significant and show that small changes in the mirror shape can

substantially decrease the thermal noise, increasing the detection range of such



observatories.

Chapter 5 explores a modified theory of gravity called F(R) gravity which

was proposed to solve the dark energy problem. We consider forms of F(R) that

are intended to mimic standard General Relativity at high densities, but have

low-density behavior that can explain the observed acceleration of the cosmo-

logical expansion. We discuss the chameleon mechanism for suppressing de-

viations from standard GR and show that it requires a fine-tuning to function,

hence generic F(R) models without such fine-tuning are ruled out by Solar Sys-

tem and cosmological observations.
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CHAPTER 1

INTRODUCTION

1.1 Quasilocal Energy

Despite the mathematical elegance of General Relativity, finding and interpret-

ing solutions of the equations can be very difficult. The strong and electroweak

forces are described by gauge fields on spacetime, while GR is a theory of space-

time itself. GR is a very nonlinear theory and general covariance also gives it a

very large gauge group. Finally, the energy of GR cannot be localized due to the

Equivalence Principle.

The main problem in solving GR is that we are solving for the metric of

spacetime itself, so even defining the source is problematic. For instance, in

a binary black hole system the separation between the two black holes is de-

termined from the metric, but the metric is determined by the position of the

black holes. Finding a metric representing a binary system with a given separa-

tion requires an iterative procedure to find a self-consistent solution. Even then,

a different solution method may yield the same metric written in very differ-

ent coordinates, and it is difficult to tell that the two metrics are physically the

same. As we enter the age of numerical relativity we face the problem of find-

ing gauge-independent quantities that can identify a metric’s physical meaning

regardless of the coordinate system in which it is written.

A related problem is the difficulty of interpreting the physical meaning of

a metric in the absence of symmetries. A flat spacetime metric has ten symme-

tries: time translation, three space translations, three rotations, and three boosts.
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These symmetries are expressed as Killing vector fields ξµ obeying Killing’s

equation

£ξgµν = ∇µξν + ∇νξµ = 0 , (1.1)

where £ξ is the Lie derivative along ξ and ∇ is he covariant derivative com-

patible with the metric. A more general metric will have fewer symmetries.

The Schwarzschild metric of a non-spinning black hole has time translation and

three rotational symmetries. As a result, the energy and angular momentum of

a test particle can be unambiguously defined, but there is no clear definition of

linear momentum. The Kerr metric of a rotating black hole only has an axial

rotation symmetry, meaning that only one component of angular momentum

can be defined. A general dynamical spacetime will not possess any symme-

tries of this type, and so it’s not clear what how to define the energy or angular

momentum of a particle, much less that of the gravitational field.

We will be most concerned with the difficulty of localizing gravitational en-

ergy. The root of the problem is the Equivalence Principle, which states that it is

impossible to locally distinguish between a gravitational field or an accelerating

frame. As a consequence, a freely-falling observer experiences no gravitational

effects. To avoid this problem, we consider a quantity defined on a surface that

represents the energy inside that surface. These quantities depend on the metric

on the surface and derivatives of the metric normal to the surface. The particu-

lar form of the quasilocal energy we study was defined by Brown and York [1].

We are specifically interested in the question of what the energy of the gravita-

tional field is at the center of a black hole. The energy of a point particle’s field

may be expected to diverge, but GR is non-linear and there is the complication

of the event horizon.
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Chapter 2 (in collaboration with Bjoern Schmekel and James York) extends

the definition of the quasilocal energy to the interior of an event horizon. The

field energy would be expected to diverge near a point particle, but in the sim-

ple case of a Schwarzchild black hole the quasilocal energy at the center is zero.

Renormalization in quantum field theories is necessary to deal with the infinite

self-energy problem. In GR, the nonlinear nature of the field seems to provide an

effective renormalization. Black holes with a cosmological constant are shown

to have the same feature, with diverging energy at large distances according to

the subtraction procedure that we use. Finally, we show that the charged black

hole has negative but finite energy at the center and argue that this is a physical

effects by considering geodesics that approach the center. Although there is a

positivity theorem [2] that would seem to contradict our result, we argue that

the topological properties of the timelike singularity at the center of a charged

black hole violate the conditions of the theorem. Since other spacetimes, such as

the Kerr spinning black hole, also have a timelike singularity, this is an impor-

tant flaw and it points to a need for improved theorems.

1.2 Black Hole Thermodynamics

In Chapter 3, we consider the thermodynamics of a charged black hole enclosed

in a cavity. The charge in the cavity and the temperature at the walls are fixed,

yielding a canonical ensemble. We derive the phase structure and stability of

black hole equilibrium states. We compare our results to that of other work

which uses asymptotically anti-deSitter boundary conditions to define the ther-

modynamics. The thermodynamic properties have extensive similarities which

suggest that the idea of AdS holography is more dependent on the existence of
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the boundary than on the exact details of asymptotically AdS metrics.

1.3 Gravitational Wave Detection

Gravitational waves are the ripples in spacetime caused by massive moving ob-

jects. Due to the weakness of gravity, they have not yet been detected directly,

but hopefully will be in the next decade or so. This section will discuss the

nature of gravitational waves, some of their sources, and some methods for de-

tecting them. Chapter 4 will then focus on an improvement to the design of one

part of the optical system of LIGO, the Laser Interferometric Gravitational-wave

Observatory.

Gravitational waves are usually explained by analogy to the more famil-

iar electromagnetic (EM) waves. Both propagate in vacuum at the speed of

light, and carry energy, momentum, and angular momentum. Moving electric

charges produce EM waves; any type of energy is a source of gravity and any

movement of energy can be a source of gravitational waves. Moving masses,

particularly astrophysical ones, are the only source we will be interested in.

One difference now becomes apparent, because there are positive and negative

electric charges, and so electromagnetic forces can repel or attract. Gravitation

is universally attractive and the “gravitational” charge therefore only has one

sign.

Electromagnetic waves have only two polarizations; in terms of field the-

ory, the photon is a massless spin-one (vector) boson. EM waves with trans-

verse electric fields are possible, while longitudinal fields (along the direction of

propagation) are forbidden. As a result, the lowest multipole produced by an
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isolated source is a dipole. To produce a monopole EM wave would require a

changing total charge of the source, which due to current conservation does not

happen for an isolated source. In the gravitational wave case, the lowest multi-

pole is a quadrupole. The lack of monopole and dipole waves is a result of mass

and momentum conservation laws, and the fact that gravitational “charge” only

has one sign.

General Relativity is non-linear, but when linearized around flat spacetime

the result is a field theory of a massless spin two boson called the graviton,

which has two polarizations. The action of a gravitational wave on test particles

is similar to the action of a tide on a planet. A wave moving along the z axis will

squeeze particles along the x axis and stretch them along the y axis. Half a cycle

later, it will stretch along the x axis and squeeze along the y. Waves of the other

polarization are rotated 45 degrees, compared to 90 degrees for EM waves.

The strongest gravitational waves will be produced by sources with large

masses and relatively small separations moving near the speed of light. As-

trophysical sources produce the only gravitational waves that can conceivably

be detected. There are several different sources; anything that involves mo-

tions of large amounts of mass may produce a detectable signal. Supernovae

can produce bursts of gravity waves as long as the explosion is substantially

non-spherical. Spinning neutron stars may lose angular momentum through

gravitational radiation. Easier to detect are binary systems of white dwarfs,

neutron stars, or black holes (in any combination). As these systems radiate an-

gular momentum, the objects spiral closer until finally they merge into a single

black hole. While no gravitational waves have been directly detected, the effects

of gravitational wave emission have been measured indirectly. In 1974, Hulse
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and Taylor reported timing observations of a pulsar in a binary that showed an

inspiralling orbit which matched analytical post-Newtonian approximations.

Direct detection requires measurement of the squeezing and stretching of

tess masses caused by a passing gravitational wave. The natural shape of a

gravitational wave antenna is a large L. When one arm of the detector is being

squeezed the other arm is being stretched, and vice versa. Measurement of the

relative length change of the two arms then directly yields the amplitude of the

wave (rather than the much more difficult to measure intensity). The effect of a

gravitational wave is quoted as a fractional strain on the apparatus. For equal-

mass compact objects with mass M and separation d at a distance r from the

detector, the strain h is on the order of

h ∼ G2M2

c4dr
. (1.2)

A typical example [4] is M = 10 MSun, r = 100 Mpc, and a separation of 10 times

the Schwarzschild radius of the objects, which yields a strain of h ∼ 10−21.

LIGO, the Laser Interferometric Gravitational-wave Observatory, has re-

cently been built and has reached its design sensitivity. Each LIGO installation

(there is one in Washington and one in Lousiana) essentially consists of four

test masses, one at each end of two arms that are at a 90 degree angle. The rel-

ative length change of the two arms is monitored and a readout of the strain

directly gives the gravitational wave amplitude. The arms are each four kilo-

meters long, giving a typical displacement of 10−18 m or less than the width of a

nucleus. To circumvent this difficulty, each arm of LIGO is a Fabry-Perot cavity

whose mirrors are the test masses, and the entire device is a Michelson inter-

ferometer. These and other optical tricks allow LIGO to approach the required

displacement sensitivity.

6



The displacement sensitivity is obviously limited by several sources of noise,

each of which is frequency dependent. Seismic and gravitational gradient noise

are dominant at low frequencies, below 50 Hz, and are so severe that this is

effectively the lowest frequency that LIGO can observe. There are two types

of quantum noise associated with the laser light. Shot noise is dominant at

high frequencies, coming from fluctuations in thre number of photons; radia-

tion pressure noise is caused by the same fluctuations but is important at low

frequencies. Finally, there is thermal noise which is caused by thermal fluctua-

tions in the surface of the mirror and is most important at intermediate frequen-

cies between the 50 Hz seismic floor and the effective limit at 1000 Hz set by

shot noise.

Although LIGO reached its design sensitivity, no gravitational wave signals

were detected in more than a year of data. The design sensitivity for Initial LIGO

was not sufficient to detect sources at great distances, but it was mostly meant to

be a proof of concept and design testbed. A minor upgrade is currently under-

way, and in a few years a much more ambitious upgrade called Advanced LIGO

is planned. To decrease shot noise, the laser power is greatly increased, and the

mass of the mirrors is increased to control the radiation pressure noise. Seismic

isolation is improved lowering the seismic floor to 10 Hz. The thermal noise is

now the most important contribution in the intermediate frequency range.

In Chapter 4 (in collaboration with Ruxandra Bondarescu, David Tsang, and

Mihai Bondarescu), we consider an improved mirror design that can reduce

noise in Advanced LIGO. In the current design, the laser beams have a Gaussian

intensity profile which are quite narrow compared to the width of the miror.

The laser light is required to bounce within the Fabry-Perot cavities with very
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low losses, so the beams are narrow in order to avoid losing too much energy

to diffraction. A wider beam would average over more of the mirror surface

and decrease the thermal noise. We study the hyperboloidal family of beams

which are wider than Gaussians with equivalent diffraction loss. We calculate

the thermal noises of this family, and also discover that finite mirror effects are

substantial for the Advanced LIGO design. We demonstrate how finite mirror

effects and the hyperboloidal beams can be taken into account to improve the

mirror design an increase the sensitivity of the Advanced LIGO design.

1.4 Modifications of Gravity

Cosmology has undergone a revolution in the last decade, and we now have

many lines of evidence telling us that most of the universe is unseen. Only

about 4 percent of the energy density of the universe is in the form of galaxies

or gas that we can detect directly from electromagnetic observations (this matter

is called baryonic by cosmologists because baryons make up most of the mass).

Relativistic particles such as photons and neutrinos make up only a negligible

fraction of the energy density. The remaining 96 percent is only known through

its gravitational influence, and is divided into two categories: dark matter and

dark energy. We will see that dark matter is likely composed of exotic but not

unnatural particles. Dark energy may be explained in GR by the addition of a

cosmological constant, but the associated energy scale is unnaturally small and

so this explanation is unsatisfying. In Chapter 5, we will discuss a theory of

modified gravity that presents an alternative explanation of dark energy.

Cold dark matter (CDM) makes up approximately 26 percent of the energy
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density of the universe. It is distinct from normal matter in that it does not inter-

act electromagnetically at all (hence the name “dark” matter), so that it is only

detectable through its gravitational influence. The presence of dark matter was

originally inferred from the motions of galaxies in the Coma cluster [5]. The

virial theorem shows that the velocities of galaxies in the cluster implied at least

an order of magnitude more mass in the cluster than was observed. Further ev-

idence comes from rotation curves of spiral galaxies [6], which give the picture

of a disk of baryonic matter embedded in a larger, spherical, and more massive

halo of dark matter (a particular example is the nearby Triangulum galaxy [7]).

Because the evidence for dark matter comes only from gravitational effects,

it might seem that a modified gravity theory could eliminate the need for dark

matter. In galaxies and clusters, dark matter and baryonic matter have different

spatial structures but tend to share a common center. However, if two clusters

collide, the gas in the clusters will interact and be slowed by ram pressure, while

the dark matter will not be affected, so the two types of matter will be separated

spatially. This is exactly the situation observed in the so-called “Bullet Cluster”

[8]. X-ray observations located the gas in the cluster, while weak lensing maps

the position of mass in the cluster by its bending of light passing through the

cluster. The dark matter is clearly seen to pass through the collision while the

gas stays behind.

The current paradigm is that dark matter is primarily composed of some

massive non-baryonic particle that does not interact electromagnetically and

has a small cross-section for weak interactions. Constraints from Big Bang nu-

cleosynthesis require the particle to be non-baryonic, although some small frac-

tion of the dark matter may simply be baryonic matter that is difficult to detect.
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Structure formation requires that the dark matter must be cold, meaning that

throughout most of the evolution of the universe the dark matter particles must

be moving non-relativistically; this is most easily accomplished by making the

particles massive.

From the relatively well-understood dark matter, we turn our attention to

the more mysterious dark energy which makes up the remaining 70 percent of

the universe. Like dark matter, dark energy does not interact electromagneti-

cally and is only known through its gravitational effects. Also, no structure is

seen; dark energy appears to have a constant density throughout space (and

apparently constant in time), so it only has cosmological effects. The key piece

of evidence for dark energy is the acceleration of the expansion of the universe.

Dark matter, like baryonic matter and radiation, acts to slow the expansion of

the universe, so dark energy must be something different.

To simplify our discussion of cosmology, we will assume that spatial sections

of the universe are flat. This is supported by observations of fluctuations in the

cosmic microwave background and of baryon acoustic oscillations. Zero spatial

curvature is also a prediction of the inflationary model. On scales larger than

100 megapersecs, the universe is approximately homogeneous and isotropic,

and is described by the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric

ds2 = −dt2 + a(t)2
(

dx2 + dy2 + dz2
)

. (1.3)

Here t is the time coordinate and a(t) is called the scale factor. The cosmological

expansion means that a is increasing in time. The Hubble parameter H = ȧ/a,

with an overdot denoting the time derivative, measures the rate of expansion of

the universe. The deceleration parameter

q = − 1

H2
äa (1.4)
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is positive if the expansion is decelerating, which is expected if matter or radia-

tion is the dominant component of the universe.

The Hubble and deceleration parameters are measured by observations [9]

of distant supernovae of type Ia. Measurement of spectral lines in a supernova

yields the redshift of the object, which corresponds to a via a = λreceived/λemitted.

Type Ia supernovae are also standard candles, meaning that their luminosities

can be calibrated. In an expanding universe, the flux from a distant supernova

does not fall off exactly with 1/r2 but instead an integral of H between the su-

pernova and the observer is involved. Hundreds of supernovae have been mea-

sured and the deceleration parameter is negative.

Let us see now how to accomodate this result in standard GR using a cos-

mological constant. Substitution of the FLRW metric into Einstein’s equation

gives equations for the Hubble and deceleration parameters; later, our modified

theory of gravity will alter these equations. The right hand side of Einstein’s

equation is the stress-energy tensor, which will have contributions from matter,

radiation, and the cosmological constant. We can model each of these compo-

nents as a fluid with density ρi and pressure pi; the total density and pressure

are given by ρ =
∑

ρi and p =
∑

pi. The scale factor evolves according to:

H2(t) =
8πG

3
ρ (1.5)

ä

a
= −4πG

3
(ρ+ 3p) . (1.6)

The flatness of the metric is assumed in deriving Eq. (1.5). The time evolution of

the pressure and density can be simplified by assuming that the pressure of each

component is related to the density by pi = wiρi and using energy conservation.

Then the density depends on the scale factor as

ρi = ρi,0a
−3(1+wi) . (1.7)
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Matter on cosmological scales can be modelled as pressureless dust and so it

has w = 0; the density is proportional to a−3 because the volume of the universe

increases while the number of particles stays constant. Radiation has w = 1/3

and ρ ∝ a−4. From Eq. (1.6), we see that any substance with w < −1/3 can cause

accelerated expansion.

A cosmological constant can be included as a fluid whose density does not

change with scale factor, so it has w = −1. This can clearly cause accelerated

expansion. We now use cosmological measurements to determine the value of

the cosmological constant. The most important measurement is the value of

the Hubble parameter today, which is denoted H0. The value we will use is

H0 = 72km/s /Mpc or in SI units, H0 = 2.3 × 10−18 sec−1. The current density of

the universe is ρ0 = 3H2
0/8πG = 9.7 × 10−27 kg/m3.

The natural value of the cosmological constant coming from quantum field

theory arguments is about 60 orders of magnitude above the value that is actu-

ally measured. It would require a tremendous amount of fine-tuning to produce

the actual value that we measure. An alternative explanation for the cosmic ac-

celeration would be a modified theory of gravity. Because only cosmological

observations probe gravity at very low curvatures, there could be some new

dynamics not predicted by GR. This theory is interesting because it is an in-

frared (low energy) modification rather than the UV corrections that appear in

quantum field theories.

Chapter 5 (in collaboration with Eanna Flanagan) explores F(R) theories of

gravity as a solution to the dark energy problem. The chameleon mechanism

that allows the theories to mimic GR at high curvatures is described. We argue

that the chameleon effect must apply at scales at least as large as the galaxy,
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while at the larger cosmological scales the F(R) modifications are evident. We

apply this constraint to several models that contain adjustable parameters, and

find the values of the parameters. The conclusion is that these parameters must

be fine-tuned for most models, and models without fine-tuning are contrived

and are perhaps unlikely to be derivable from any fundamental physics. While

the F(R) theories cannot be ruled out on this basis, they do not provide a natural

solution to the dark energy problem.
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CHAPTER 2

SELF-RENORMALIZATION OF THE CLASSICAL QUASILOCAL

ENERGY

Originally published as A. Lundgren, B. Schmekel, and J. York, Phys. Rev. D 75,

080426 (2007). Copyright 2007 by the American Physical Society.

2.1 Introduction

It is a fundamental fact of general relativity (GR) that there is no such concept

as the local energy of the gravitational field. The local effects of gravity can be

removed by transforming to a freely falling frame. A neutral object at the origin

of a freely falling frame will not experience any gravitational acceleration. Tidal

forces will remain, but they only act on particles that are separated by some

distance. Since gravity has no local effect, there exists no local energy.

Various definitions of local energy densities can be made by making refer-

ence to special coordinate systems or background metrics. Heuristically, if we

have an observer that we consider static we could use its acceleration as a mea-

sure of the local gravity. More sophisticated approaches yield a variety of quan-

tities that are useful for certain applications. The structure of GR is such that

local quantities representing an energy do not exist, therefore any attempt to

define them must use use concepts that are not a natural part of the theory, i.e.,

a special coordinate system. Studying the asymptotic behavior of the metric, as

done in post-Newtonian approximations, or the behavior of the metric at spatial

or null infinity [11, 12, 13, 10] leads to more useful and natural formulas for the
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energy. From these ideas, we are led to the idea of finding the energy inside a

given finite region rather than the energy at a point.

Quasilocal energy (QLE) is the energy inside a two-dimensional surface. The

surface could be a sphere enclosing a star or a black hole, a small box enclosing

some matter undergoing cosmological expansion, or a complicated, even dis-

connected, surface in the spacetime. In this paper, we follow the method of

Brown and York [1, 14] which derives an energy from a Hamilton-Jacobi argu-

ment involving the canonical action. This QLE has many useful properties. For

example, it agrees with the Newtonian limit for a spherical star, is applicable in

thermodynamic problems [16, 15], and the asymptotic limit at Euclidean infin-

ity is the ADM expression for energy. Furthermore, it can be directly obtained

from the Hamiltonian of the same action principle (footnote 14 of [15]) without

the need for any other geometric structures. There are many formulas for other

quasilocal energies [17] (and many references given therein), derived using dif-

ferent methods and often having different properties.

We can define the quasilocal energy of the electric field in classical physics

for comparison. The electric field of a point charge falls off with 1/r2, and the

energy density equals the field strength squared. We have for the energy inside

a surface of radius R

E(R) ∝
∫ R

0

(

1

r2

)2

r2dr (2.1)

which diverges because the charge is pointlike. This problem remains in

quantum electrodynamics and requires renormalization, where another infinite

quantity is subtracted to leave a finite remainder.

In GR, the situation is somewhat different because objects of a given mass

cannot have an arbitrarily small size. Once they become too small, they col-
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lapse to form a black hole and an event horizon forms. The resulting object is

effectively the size of the event horizon, and outside observers are shielded from

the infinities at the center. The QLE for a Schwarzschild black hole of mass M

has the large distance limit

E(R) = R

(

1 −
√

1 − 2M

R

)

≈M +
M2

2R
. (2.2)

The QLE becomes undefined atR ≤ 2M , the radius of the event horizon. The

large distance limit suggests that the energy will diverge at the center, although

we are protected from seeing this behavior by the event horizon. However,

this is still something of a problem because an observer can fall in through the

horizon in finite proper time and survive to see the interior of the black hole.

It may be useful to have a definition of energy for observers inside the event

horizon.

A major issue that arises when defining QLE is which observers to use. We

can imagine that the boundary is made of a fleet of observers, whose four-

velocities we are free to choose. Energy is not an invariant, so boosting the

velocities of the observers will change the energy that they measure. The ob-

servers that are stationary with respect to the boundary, i.e., their four-velocity

is perpendicular to the normal, seem to be the most natural choice. We will show

explicitly how this prescription leads to a QLE that does not depend on the time

slicing. While there are other possible prescriptions, we prefer this one because

it can be defined in terms of quantities on the boundary, and it has properties

that are desirable from a physical perspective.

The boundaries that we use in this paper are spheres concentric with the

black hole. The QLE will be a function of the size of the sphere. We express this

quasilocally, in terms of quantities defined on the boundary, using the area of
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the sphere. When we refer to the “radius”, we mean the quantity r for which

4πr2 is the area of the spherical boundary. We do not use the proper distance

to the center of the coordinates because this depends on the time slice. In the

metrics that we study, when the boundary is inside a horizon then the QLE is

more than r in natural units. For instance, in the Schwarzschild metric the QLE

for a boundary exactly on the horizon is 2M .

The derivation in [1] involved the boundary term of the Hilbert action. In

this paper, we write the action for a general spherically-symmetric and static

metric and show how the QLE formula can be modified so that the boundary

term is treated correctly in either case. Surprisingly, when not coupled to other

fields, the energy of the singularity at the center of a black hole is zero. The

energy climbs toward a maximum value at a radius inside the horizon, and at

the horizon has an infinite downward slope. The charged black hole has a finite

but negative energy at the singularity.

2.2 The Brown-York Quasilocal Energy

We now review the quasilocal energy defined in [1]. The basic idea is to use

the Hamilton-Jacobi method in classical mechanics of expressing the energy as

a variation of the action with respect to the endpoints. The generalization to

curved spacetimes results in the following definition

E =
1

κ

∫

B

d2x
√
σ (k − k0) (2.3)

where σµν is the induced metric on the boundary

σµν = gµν + uµuν − nµnν (2.4)
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and σ is its determinant. In the last equation uµ is a future pointing timelike

unit normal for the spacelike hypersurface Σ whereas nµ is an outward pointing

spacelike normal to the boundary 3B which is also normal to B if u · n = 0

which is assumed in this definition. The constant κ = 8πG is just a constant of

proportionality, and in natural units is just 8π.

The k in the above equation is the trace of the extrinsic curvature of the two-

boundary’s embedding into the spacelike hypersurface Σ. The k0 term is the

energy of the vacuum, which must be subtracted to obtain the physical energy.

In our case, we take flat space as the vacuum so that k0 is the trace of the extrinsic

curvature for the same two-boundary embedded in flat space. It is natural to

add such a term because otherwise the intrinsic geometry of the surface would

contribute to the energy, even with no gravitational energy present.

E(R) has been computed already in [1] for 4 dimensional spherically sym-

metric objects outside the event horizon. The metric of the spacelike slice can be

written as

ds2 = f(r)−2dr2 + r2dΩ2 (2.5)

and the unit normal to constant r surfaces is

nµ = (0, f(r), 0, 0). (2.6)

The extrinsic curvature of the two-boundary is

kµν = −σα
µ∇αnν ; k = −σα

µ∇αn
µ (2.7)

where the above covariant derivative is taken in the spacelike slice, and σ is

serving as a projection operator; it can be found from

σµν = hµν − nµnν (2.8)
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σν
µ = hνρσρµ = δν

µ − nµn
ν (2.9)

where hµν is the metric of the spacelike slice (2.5). The only connection coeffi-

cients that we need are

Γθ
rθ = Γφ

rφ =
1

r
. (2.10)

and we obtain

k = −2
f(r)

r
. (2.11)

The reference term k0 comes from setting f(r) = 1 so that we are embedding the

sphere in flat space. For a spherical star with energy density ρ(r), we have [18]

f(r) =
√

1 − 2m(r)/r (2.12)

m(r) = 4π

∫ r

0

r′2dr′ρ(r′) (2.13)

or for a black hole we simply have m(r) = M and f(r) =
√

1 − 2M/r. With

√
σ = r2 sin θ , (2.14)

the QLE becomes

E(R) = R

[

1 −
(

1 − 2m(R)

R

)1/2
]

(2.15)

as long as r is a spacelike coordinate.

Specializing to the Schwarzschild case where m(r) = M , there is a horizon

at r = 2M . Inside the horizon the r coordinate becomes timelike as revealed by

inspecting (2.5). It is not clear what normal to use once this happens. We will

try one particular choice, investigate the properties of the resulting QLE, then

justify our choice in the next two sections by investigating the behavior of the

action on the boundary. Our guess for the correct normal to use is

nµ = (0,−(2M/r − 1)1/2, 0, 0) (2.16)
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and the resulting QLE is

E(R) = R

[

1 +

(

2M

R
− 1

)1/2
]

(2.17)

inside the horizon. The QLE of the entire Schwarzschild metric is plotted in

Fig. (2.1) and shows three striking features.

First, the quasilocal energy at the singularity is zero. In Newtonian grav-

ity, the energy of the gravitational field would diverge at the center for a point

particle. So the nonlinearity of general relativity has removed this infinity, and

gives us a picture where the singularity is not the most important feature of the

black hole. We expected that the mass seen at infinity would reflect the mass of

the singularity, but this seems not to be the case. The black hole looks like an

extended object when we consider the second feature, that the QLE attains its

maximum inside the horizon at a radius of 1 +
√

2
2
M . Most of the energy of the

black hole seems to be “stored” just inside the horizon.

The third striking fact is that the derivative of the QLE matches across the

horizon, but is infinite there. This is not simply a coordinate effect, because the

r coordinate is measuring a real physical quantity (the area of the sphere). The

energy should be continuous on physical grounds, but the derivative might not

be. In fact, if we had chosen the opposite sign of the normal, there would be a

cusp in the QLE at the horizon. We will show that this is the correct choice in

the next section.

We note in passing that in three-dimensional spacetime the QLE is constant

everywhere, so these features would be missing. In 2 + 1 spacetime, there is

no horizon and the metric only possesses a conical defect at the center. This is
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because the Schwarzschild metric in n dimensions is

ds2 = −
(

1 − 2m

rn−3

)

dt2 +

(

1 − 2m

rn−3

)−1

dr2 + r2dΩ2 (2.18)

In three dimensions with dΩ2 = dθ2 and
√
σ = r the QLE is constant every-

where.

1 2 3 4
r

0.5

1

1.5

2

EHrL

Figure 2.1: QLE computed inside and outside the event horizon for a
Schwarzschild black hole. Both axes are in units of the mass
M, and the horizon is at 2M.

2.3 Relationship between action and QLE

The above calculation is not convincing because it is not clear that we have cho-

sen the correct unit normal. A different choice would change the sign and give

a much different result. To fix this ambiguity, we will go back to the deriva-

tion of QLE from the action. The extrinsic curvature formula for the QLE arises
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from the boundary term in the action. From the behavior of this term inside and

outside the horizon, we can determine how to modify the QLE.

We begin by considering a region of spacetime M . The spacetime is foliated

by spacelike hypersurfaces Σ, which can play the role of moments of time. The

region of spacetime will be bounded by hypersurfaces that we will simply refer

to as t1 and t2. Each Σ has a spatial boundary B, which in this paper will always

have the intrinsic geometry of a sphere. The time history of the boundaries B

will be called the three-boundary 3B.

The three-boundary 3B is the important boundary for the derivation of the

quasilocal energy. In Brown and York’s derivation, this boundary must be per-

pendicular to the time slices Σ. Besides simplifying the calculation, this is also

an important physical point: the observers whose velocities are normal to the

time slice are the observers that will measure the QLE. These observers should

be at rest with respect to the boundary, and therefore the time slices should

be perpendicular to the boundary. If they are not, then the observers will be

boosted, and it is to be expected that they will measure a different value for the

QLE. In this paper, we will relax the condition slightly but measure the same

energy.

To make clear how the boundary term gives rise to the QLE, we will restrict

our attention to only a simple class of metrics. Spherical symmetry is imposed

so that we can easily embed a sphere with a given surface area in the four-

dimensional metric. The metrics we study are static, by which we mean that

they do not depend on the time coordinate, so the only nonzero derivatives

are radial. Although the time coordinate becomes spacelike inside the horizon,

for convenience we will call the entire metric static. While we would like to
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generalize this derivation at a later date, this restricted version gives several

interesting results and has the benefit of being easily understood.

A convenient form of the general spherically symmetric and static metric is

ds2 = −εN(r)2dt2 + εf(r)−2dr2 + r2(dθ2 + sin(θ)2dφ2) (2.19)

where ε is either 1 or −1. When ε = 1, gtt is negative and t is a timelike coor-

dinate. At a horizon, gtt and grr exchange signs and so ε = −1. N and f will

be chosen to always be positive. This particular form of the metric is intended

to make clear how the boundary terms behave at a horizon. The metric com-

ponents gtt = −εN2 and grr = εf−2 are the usual expressions of Schwarzschild,

Reissner-Nordstrom, etc. in static coordinates.

To investigate the properties of the action, we will impose boundary condi-

tions at some fixed r. The boundary term that we add is the one suitable to fix

the induced metric on the three-boundary 3B. The induced metric in this simple

case is

γijdx
idxj = −εN(r)2dt2 + r2(dθ2 + sin(θ)2dφ2). (2.20)

The action, with a boundary term added to fix the metric on the boundary,

is

S =
1

2κ

∫

M

d4x
√
−gR− ε

κ

∫

∂M

d3x
√

|γ|Θ (2.21)

where the extrinsic curvature is

Θij = −1

2
£nγij (2.22)

and the trace Θ simplifies to

Θ = γijΘij = − f
√

|γ|
∂r(
√

|γ|) . (2.23)
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The bulk term for the action using this ansatz for the metric is

Sbulk =
1

κ

∫

d4x sin θ (2.24)

×
[

N/f − ε(Nf + 2rNf ′ + 2rfN ′ + r2f ′N ′ + r2fN ′′)
]

where primes denote r derivatives. The boundary term is

SBT = − ε

κ

∫

d3x sin θ(−f(Nr2)′). (2.25)

The boundary term can be converted into an integral over all 4 dimensions

by also fixing the metric at r = 0 and integrating the derivative of the boundary

term.

SBT =

∫

d3x(BT ) =

∫

d3xdr(BT )′ +

∫

d3x(BT )

∣

∣

∣

∣

r=0

. (2.26)

Adding the two terms shows that in this case, the action has a very simple

form.

S =
1

κ

∫

d4x sin(θ)

[

(
1

f
+ εf)N + (2εrf)N ′

]

. (2.27)

We have dropped the constant that comes from the second term in (2.26), be-

cause it will not affect the final result. Varying N yields

(2εrf)′ =

(

1

f
+ εf

)

, (2.28)

and substituting back into the action shows that the action is an integral of a

total derivative. Also doing the angular integrations (trivial because of spherical

symmetry) gives

S =
8π

κ

∫

(Ndt)(εrf) . (2.29)

Following [1], we define the quasilocal energy as minus the second term in

parentheses, so

E(r) = −(εrf) . (2.30)
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The values for the Schwarzschild metric are

n(r) = f(r) =
√

ε(1 − 2M/r). (2.31)

We also need to subtract the energy of flat space, which does not depend on ε;

we are embedding a sphere in flat space where there is no horizon. The subtrac-

tion term just has k0 = −2
r
. This will be the subtraction term used in the entire

paper. The result for the QLE for any metric of the form considered is

E(r) = r(1 − εf(r)) (2.32)

which reproduces the result in the previous section.

2.4 Coordinate Independence

We can relax the restriction on the form of the metric slightly, and consider

what happens when the time coordinate is given an r dependence. The Brown-

York derivation requires that the t and r coordinates be perpendicular at the

boundary, a condition which is violated by this transformation. More general

derivations of the QLE have been considered [19, 20, 21] where this condition is

eliminated. We will not consider this issue in depth, but simply use the trans-

formation to show that our version of the QLE is not coordinate dependent, for

coordinate transformations of this type.

If we make the transformation t = t(T, r), then we can write dt = tTdT+trdr,

where subscripts denote derivatives. The metric becomes

ds2 = −εN2(tTdT + trdr)
2 + εf−2dr + r2dΩ2 (2.33)

= −ε(tTN)2

(

dT +
tr
tT
dr

)2

+ εf−2dr + r2dΩ2
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written in a 3+1 form where the foliations are hypersurfaces of constant r, which

is appropriate for finding the induced metric on the three-boundary. Two good

examples of this form are the Eddington-Finkelstein and Painlevé-Gullstrand

coordinates. The action becomes

S =
8π

κ

∫

Γ

(NtTdT +Ntrdr)(εrf) . (2.34)

The integral is taken over a contour Γ which holds r fixed, so the final result

is that the proper time Ndt has been transformed to NtTdT , the proper time

written in the new coordinates. The QLE, −εrf , is not changed. We will not

relate this quantity to the extrinsic curvature because it is not necessary to our

point here.

As an example, consider a transformation t(T, r) = T − r∗(r) where r∗ is the

tortoise coordinate defined by

dr∗(r)

dr
=

ε

Nf
. (2.35)

This puts the metric into the form

ds2 = −εN2dT 2 + 2
N

f
dTdr + r2dΩ2 . (2.36)

The appearance of ε in the tortoise coordinate may seem odd, but it reproduces

the standard definition since N and f are always positive. In the case of the

Schwarzschild metric, the result of this transformation is ingoing Eddington-

Finkelstein coordinates [18] where T is the null coordinate. The hypersurfaces

T = constant are quite different from t = constant, but as shown above the QLE

does not change. The choice we have made for the observers does not depend

on the hypersurface.

The definition of the QLE is made of simple components. We embed a three-

boundary in the space in such a way that at some moment of time, it has the
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intrinsic geometry of a sphere with a specified area. The geometry of the sphere

does not change when moving along the time coordinate of the three-boundary.

The QLE is the change in the action with proper time, both of which are in-

variants. The invariance of the result under this particular type of coordinate

change is therefore not surprising.

2.5 deSitter Space and Black Holes

The details of the derivation are not changed if a cosmological constant is added.

The term added to the action is

SCC =

∫

d4x
√
−g(−2Λ) (2.37)

which is proportional to N . When the equation of motion obtained by varying

N is substituted back into the action, the same result as before is obtained but

now f(r) is different.

The metric is

N(r) = f(r) =

√

ε

(

1 − Λr2

3

)

. (2.38)

There is a cosmological horizon at r =
√

3
Λ

. As expected, the energy continually

grows with increasing r. The horizon forms when the energy inside the surface

grows larger than

E(R) =
c4

G
R. (2.39)

This is the usual Schwarzschild radius expressed in a different form.

The deSitter-Schwarzschild solution has both a black hole horizon and a cos-

mological horizon. The black hole has a large amount of QLE inside a certain ra-

dius, but outside this radius the gravitational binding energy provides enough
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Figure 2.2: QLE of deSitter space (positive cosmological constant). Both
axes are in the same units, with a mass scale proportional to

1/
√

Λ.

shielding to bring the energy below c4R/G. The inner horizon forms at this ra-

dius. As one gets farther away, the cosmological constant begins to contribute

noticeably. The cosmological horizon forms where the energy has once again

climbed above the necessary value.

2.6 Reissner-Nordstrom

The Reissner-Nordstrom metric for a charged black hole behaves quite differ-

ently at the center from the uncharged case. The form of N and f is now

N(r) = f(r) =

(

1 − 2M

r
+
e2

r2

)1/2

(2.40)

where e is the charge of the black hole in natural units. There are now two

horizons at r± = M ±
√
M2 − e2. The outer horizon is the same type as the
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Figure 2.3: QLE of deSitter-Schwarzschild, a black hole in a spacetime
with positive cosmological constant. The units are the same
as the plot of the deSitter QLE, and the black hole has an unre-
alistically large mass so that details can be seen in the plot.

Schwarzschild horizon. The inner horizon exchanges the signature of the t and

r coordinates again, such that t is a timelike direction. The consequence is that

the singularity is now avoidable. The inward radial direction is spacelike and

not timelike, and so particles are not inexorably drawn into the singularity.

Adding a new field into the theory will not change the definition of the QLE.

The QLE only measures the gravitational energy, and so only the gravitational

action is important. Of course, the addition of a new field changes the metric.

One of the most important characteristics of the gravitational energy is univer-

sality. All mass-energy contributes to gravity, and so the QLE measures the en-

ergy of everything inside the surface (including the contributions purely from

gravity).
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The striking feature of this case is that the energy becomes negative within a

certain radius. The QLE in either region where the time coordinate is timelike is

E(R) = R

(

1 −
√

1 − 2M

R
+
e2

R2

)

(2.41)

and so the energy becomes negative for R < e2/2M . This is always inside the

inner horizon. The energy at the singularity is E(0) = −|e|. The singularity has

the electric field of a point charge, and so using just classical electromagnetism,

the energy should diverge for small radius. However, the gravitational binding

energy is negative, and while the cancellation is not perfect it seems that the

binding energy at least makes the energy at the center finite.

The geodesics of massive neutral particles in the spacetime offer a probe

of the effects of negative gravitational energy. The radial geodesics obey the

equation

ṙ2 + V (r) = p2
0 − 1 ; V (r) = (e2 − 2Mr)/r2 (2.42)

where p0 is the conserved energy per unit mass of the particle, and ṙ is the

proper time derivative of r. A particle that starts from r = ∞ with zero ve-

locity will not reach the center, but turn around at r = e2/2M . Particles with

higher energies will penetrate farther toward the center, but massive particles

of all energies are repelled. This result is well known [22]. The turnaround ra-

dius agrees with the radius where the quasilocal energy becomes negative, so it

seems that the two effects are very likely connected. Negative energy densities

are expected to possess repulsive gravitational fields, and negative gravitational

energy itself should be no exception.

Negative quasilocal energy has been ruled out by positivity theorems [2]

which should apply in this case because the spacetime is static and the time co-

ordinate timelike at the radius we are interested in. The energy condition which
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is assumed for the theorem holds true throughout the Reissner-Nordstrom

spacetime. However, the spacelike slice is assumed to be compact within the

boundary where the QLE is defined. We conjecture that this is the condition

that breaks down and causes the QLE to become negative.
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Figure 2.4: QLE of a Reissner-Nordstrom charged black hole. Both axes are
in units of mass of the black hole, and the charge e2 = 0.8M2

2.7 Conclusion

We have shown that there is a sensible way to extend the definition of the

quasilocal energy to surfaces inside an event horizon. The Schwarzschild singu-

larity has zero energy, and the energy of the black hole mostly resides in a region

just inside the horizon. The addition of a positive cosmological constant does

not change these features but adds a cosmological horizon. In these cases, when

the energy inside a given radius is less than r (in natural units), the space and
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time coordinates play their usual roles. When the energy exceeds this quantity,

a horizon forms and space and time switch roles. The derivative of the energy

with respect to r at a horizon always seems to be infinite. These two features

make it easy to locate the horizons on a plot of the QLE.

In a Reissner-Nordstrom black hole, the singularity at the center behaves like

a point charge, and so there should be a divergence from the positive electric

field energy. However, the contribution from the gravitational binding energy is

negative and apparently cancels the divergence, rendering a finite energy at the

singularity. The QLE is negative inside the radius e2/2M , which is always inside

the inner horizon of the Reissner-Nordstrom metric. A massive neutral particle

released from rest at infinity will fall to the radius where the energy becomes

negative, then reverse direction and be repelled. This provides the justification

for the QLE’s negativity, which is also related to the effect that clocks inside this

radius run faster than those at asymptotic infinity.

In this paper, we have used a specific preferred set of observers to define the

quasilocal energy. A direction for future research is to remove this restriction as

in other work [19, 21, 20, 2] to define a more invariant quantity. We would like

to extend this work to non-spherical boundaries and more general spacetimes.

Two of interest are the spinning black hole metric and the metric for a star col-

lapsing to form a black hole. There may also be applications to semiclassical

and quantum gravity. Also, the issue of under what conditions the quasilocal

energy is negative and what this means physically requires careful attention.
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CHAPTER 3

CHARGED BLACK HOLE IN A CANONICAL ENSEMBLE

Originally published as A. Lundgren, Phys. Rev. D 77, 042003 (2008). Copyright

2008 by the American Physical Society.

3.1 Introduction

A black hole in asymptotically flat space is thermodynamically unstable when

the temperature at infinity is fixed. To solve this problem we can place the black

hole inside a finite spherical cavity. The temperature is fixed at the surface of

the cavity, which could be physically realized by placing a heat bath around the

cavity. The black hole can now be thermodynamically stable, which is partly

due to the fact that the horizon of the black hole can be near the point where the

temperature is fixed. In this paper we are specifically interested in the thermo-

dynamic ensemble where the cavity also contains a fixed amount of charge; this

is an example of a canonical ensemble. The grand canonical ensemble, where

the electric potential is fixed rather than the charge, was considered in [15], and

we will use many of the methods developed there.

Many papers use the alternate method [23] of adding a negative cosmolog-

ical constant to put the black hole in anti-de Sitter (AdS) space. The properties

of AdS space stabilize the black hole by acting as a reflecting box. There has

been much interest in the thermodynamics of anti-de Sitter space because of the

conjectured AdS holography [24, 25, 26]. It appears that there is a duality be-

tween the thermodynamics of an AdS black hole and a field theory in one fewer

33



dimension. It is not clear whether the duality is a result specifically of the prop-

erties of anti-de Sitter space, or whether it is simply a result of the confinement

provided by the reflecting walls.

We are therefore motivated to compare the results of our analysis with the

results obtained using the AdS method, in particular the work by Chamblin

et.al. [27, 28]. They compared the AdS charged black hole with the liquid-gas

transition in classical thermodynamics, and demonstrated that the influence of

the conserved electric charge yields a distinctive phase structure. This paper

shows that the same phase structure exists when the black hole is in a finite

box with no cosmological constant, which is a strong suggestion that the AdS

holography is a result of confinement rather than the properties of AdS space.

As we were finishing this paper, we discovered a paper by Carlip and Vaidya

[29] with the same motivation. That work focused on the critical exponent of

the second-order phase transition; we will focus more on the detailed phase

structure.

The cavity we are considering has surface area 4πr2
B and temperature T . The

simplest case is when the charge inside the cavity is fixed to be zero. Then

there is a minimum temperature kT = 3
√

3~

8πrB

below which no black hole can be

in equilibrium inside the cavity. Above this temperature, there are two states

of the black hole that are possible. The larger one is quite close in size to the

cavity; the cavity is within the 3M photon orbit of the black hole, where 2M is

the Schwarzschild radius. This state is locally but not globally stable, and given

enough time it will tunnel to the state with only radiation inside the cavity. The

other state which is possible at the same temperature is a smaller, unstable black

hole which corresponds to a maximum of the free energy. Therefore, it also sets
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the height of the barrier that prevents tunneling to the state with only radiation

and no black hole (hot flat space).

Above kT = 27~

32πrB

, the larger radius solution becomes globally stable, and

now hot flat space can “decay” to form a black hole. There is a still an unstable

state of smaller radius that controls the height of the barrier between the stable

states. As the temperature rises, the height of the barrier decreases, and the

radius of the unstable black hole shrinks. At the same time, the size of the stable

black hole solution is increasing until at infinite temperature it merges with the

surface of the cavity.

In the canonical ensemble the charge of the black hole is fixed and the only

variable allowed to fluctuate is the radius of the horizon. With zero charge,

there were no equilibrium states other than flat space at low temperature, but

there were two black hole states in addition to flat space at higher temperature.

The structure becomes more complicated for non-zero charge. For charges less

than (
√

5−2)rB in natural units, there is a range of temperatures for which there

are three possible black hole states. The largest and smallest are locally stable,

and the one between must be unstable. For values of the temperature outside

the range, or for any temperature when the charge is above the critical value,

there is only one solution, which is always at least locally stable. One special

case is when the temperature is very low, and so the black hole should have a

very small radius. The danger is that the inner and outer horizons can merge,

and yield an extremal black hole or a naked singularity (the extremal case is the

dividing line between having a horizon or not). For any finite temperature, this

does not happen, and the horizons are always separated.

We will begin by discussing the physical situation we are considering and
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the boundary conditions necessary to implement the canonical ensemble. Then

we derive the action and use it to find the possible equilibria given a certain

temperature and charge. The uncharged and grand canonical ensembles are

reviewed before looking in detail at the canonical ensemble. We find the num-

ber and stability of equilibria over the entire temperature - charge phase space,

and compare to the AdS result. Some slices of the free energy function are dis-

played which are identical in structure to those of the AdS result. We end with

a discussion of the meaning of these similarities and some directions for future

research.

3.2 The Geometry and Action

We start with the usual form of the static spherically symmetric spacetime. The

only free functions are b and α, which are both functions only of r. We analyti-

cally continue the time coordinate by defining τ = it to give a positive-definite

metric. The metric takes the form

ds2 = b2dτ 2 + α2dr2 + r2(dθ2 + sin2 θ dφ2) (3.1)

which is the same as in [15], except simplified slightly. Derivatives with respect

to r will be denoted by primes. Throughout this paper, we will refer to a value

of r as the radius, although the physical meaning of r is not the distance to the

origin but instead gives the area of a sphere concentric with the origin. This is a

quantity that can be measured without leaving the sphere, and is not dependent

on the function α. Also we use natural units k = c = G = ~ = 1
4πε0

= 1, where

mass, charge, and inverse temperature have units of distance.

The “Euclideanized” metric forces the τ coordinate to be periodic because
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b(r) shrinks to zero at the horizon and the t− r plane behaves like the center of

a disk there. The periodic imaginary time coordinate thermalizes the space (see

[30, 31] for details). For convenience, we choose the period of τ to be 2π. In the

Euclideanized action, inverse temperature at some radius is the period in the τ

direction. The inverse temperature at a radius r is 2πb(r), which depends on r

as a result of the gravitational redshift.

We define the thermodynamic ensemble by fixing the temperature at the

outer boundary, and also fixing the electric field which serves to fix the charge

inside. The coordinate position of the boundary will be r = rB and the area is

4πr2
B. The outer boundary is the full three-dimensional metric on the hypersur-

face r = rB ; we need the value of b to completely specify this metric. In terms of

the reciprocal temperature β = T−1, the boundary condition is
∫

b(rB)dτ = 2πb(rB) = β . (3.2)

Note that b is analogous to the lapse N , which in the Schwarzschild metric is
√

1 − 2M/r. Approaching the horizon, this quantity decreases toward zero.

The inner boundary of the system is at the event horizon of the Euclidean

black hole. The position will be denoted r = r+. Since this is the horizon, we

must have

b(r+) = 0 (3.3)

and since the τ − r part of the metric looks like a disc, we must avoid a conical

singularity by requiring

(α−1b′)
∣

∣

r+
= 1 . (3.4)

The gravitational action is

Ig = − 1

16π

∫

M

d4x
√
gR+

1

8π

∫

∂M

d3x
√
γ(K −K0) (3.5)
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which is the usual Hilbert action with the metric fixed on the spatial boundary

of the system ∂M . K is the extrinsic curvature of the timelike boundary of the

system, which is the surface r = constant. K0 is a subtraction term so that the

action for flat space will be zero. It is calculated by embedding the same surface

in flat spacetime. The results are

√
−gR = −2b

α
+ 2bα− 4rb ′

α
− 4rb

(

1

α

)′

− 2r2

(

b ′

α

)′

(3.6)

K = − 1

αbr2
(br2)′ ; K0 = −2

r
. (3.7)

The K and K0 terms are only present at the outer boundary, because that is

where the metric is fixed. The quantites that are fixed are r and b; α is free to

vary because it involves the direction normal to the boundary. We need to in-

tegrate by parts any terms with second derivatives of b or first derivatives of α.

The integration by parts in the bulk term yields total derivatives that cancel the

boundary term involving K while depositing some terms on the inner bound-

ary. The action, after integrating over angles and performing the integration by

parts, is

Ig = −π
∫ rB

r+

((

2r

α

)

b′ +

(

α +
1

α

)

b

)

dr+ 2πbr
∣

∣

∣

rB

− 2π
rb

α

∣

∣

∣

∣

r+

− πr2 b
′

α

∣

∣

∣

∣

r+

. (3.8)

Of the three terms after the integral, the first is the remnant of theK0 subtraction

which makes the energy zero when r+ = 0 which corresponds to flat space. The

middle term is zero because b(r+) = 0. Using the regularity condition (3.4) the

last term becomes one-fourth the horizon area, which is the standard result for

the entropy of a black hole. The entropy term is a direct result of the periodicity

of the τ coordinate.

The electromagnetic action is very simple because we are only interested

in a spherically-symmetric static electric field, so the only potential we need is
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Aτ (r). The variation of Aτ in the Maxwell action gives the curved space version

of Gauss’s Law. As in [15], we can use this and the analytic continuation to a

Euclidean metric to show that the charge e in the cavity is defined by

r2

bα
A′

τ = −ie . (3.9)

The Maxwell action simplifies to (integrating over angles and τ )

IEM = π

∫

dr

(

r2

αb
A′

τ

)

A′
τ − 2π

(

r2

αb
A′

τ

)

Aτ

∣

∣

∣

∣

rB

(3.10)

where the second term is included so that we are fixing the quantity (3.9) on the

boundary rather than the potential. On the inner boundary, we have another

regularity condition. The potential in an orthonormal basis is Aτ̂ = b−1Aτ . At

the inner boundary, b goes to zero so we also fix Aτ = 0 there so that the phys-

ical potential does not become unbounded. The form of the action is already

suitable for fixing the potential on the inner boundary so we can now proceed

to deriving the thermodynamics from the action.

We vary the action to obtain the equations of motion for b, α, and Aτ . The

solutions depend on r+ and e, and give the usual metric of a charged black hole.

The reduced action I∗ is defined as the value of the action evaluated for the

solution we have obtained, which is

I∗(r+; β, e) = βrB

(

1 −
√

(

1 − r+
rB

)(

1 − e2

r+rB

)

)

− πr2
+ . (3.11)

The last term is the entropy of the black hole, as was mentioned earlier. The

first term is β times the quasilocal energy of the black hole [1] evaluated as the

surface of the cavity. This gives the nice result that the free energy (which is

I∗/β) is E − TS with the quasilocal energy playing the role of E.
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3.3 Equilibria and Stability

It is convenient to define non-dimensionalized variables using the radius of the

boundary as a standard length:

I ≡ I∗
4πr2

B

, x ≡ r+
rB
, q ≡ e

rB
, σ ≡ β

4πrB
, Θ ≡ 4πrBT . (3.12)

Now the conditions for a physical solution are easy to write. We must have

0 < x < 1, and 0 < q < x, so that the horizon exists but is smaller than the outer

boundary and larger than the inner horizon. The charged black hole solution

has two horizons; when the Schwarzschild radius is equal to the charge the

horizons merge to give an unphysical extremal Reissner-Nordström solution.

The action written in these new variables is

I(x; σ, q) = σ

(

1 −
√

(1 − x)(1 − q2

x
)

)

− x2

4
. (3.13)

Note that the physical action scales linearly with the area of the boundary.

The stationary points of the action will dominate the path integral. These

stationary points are the equilibria of the system at the given temperature and

charge. The only free variable is x, so stationary points are defined by

∂I

∂x
=

1

2





σ(x2 − q2)

x2

√

(1 − x)(1 − q2

x
)
− x



 = 0 . (3.14)

The stability of an equilibrium point is determined by the curvature of the ac-

tion. A negative second derivative indicates that the equlibrium is unstable;

small fluctuations of x will tend to grow. For instance, if the black hole absorbs

a small amount of excess heat it will grow and the amount of energy it radiates

to the boundary will decrease causing the black hole to continue to absorb en-

ergy and grow, stopping only when it reaches a stable equilibrium or grows to

the size of the boundary (x = 1).
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A local minimum of the action is a stable equilibrium, for which small fluc-

tuations do not grow. States like this may only be metastable if there are other

states with lower action. There are two possibilities. The state with lowest ac-

tion may also be an equilibrium, which we will then call globally stable. It is

also possible that one of the edge cases has the lowest action, which most likely

means that the the actual globally stable equilibrium is not a member of the en-

semble we have defined. We will see that in the canonical action this does not

happen; the edge cases never have the lowest action. Since we are only consid-

ering a subset of the possible metrics and neglecting the action of the radiation

that should be present in the cavity, there may still be some other state with

lower action.

We can make a single graph that shows the solutions and their stability at

once. First we introduce the free energy

F = (E − TS) = I/(β). (3.15)

The condition for a solution is that the derivative should be zero. This means

that the temperature of a solution is the standard result

T (xs) =
E ′

S ′ . (3.16)

Now, treating the temperature as a function of x, we have

T ′ =
E ′′

S ′ − E ′S ′

(S ′)2
. (3.17)

and examining the second derivative of F yields

F ′′ = E ′′ − TS ′′ = S ′T ′. (3.18)

T is actually fixed, so T ′ should not be thought of as the derivative of the actual

temperature, but is merely the slope of the temperature graph with respect to
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x. However, since S ′ is always positive in this case, we can simply plot the

temperature as a function of x and determine the stability by looking at the

graph.

3.4 Uncharged Case

Setting q = 0 and solving for the zeros of (3.14), we obtain the cubic equation

x3 − x2 + σ2 = 0. (3.19)

We can solve this for σ and substitute back into the equations for the action and

its second derivative to determine the local and global stability of solutions. If

we let xe denote a value of x that is an equilibrium, we have:

σ = xe

√
1 − xe (3.20)

Is = xe(
√

1 − xe − 1 +
3

4
xe) (3.21)

∂2I

∂x2
=

(3xe − 2)

4(1 − xe)
(3.22)

The lowest temperature (largest sigma) for which the action has a local min-

imum is σ = 2
√

3
9

. The size of the black hole is xs = 2
3

and so the cavity that en-

closes the black hole is located at the 3M photon orbit. A local minimum means

that the black hole will be at least metastable. The solution will be globally sta-

ble if the action is a global minimum. There are no other local minima, but we

need to check the action at the extreme values of x, which are I(x = 0) = 0 and

I(x = 1) = σ − 1
4
. The solution we are considering has positive action, although

it is less than that of the x = 1 solution. As a result, the black hole is stable, but

eventually it will tunnel to hot flat space. It is clear that there must be a state
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with maximum action between the local minimum and the x = 0 solution. This

state is an unstable black hole with a smaller radius than the stable solution at

the same temperature.

For global stability, the action has to be negative, which occurs at x = 8
9

and

σ = 8
27

. As the temperature is increased from this point, the radius of the black

hole increases but the action of the black hole solution remains less than the ac-

tion at the outer boundary (x = 1). At any temperature above this point, flat

space is unstable and can tunnel to the black hole solution. There is always an-

other solution with a smaller radius representing an unstable black hole, just as

above. A detailed analysis of stability and phase transitions, including changes

in topology, is given in [32].

3.5 Charged Case

The Reissner-Nordström metric of a charged black hole is

ds2 = −
(

1 − 2M

r
+
e2

r2

)

dt2 +

(

1 − 2M

r
+
e2

r2

)−1

dr2 + r2dΩ2 (3.23)

with Lorentzian signature; with the τ = it substitution this is the metric that

we would find from our equations of motion. The main new feature is the ex-

istence of two horizons, at r± = M ±
√
M2 − e2. It is convenient to make r+

and e the independent variables because r+ determines the entropy and e deter-

mines the electromagnetic field. If the charge grows large enough that r+ = e,

or x = q in rescaled variables, the two horizons merge. This is the extremal

Reissner-Nordström solution; if the charge is increased any more, the horizon

disappears and the singularity is visible to the external universe. This super-

extremal Reissner-Nordström solution is not desirable from a physical stand-
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point, and we will show that the electric potential required to reach this solution

is unrealistically high.

In the grand canonical ensemble, the equations giving a solution are:

(1 − φ2)x3 − x2 + (1 − φ2)2σ2 = 0 (3.24)

q =
φ x2

σ(1 − φ2)
. (3.25)

We now introduce a trick for solving these equations, which can also be some-

what useful in the canonical ensemble. We look for a solution with a given ratio

of q and σ to x. Define

q ≡ εx, σ ≡ bx. (3.26)

The result is

x = 1 − 1 − ε2

ε2
φ2

1 − φ2
(3.27)

In the GCE, q only stands for the expectation value of the charge, and the poten-

tial φ is the quantity that is fixed. This result shows that when the expectation

value of the charge coincides with the event horizon, then both must also co-

incide with the boundary, which means this is not a good physical solution.

For φ < 1, the non-extremal solutions have x < 1; they are physical and super-

extremal solutions are not. The situation reverses for φ > 1, but this corresponds

to about 1027 volts (the Planck voltage). So for any reasonable values of the po-

tential, the black hole is sub-extremal.

3.6 Canonical Ensemble

Turning to the canonical ensemble, the charge is fixed so we only vary x. We

have only one equation to consider, which simply states that at a solution, de-
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noted xs, the action should be a local extremum. The condition for an equilib-

rium is therefore

σ(x2
e − q2)

x2
e

√

(1 − xe)(1 − q2

xe
)
− xe = 0 . (3.28)

We start with the high-temperature behavior where σ goes to zero. The equi-

libria in that case are determined from x2
e(1 − xe)(xe − q2) = 0, which gives

x = 0, q2, 1. Of these, only x = 1 is a physically meaningful solution, and it

indicates that the event horizon will tend to merge with the outer boundary at

extremely high temperature.

Now we turn to the low-temperature behavior, where σ � 1. Without loss

of generality we assume that q is positive. The first term in (3.28) will dominate,

so the only solutions are near x = q. The second term must be negative, so ac-

tually we have x > q. This shows that the solution stays non-extremal for any

non-vanishing temperature. Both the canonical and grand canonical ensembles

will avoid the extremal case given physically reasonable conditions. Since the

charge is fixed in this ensemble, we might have worried that as the temperature

is lowered, the black hole will shrink without losing any charge, and the hori-

zons will merge to give a naked singularity. However, the conserved quantity

tends to improve the stablity of the ensemble, and seems to prevent the black

hole from decaying to a smaller radius.

At slightly higher temperatures, the entropy of the black hole makes more of

a contribution to the free energy. It is now possible for larger black holes to form,

because the energy that they have to gain from the heat bath is accompanied by

an increase in the entropy. In fact, it is possible for the interplay between these

effects to produce multiple solutions for a given temperature and charge. If

there are multiple solutions, we must consider which ones are locally stable or
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unstable.

The first case is when the charge is larger than a critical value. For any tem-

perature there is a single solution, and it is always stable. The size of the black

hole grows with the temperature, and it does not grow to the size of the outer

boundary for any finite temperature. The solution is globally stable relative to

the states we are considering, because it has lower free energy than the end-

points. It is possible that there are other states with the same charge and tem-

perature but perhaps a different topology or non-spherical metric fluctuations.

If these states have a lower free energy, than the charged black hole solution

would be only metastable and could decay to them.

When the charge drops below the critical value, there exists a band of tem-

peratures for which three states can coexist. At a given temperature, the small-

est and largest radius equilibria are stable, and since the temperature graph

must change slope between them, the intermediate radius solution is always

unstable. Whichever solution has the lower free energy will be globally stable,

because once again the endpoints have higher free energy. The intermediate

unstable solution is a local maximum and so it sets the height of the barrier

between the two stable states. As we approach the critical charge, the barrier

becomes lower and the three states approach the same radius until they merge

into one solution which must be marginally stable.

Outside the band of temperatures where there are three solutions, the behav-

ior is the same as for larger charge. The low temperatures have nearly extremal

black holes and the high temperatures have very large ones, and both are stable.

Figure 3.1a shows the behavior below the critical charge, including the band of

temperatures with three coeisting states. Figure 3.1b constrasts the behavior
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Figure 3.1: Temperature versus x for (a) q = 0.1 and (b) q = 0.4.

above the critical charge.

The temperature - charge phase space is divided into the region with one

solution and the region with three coexisting solutions. The dividing line is

formed by the states that are marginally stable, that is, the second derivative
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of the free energy is zero. The transition from three solutions happens because

the unstable solution merges with one of the stable solutions and annihilates it,

leaving only a single solution. The dividing line can be found by solving for

the position where the temperature graph has zero slope. It is easiest to find the

charge q as a function of x for which ∂Θ/∂x = 0 which yields

qtransition =

[

x

6x− 5

(

x2 + 3x− 3 +
√

(x− 9)(x− 1)3
)

]1/2

. (3.29)

In Figure 3.2 the two regions in the q − Θ plane are plotted. The critical charge

above which there is never more one solution is qcrit =
√

5 − 2.

Figure 3.2: Phase diagram with charge q on the horizontal axis and tem-
perature T on the vertical. The shaded region has three equi-
libria as opposed to only one outside.

We can now address the issue of global stability which is simpler here than

in the uncharged case. The most stable configuration could be any of the local

minima, or one of the endpoints of the range where the action is defined. When

x = q the horizons merge and we have a different topology, and when x = 1 the
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horizon merges with the boundary of the system. In either case the action is no

longer defined. However, one of the stable equilibria must be the global min-

imum for all values of temperature and charge. Throughout the phase space,

there are always either two minima of the action with a maximum between

them, or a unique minimum. The continuity of the action then guarantees that

one of the equilibria will always be the global minimum of the action, over the

range q < x < 1 where the action is considered to be physically meaningful.

There are likely to be other states outside those which we have considered in

our ensemble, particularly those where a gas of charged particles has replaced

the black hole. We will discuss this further in the conclusion.

To make the phase structure more clear, we can plot the free energy F against

the temperature with the charge fixed. When there are three equlibria, this will

allow us to see which one is globally stable. Figure 3.3 shows that above the

critical charge, there is only one branch of the free energy. As we raise the tem-

perature, the black hole smoothly grows from a small near-extremal state to a

large black hole the nearly fills the cavity. Below the critical charge, the smooth

transition from small to large black holes is interrupted in the band of intermedi-

ate temperatures where there are three equilibria. As the temperature increases

in this band, the free energy of the small black hole increases while that of the

large one decreases. They cross each other and the larger black hole becomes

the globally stable one. As the temperature increases past this point, the smaller

black hole is still locally stable, so it could persist for a long time. However, the

free energy of this state and the unstable state are growing closer in value, so as

the temperature increases there is less of a barrier preventing a transition to the

globally stable state. At some point, the branch of the free energy that we are on

merges with the branch for the unstable state, and ends. There is now only the
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larger black hole state, and this will continue to grow and be the only possible

equilibrium as the temperature increases to infinity.

At the temperature where the free energies of the two stable equilibria are

equal, the two phases (small black hole and large black hole) can coexist. This is

a slightly dangerous viewpoint, because we are only considering a single black

hole concentric with the cavity; nothing in the analysis shows that two different-

size black holes could coexist. We can think of the black hole of being in a

superposition of the two states, but they are macroscopic and of very different

masses so interactions with the environment would cause decoherence. The

best viewpoint to take is that the two states are equally probable.

Figure 3.4 graphs the free energy versus the charge for fixed values of the

temperature. The shapes, but not the values, can be compared with Figure 5 in

[28]. Figure 3.3 can be compared with their Figure 4. These are simply a more vi-

sual way of demonstrating that the detailed phase structure of the AdS charged

black hole and the charged black hole in a cavity are essentially identical.

3.7 Conclusion

We have derived the thermodynamics of a charged black hole in a finite spher-

ical cavity. The charge governs the number of possible equilibria. Above the

critical value q = (
√

5 − 2)rB, there is always a single equilibrium state, which

is a small black hole with a Schwarzschild radius only slightly larger than its

charge in natural units. As the temperature increases the size of the black hole

increases, but for any finite temperature above zero, we always have physically

reasonable behavior; the horizon never disappears as in the case of an extremal
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Reissner-Nordström solution nor does the horizon grow to touch the walls of

the enclosing cavity.

For charges below the critical value, there is a band of temperatures

where there are three different equilibria. Figure 3.2 shows the region of the

temperature-charge phase space where this is the case. One of the equilibria is

always unstable and so it is not directly relevant to the thermodynamics. The

behavior in this temperature band is like a phase transition, from the smaller

black hole state to the larger one. At the critical temperature and charge, there

is a second-order phase transition beyond which there is only one phase (one

stable equilibrium rather than two stable and one unstable). In [28], the criti-

cal exponent was derived for this transition in the AdS case, and in [29] it was

shown to be the same for the finite cavity. The current paper has shown in more

detail that the phase structure is the same. It seems likely, therefore, that AdS

holography does not depend on specific properties of AdS space but instead

simply on the confinement of a reflecting box or cavity at a fixed temperature.

We have not discussed the issue of hot flat space in this paper, or the pos-

sibility of other topologies that may contribute to the ensemble [32]. When we

showed that one of the equilibria is always a global minimum of the action,

that only counts the states that we considered in deriving the action. More ex-

otic topologies could possibly have a smaller value of the action, which would

allow our “globally stable” state to decay to the more exotic topology.

A more important and possibly more tractable concern is the Hawking-Page

[23] transition to hot flat space. With the charge fixed to zero, this is likely to

happen because flat space has a lower value of the action than the black hole

unless the temperature is high enough. We have the problem that there is no
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solution for flat space with a nonzero charge. In reality, the black hole can emit

charged Hawking radiation, and possibly evaporate so that the box is filled with

a charged gas of electrons or other particles. More work is needed to under-

stand charged thermal gasses in this context. One direction for future research

is to add charged fields to the action and determine how they affect the thermo-

dynamics. It seems that fixing the potential at the boundary (grand canonical

ensemble) rather than the charge inside makes more physical sense when the

black hole can emit charged particles, but the canonical ensemble may still have

a role to play.
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Figure 3.3: Free energy versus temperature for (a) q = 0.1, (b) q = 0.22 ≈
qcrit, and (c) q = 0.4.
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Figure 3.4: Free energy versus charge for (a) θ = 2.33, (b) θ = 2.56, and (c)
θ = 3.57.
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CHAPTER 4

FINITE MIRROR EFFECTS IN ADVANCED INTERFEROMETRIC

GRAVITATIONAL WAVE DETECTORS

Originally published as A. Lundgren, R. Bondarescu, D. Tsang, and M. Bon-

darescu, Phys. Rev. D 77, 042003 (2008). Copyright 2008 by the American Phys-

ical Society.

4.1 Introduction

The initial baseline design for the Advanced LIGO gravitational wave detectors

[34, 33] employs Gaussian beams in the arm cavities. The leading noise source

in the most sensitive frequency band of the instruments (∼ 30 − 300 Hz) is the

thermal noise in the substrate and reflective coating of the mirror test masses.

Lowering thermal noise is therefore of paramount importance for achieving a

higher event rate in LIGO. There are a number of other detectors that are being

built or upgraded to similar specifications. While we will choose to study Ad-

vanced LIGO for definiteness, our general conclusions should be more widely

applicable to any interferometeric detector that needs to limit thermal noise.

Some of the important parameters that we use are summarized in Table 4.1.

LIGO is a Fabry-Perot interferometer with four mirrored test masses. The

resonant beams in the cavity measure the position of the test masses, averaging

over the mirrored surface, with the average weighted by the power distribution

of the beam. Thus, the highly illuminated central area is weighted more than

the mirror boundary that is left nearly dark. One way of decreasing the thermal
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noise is to flatten the beam so that a larger fraction of the mirror is in use. Mo-

tivated by this intuitive reasoning, O’Shaughnessy et. al. [35, 36] proposed the

flat topped Mesa beams, which were subsequently explored in detail by them

and others [37, 38, 40, 39]. These beams would lower the thermal noise by a

factor of approximately 2.5 compared to the baseline design. The original Mesa

beam supported by nearly-flat Mexican Hat mirrors was found to be susceptible

to a tilt instability [41]. This triggered the proposal of a Mesa beam supported

by nearly-concentric mirrors [42]. In the same paper, a family of hyperboloidal

beams that include all Mesa and Gaussian beams previously considered was in-

troduced. Mesa is currently the leading alternative beam design for Advanced

LIGO, and is being studied experimentally [43, 44].

In this paper we first discuss the formulation of hyperboloidal beams. The

“nearly-flat” Mesa is created by superposing minimal Gaussians with gener-

ators uniformly distributed inside a cylinder, and the “nearly-concentric” by

generators falling inside a cone, and passing through the center of the cavity.

These two choices have the same intensity distribution on the mirrors, but the

second has a much smaller susceptibility to tilt instability. The hyperboloidal

beams smoothly interpolate between these two cases by twisting the generators

of the minimal Gaussians by an angle α. After discussing some geometric prop-

erties of the beams, we present a proof that Gaussian beams are a special case of

the hyperboloidal beams, confirming a conjecture in [42].

We then compute the three types of mirror thermal noise for a variety of

hyperboloidal beam shapes, using a set of simple scaling laws developed in

[45, 46] that simplify previous work [47, 48, 49]. The first is substrate Brownian

noise, occuring due to mechanical dissipation in the material; this is the least
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significant source of thermal noise. The substrate thermoelastic noise is caused

by random thermal expansion. The coating also has both Brownian and ther-

moelastic noise, but these follow the same scaling laws so we consider them

as a single source. The coating noise is the most severe of the three types for

the fused-silica substrates currently planned for Advanced LIGO. The substrate

thermoelastic noise would dominate in a material like sapphire which has a

higher thermal expansion coefficient. We show that the noises decrease with

increasing width of the beam, as expected, and that the hyperboloidal beams

have larger noise than the relevant Mesa beams.

The constraint on our ability to lower the noise comes from the need to keep

the diffraction loss small. Gravitational-wave interferometers must keep a large

circulating power in the cavity, and so cannot allow significant amounts of light

to escape past the edge of the mirrors. The current design constraint used in the

most recent papers [50, 51, 40] is a diffraction loss of 1 part per million (ppm) per

bounce for 17 cm fused-silica mirrors. The clipping approximation Eq. (4.19) in-

dicates that the desired Mesa width is approximatelyD = 10 cm. Previous work

[52, 39] have shown that the clipping approximation is not accurate for Gaus-

sian beams of finite mirrors, and have used Fast Fourier transform simulations

for accurate calculations.

We calculate the diffraction losses accurately from eigenvalues of the cav-

ity propagator using an exponentially convergent code that enables us to study

the structure of Mesa and other hyperboloidal beams as a function of D, mir-

ror radius, and twist angle α in detail. We find that the diffraction loss is not

a monotonic function of D, but due to finite mirror effects has anomalous local

minima where the loss is significantly below what is expected from the clip-
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ping approximation. These minima are observed to become more shallow and

eventually disappear as the radius of the mirror is increased. However, for the

mirror radii and beam widths relevant for Advanced LIGO the finite mirror ef-

fects are important. We show that they can be used to increase the width of the

beam, lowering the noise even further than previous work.

Finally, we develop an iteration scheme to redesign the mirror, explicitly

accounting for finite mirror effects. The iterated mirror is altered to match the

phasefront of the primary eigenbeam of the finite mirror cavity, reducing the

diffraction loss of this mode, thus allowing even larger beam widths to satisfy

the diffraction loss constraint.

The mathematical construction of the hyperboloidal beams are discussed in

Sec. 4.2, while the asymptotic limit of the hyperboloidal beams are derived in

Sec. 4.3. The thermal noise scaling laws are described in Sec. 4.4. The cavity

propagator construction and eigenmode decomposition are presented in Sec.

4.5, with the results, including finite mirror effects, discussed in Sec 4.6. We

then summarize our work in Sec. 4.7.

Table 4.1: Advanced LIGO Parameters

L 3999.01 m Length of LIGO cavity

λ0 1.064 × 10−6 m Laser wavelength

wo

√

λ0L/2π = 2.6023 cm Minimal Gaussian width

R 17 cm Mirror radius
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4.2 Construction of the Beams

The beams we study are supported by two identical mirrors facing each other,

forming a cavity of length L. The mirrors are cylindrically symmetric around

the optical axis, which runs along the length of the cavity and will be called the

z axis. The center of the cavity, equidistant between the mirrors, is z = 0; the

mirrors are located at z = −zR and z = zR, where zR = L/2. The transverse

distance from the z axis will be denoted by r, and the angular coordinate by φ.

The geometry is shown in Fig. 4.1.

h

zR

z

r

Figure 4.1: The cylindrical coordinate system that we use, with the φ coor-
dinate suppressed. Th dotted lines are the fiducial spheroids,
while a mirror is shown schematically, with h(r) indicated.

The cavity is fed with laser light with wavelength λ0, and the distance be-

tween the mirrors is fine-tuned so that the cavity resonates in its fundamen-

tal mode, with a field amplitude U(r, z) and intensity |U(r, z)|2. In this paper

we focus on axisymmetric modes with no φ dependence in the beams. Non-

axisymmetric modes are important for studies of the tilt and parametric instabil-

ities [38, 53], but are not discussed in detail in this work. The narrowest possible

Gaussian mode that can exist in a cavity of given length is called the minimal
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Gaussian, which has the intensity distribution

|U(r, z)|2 =
2

1 + (z2/z2
R)

exp

(

− 2r2

w2
0(1 + (z2/z2

R))

)

, (4.1)

where w0 =
√

λ0zR/π.

D

Figure 4.2: The generators of the minimal Gaussians that are superposed
to produce the α = 0.8π hyperboloidal beam. For clarity, only
the outermost set of generators are displayed.

A hyperboloidal beam is the superposition of minimal Gaussians chosen

such that the symmetry axis of the individual minimal Gaussians are genera-

tors of a set of coaxial hyperboloids. An example set of generators is shown in

Fig. 4.2. The beam family has two parameters: α, the twist angle one would

have to rotate the two basis of a set of coaxial cylinders with respect to each

other to obtain the hyperboloids and D, the radius of a section perpendicular to

the optic axis of the outermost hyperboloid at the end of the cavity. In the case
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α = 0, the propagation axes are parallel and fill a cylinder of radius D. This is

the Mesa beam supported by nearly-flat mirrors. For α = π the lines all cross at

z = 0 forming two cones. This configuration also generates a Mesa beam, but

one supported by nearly-concentric mirrors. Varying α smoothly deforms the

beam and the mirror shape between the two configurations. Some examples of

the beam shapes are displayed in Fig. 4.3a.
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Figure 4.3: (a) The beam intensity profile |Uα|2 and (b) corrections hα are
shown at fixed D = 10 cm for different twist parameters α.

For the cavity to support the desired beams, the phase of the electric field

of the beam should be constant on the mirror surface. We will focus our atten-

tion on the mirror on the positive z side of the cavity. The wavefront can be
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approximated by the “fiducial spheroid”,

z = Sα(r) =
√

z2
R − r2 sin2(α/2) . (4.2)

For α = 0 this is the mirror plane z = zR; for α = π, the fiducial spheroid is a

sphere centered on z = 0, and clearly the lines which generate the hyperboloid

are all radii of the sphere.

There are two equivalent expressions for the field amplitude evaluated on

the fiducial spheroid. The first is the integral expression [42]

Uα(r, Sα) = Λ

∫ R0

0

dr0

∫ 2π

0

dφ0r0 exp

[

i
rr0
w2

0

sinφ0 sinα

− (r2 + r2
0 − 2rr0 cosφ0)

2w2
0

(1 − i cosα)

]

, (4.3)

where Λ is a complex constant.

The second is the method that we use in this paper. The beam is constructed

as shown in [54] by an expansion in Gausse-Laguerre eigenbeams of spherical

mirrors. They are closely related to the Gauss-Laguerre basis functions given by

ψm(ξ) =
√

2 exp(−ξ2/2)Lm(ξ2) , (4.4)

where Lm is the mth Laguerre polynomial; these satisfy
∫ ∞

0

ψm(ξ)ψn(ξ)ξdξ = δmn . (4.5)

Then the Gauss-Laguerre eigenbeams are

Ψm(r, z) =
w0

w(z)
ψm

[√
2r

w(z)

]

exp

[

ik0r
2

2R(z)

]

(4.6)

× exp[i(k0z − (2m+ 1)Φ(z))]

where

w(z) = w0

√

1 + (z/zR)2 , R(z) = z + z2
R/z, (4.7)

Φ(z) = arctan(z/zR)
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and k0 = 2π/λ0. The expansion is written as

Uα(r, z) =
∞
∑

m=0

A(α)
m Ψm(r, z) . (4.8)

The expansion coefficients that result in hyperboloidal beams are

A(α)
m = (− cosα)m

√
2w2

0

D2
P

(

m+ 1,
D2

2w2
0

)

. (4.9)

P (a, x) is the incomplete gamma function

P (a, x) =
1

Γ(a)

∫ x

0

e−tta−1dt (4.10)

=

∫ x

0
e−tta−1dt

∫∞
0
e−tta−1dt

.

The mirror shape that supports a hyperboloidal beam is not exactly the fidu-

cial spheroid. We make a correction h(r) so that the surface of the mirror is given

by zM (r) = Sα(r)− h(r). The correction is chosen so that the mirror is located at

a phasefront of the beam. We find the mirror surface from Uα(r, Sα) by

h(r) = k−1
0 (Uα(r, Sα) − Uα(0, Sα)) . (4.11)

The shape of h(r), or the mirror itself, is generally referred to as a “Mexican

hat”, and some examples are displayed in Fig. 4.3b.

As expected, the beams for α and −α are identical, as they correspond to

hyperboloids that are simply twisted in opposite directions. There is a duality

between α and π − α. This was first mentioned in [42] for all α’s, then studied

in more depth for α = 0 and α = π in [38] and, finally, analytically understood

in [37]. This duality extends to several quantities. The beam intensity profiles

are identical. The corrections to the mirror shape are opposite, hα(r) = −hπ−α.

There are also dualities in the eigenvalues of the propagator [38, 37, 54, 42] that

we will not discuss in this paper.
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4.3 Asymptotic Behavior of Wide Hyperboloidal Beams

It was conjectured by Bondarescu and Thorne [42] that the beam becomes a

Gaussian in the limit D → ∞. We will prove this analytically for the intensity

profile of the beam, evaluated on the plane z = zR which would be the surface

of a perfectly flat mirror. The intensity varies slowly enough with z that this will

also be the intensity profile on the mirror to a good approximation. Our proof

uses the expression for the beam amplitude in terms of a summation of Gauss-

Laguerre functions. The essential ingredient is the realization that the expansion

coefficients take the form A
(α)
m = (constant)m as D → ∞, where the constant

depends only on α. This allows us to analytically perform the summation to

obtain the beam profile.

In the limit x → ∞, the incomplete gamma function P (a, x) = 1, giving

Am =
√

2w2
0(− cosα)m/D2. The approximation z = zR yields

w(zR) =
√

2w0 , R(zR) = 2zR , Φ(zR) = π/4 , (4.12)

and the Gauss-Laguerre propagators become

Ψm(r̄, zR) =
1√
2
ψm(r̄)e−i π

2
meiφ(r̄) , (4.13)

where r̄ = r/w0 and the r-dependent part of the phase has been absorbed into

φ(r̄). Since in the end we will only be interested in the intensity profile, the exact

form of φ(r̄) is unimportant.

The expansion for Uα then becomes

Uα(r̄, zR) =
∞
∑

m=0

(− cosα)mw
2
0

D2

(

e−
iπ

2

)m

e−
r̄
2

2 Lm(r̄2)eiφ(r̄)

=
(w0

D

)2

e−
r̄
2

2 eiφ(r̄)
∞
∑

m=0

(i cosα)mLm(r̄2) . (4.14)
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We now use the generating function for the Laguerre polynomials [55]

∞
∑

m=0

Lm(x)tm =
1

1 − t
exp

(

− t

1 − t
x

)

(4.15)

to evaluate the sum in (4.14), with t = i cosα. The final result is an intensity

profile

|Uα(r)|2 =
1

πw2
0

exp

[

− r2

σ2

]

, σ =
w0

√
1 + cos2 α

sinα
. (4.16)

The minimal Gaussian α = π/2 is seen to have σ = w0. The width is symmet-

ric under α → π − α, as expected from the duality relation [42, 37], and goes to

infinity at α = 0 or π. This includes every Gaussian beam capable of resonating

in a cavity of the given length.

4.4 Thermal Noises

There are a number of noise sources limiting the sensitivity of ground-based

gravitational-wave interferometers. Seismic noise causes an effective cutoff in

the lowest frequencies that can be measured. Fundamental problems such as

shot noise and radiation pressure noise, as well as technical issues, are impor-

tant limitations on the sensitivity throughout the frequency band. However,

the major contribution in the most sensitive frequencies of LIGO is the thermal

noise in the mirrors. Reducing the thermal noise is the goal of this paper.

The mirror consists of a substrate with a coating, and we must consider

noises due to fluctuations of both. The substrate and coating have both thermoe-

lastic and Brownian contributions to the noise. Thermoelastic noise is caused by

expansions in the material caused by random heat flow. Brownian noise is due

to the coupling of normal modes of vibration by imperfections in the material.
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As a practical matter, both types of noises in the coating have the same scaling

law so they do not have to be considered seperately. In fact, for the fused silica

mirrors now under consideration for Advanced LIGO, the coating noises are the

dominant contribution. However, use of a material like sapphire, with a higher

coefficient of thermal expansion, would cause the substrate thermoelastic noise

to dominate. We will calculate all three types of noise in this paper.

A set of simple scaling laws were derived by Lovelace [45] in parallel with

O’Shaughnessy [46] that are applicable to beams of arbitrary shape. The noise is

proportional to an integral depending on the intensity and an overall constant

which is independent of the shape of the beam. The noises are given by

Sn = Cn

∫ ∞

0

Ĩ(k)2kndk , (4.17)

Ĩ(k) =

∫ R

0

J0(kr)|U(r)|2rdr , (4.18)

where n specifies the type of noise under consideration, and Ĩ(k) is the 2D ax-

isymmetric Fourier transform of the beam intensity with k the radial wavenum-

ber. The substrate Brownian noise has n = 0, coating Brownian and coating

thermoelastic noises have n = 1, and substrate thermoelastic noise has n = 2.

We are interested in comparing noises given by different beam shapes, so the

overall constants Cn are not important. The resulting amplitude sensitivity is

the square root of the noise, and has units of meters/
√

Hz.

These scaling laws were derived for half-infinite mirrors, meaning that ef-

fects of the finite radius and thickness of the mirror are ignored. For the specific

mirrors under consideration for Advanced LIGO, the width and thickness of the

mirror are large enough compared to the beam width [45] that this should be a

good approximation. The results of [49] suggest that we can expect corrections
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of not much more than ten percent to the half-infinite scaling law expressions

that we are using.

4.5 Eigenvalues of the Propagator

The idealized picture of a locked cavity is that the mirrors are perfectly aligned

and a precise distance from each other. The beam should leave one mirror, re-

flect off the other, and when it returns it should be the same shape and exactly in

phase. The beam will have lost some intensity due to diffraction and the finite

extent of the mirror. In order to build up a very intense beam with a relatively

weak laser, the beam must reflect very many times. The loss per half-trip (from

one mirror to the other) must be below approximately 60 ppm. The majority of

the loss will be due to absorption in the mirror and other factors, not diffraction.

The commonly agreed upon budget for losses due to diffraction is 1 ppm.

In previous work, the clipping approximation is often used to estimate the

diffraction loss by calculating the fraction of the intensity of the beam which

falls outside the mirror. For an axisymmetric beam, it is given by

DL ≈ 2π

∫ ∞

R

|Uα(r)|2rdr . (4.19)

This is only an approximation because it does not take into account distortions

in the beam shape caused by the diffraction of the beam from a finite mirror.

Our numerical code is accurate and fast enough to compute the diffraction loss

directly from the eigenvalues of the propagator, which is more accurate.

The propagator also allows us to estimate the difficulty of locking the inter-

ferometer. The finesse of Advanced LIGO is about 1200 [56]. This sets the width
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of the resonance for the cavity [57] to be about 2π/1200 ≈ 0.005 radians. If any

other modes with a small diffraction loss have an argument within this distance

of the desired mode, there will be severe problems with locking the cavity. For

axisymmetric modes, we find that this is not the case (see Table 4.5) and the ar-

guments of the eigenvalues are well-separated enough that locking with Mesa

or any of the other beams that we study should be no more difficult than locking

the currently proposed Mesa.

Table 4.2: The diffraction loss and phase separation for eigenvalues with
losses less than 10 percent, in three different hyperboloidal con-
figurations with 1 ppm loss in the fundamental mode. Only ax-
isymmetric modes are shown.

α = π D = 9.62 cm

Diffraction Loss Phase

1.0 ppm 0.0

121.7 ppm -1.5104

182.3 ppm -0.5835

334.8 ppm -2.6677

7941.6 ppm 2.2904

45401.8 ppm 0.8325

α = 0.95π D = 9.71 cm

Diffraction Loss Phase

1.0 ppm 0.0

136.2 ppm -1.5079

195.3 ppm -0.5802

302.3 ppm -2.6630

7225.3 ppm 2.2976

44104.7 ppm 0.8422

α = 0.90π D = 11.01 cm

Diffraction Loss Phase

1.0 ppm 0.0

18.6 ppm -0.4797

951.8 ppm 1.3048

3400.8 ppm 2.7653

5870.7 ppm -2.3322

61706.3 ppm 1.4493
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4.5.1 Integral Form of the Propagator

The propagator from a single point r, φ on one mirror to a point r′, φ′ on the

other (see for instance [37]) is

K(r, φ, r′, φ′) =
ik0

4πρ
(1 + cos θ)e−ik0ρ , (4.20)

where ρ is the path length between the two points, θ the angle between the cav-

ity axis and the path, and r and φ are the standard cylindrical radial coordinate

and azimuthal angle. The cavity is very long compared to the radius of the mir-

rors so we can immediately make the paraxial approximation θ = 0. The path

length can be approximated as

ρ =
[

(Sα(r) + Sα(r′) − h(r) − h(r′))2 (4.21)

+ (r2 + r′
2 − 2rr′ cos(φ− φ′))

]1/2

≈ L+ cosα

(

r2

2L
+
r′2

2L

)

− h(r) − h(r′)

− rr′

L
cos(φ− φ′)

since L � r and L � h(r). This expression is the path length used to find

the phase of the propagator. In the prefactor of the propagator we only need

the much simpler ρ ≈ L in order to compute the amplitude to an accuracy of

R2
mirror/L

2 ∼ 10−9.

We assume that the cavity is axisymmetric, which means that the eigen-

modes of the propagator can also be written as eigenstates of rotation. We write

the complex beam amplitude of these eigenmodes as V
(i)
m (r, φ) = V

(i)
m (r) e−imφ.

Then any beam could be decomposed as

U(r, φ) =
∞
∑

m=−∞

∞
∑

i=0

U (i)
m V (i)

m (r)e−imφ . (4.22)
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To determine the modes of the cavity, we have an eigenvalue problem given by

the integral

γ(i)
m V (i)

m (r, φ) =

∫ 2π

0

∫ R

0

r′dr′dφ′ K(r, φ, r′, φ′)V (i)
m (r′, φ′) , (4.23)

where γ
(i)
m is the associated eigenvalue, and R is the mirror radius. Integrating

over φ′ produces

γ(i)
m V (i)

m (r) =

∫ R

0

r′dr′Kr
m(r, r′)V (i)

m (r′) , (4.24)

Kr
m(r, r′) ≡ im+1k0

L
Jm

(

k0rr
′

L

)

exp
[

ik0 (−L+ h(r)

+h(r′) − cosα

(

r2

2L
+
r′2

2L

))]

,

(4.25)

where for convenience we have defined a “radial kernel” Kr
m. Jm(x) is the mth

order Bessel function of the first kind. In what follows, we specialize to axisym-

metric modes (m = 0), as we are not focusing on tilt or parametric instabilities

which involve modes with m > 0.

4.5.2 Discrete Form of the Propagator

The above integral must be converted to a discrete sum to be suitable for numer-

ical computation. We choose to do this using a Chebyshev quadrature [55, 58],

which is appropriate for the finite range of r′. We use N collocation points rk

with associated integration weights wk. The integral is converted to

γ(i)V
(i)
0 (rj) =

N
∑

k=1

Kr
0(rj , rk)rkwkV

(i)
0 (rk) . (4.26)
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This is a matrix eigenvalue problem which is easy to solve numerically. We

will order the eigenstates by the number of radial nodes, the number of times

that V
(i)
0 (r) goes to zero. The fundamental mode (i = 0) has zero nodes and

as R → ∞ it limits to the hyperboloidal beam that the cavity is designed to

support. We will show that finite mirror effects cause the actual eigenstate to be

slightly different.

We performed a convergence test where we varied the number of collocation

points, N , and observed exponential convergence. The diffraction loss for the

lowest eigenvalue for the α = π Mesa beam with D = 10.67 cm, R = 17 cm

changes in the 5th digit (relative to its value of 1 PPM) when varyingN between

N = 250 and N = 500. We are using N = 1000 or N = 500 for all of the

calculations in this paper. On a typical single processor 2 GHz laptop computer,

our code takes ∼ 10 seconds for N = 500 and ∼ 1 minute for N = 1000, to

calculate the eigenmodes of any given cavity.

4.5.3 Meaning of Eigenvalues

The eigenvectors of the propagator are the field amplitudes of the cavity’s reso-

nant modes. Fine-tuning the length L of the cavity to L+ δL changes the eigen-

value to exp(−ik0δL)γ. This tuning is used to select the desired mode; when the

argument of the eigenvalue is zero it will resonate in the cavity. The magnitude

of the eigenvalue is the fraction by which the amplitude changes during a half-

trip. We must have |γ| < 1 for finite mirrors, because some light will always be

lost to diffraction. We define the diffraction loss in parts per million (ppm) over

71



one half trip through the cavity as

DL = 106(1 − |γ|2) . (4.27)

Advanced LIGO requires a diffraction loss per half trip of about one ppm. In

the next section, we will discuss the results of our analysis, where we study

the noise characteristics of the hyperboloidal beams given the constraint on the

diffraction loss.

4.6 Results

Our goal of reducing the noises in LIGO is constrained by the need to keep the

diffraction loss at nearly 1 ppm. The hyperboloidal beams have two parameters,

D and α. D is roughly the width of the beam, and α is the shape. The duality

relation reduces the range of α that we need to consider. We focus our attention

on π/2 ≤ α ≤ π since the intensity profiles are identical to those in the range

from 0 to π/2 but the mirrors are nearly concentric as needed to decrease the tilt

instability. The Mesa profile obtained for α = π has the flat-top shape required

to decrease the thermal noises. As α goes toward π/2 the beam becomes more

rounded, losing the flat top and sharp decay near the edge. We have shown

that D → ∞ the beam becomes a Gaussian whose width is w0

√
1 + cos2 α/ sinα.

For α near π, this Gaussian is nearly infinitely wide, and at α = π/2 the beam

becomes the minimal Gaussian of width w0. From the clipping approximation

we can estimate that at α ≈ 0.247π and α ≈ 0.753π, D = ∞ the diffraction

loss is about 1 ppm. We do not have to consider any values of α between these

since the widest beam consistent with the diffraction loss constraint would be

the D = ∞ Gaussian.
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4.6.1 Finite Mirror Effects

If the mirrors were infinite in extent, no light would propagate off of the mirror

and there would be no diffraction loss, giving eigenvalues of unit magnitude.

The clipping approximation assumes that the beam is the one supported by

infinite mirrors. This is not the case as diffraction also causes the beam profile

to change. The propagator is a more accurate calculation because it finds the

precise beam profile supported by the mirrors. The clipping approximation is

typically an underestimate of the diffraction loss [36, 35]. In Fig. 4.4a, we show

that this is indeed usually the case. However, for some ranges of beam width D

there is an anomalously low diffraction loss below the clipping approximation.

To study this effect, we varied the mirror radius and computed the diffrac-

tion loss as a function of D. The mirrors that we study in this paper have ra-

dius R = 17 cm, so we compared with R = 16 cm and R = 18 cm. The local

minimum becomes narrower and shallower for increasing mirror radii. This is

suggestive of a finite mirror effect that will disappear when the mirror radius is

significantly larger than the radius of the beam.

Fig. 4.4b shows the deviation of the beam from the infinite mirror Mesa

beam. A concentric Mesa (α = π) beam with D = 10.67 cm is chosen. This

is the location of a local minimum of the diffraction loss with respect to D. The

beam intensity is computed directly from the eigenvector of the propagator. The

intensity is normalized by integrating over the mirror rather than over the entire

mirror plane as with the infinite mirror case. However, this only causes a frac-

tional error in the normalization on the order of 10−6. As shown in the figure,

the finite mirror causes deviations from the infinite mirror beam; the plateau of

the beam is less flat than expected. When the radius of the mirror is increased,
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Figure 4.4: (a) The diffraction loss for an (α = π) Mesa configuration
(α = π) is shown as a function of D on a logarithmic plot
for several different mirror radii: R = 16 cm, R = 17 cm and
R = 18 cm. The diffraction loss computed numerically using
Eq. (4.27) (solid, dashed and dotted-dashed lines) exhibits lo-
cal minima due to finite mirror effects. It can be seen that the
minima get narrower as R increases and that they go below
the values estimated using the clipping approximation (dotted
lines). (b) The fractional difference |U |2finite/|U |2theory−1 between
the theoretical infinite-mirror beam intensity profile and the ac-
tual profile given by the first eigenvector of the propagator in
Eq. (4.24) is plotted for D = 10.67 cm and R = 16, 17, 18 and 20
cm. The deviation decreases with R as expected.
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the deviations retain their shape but decrease in size. For R = 20 cm, the beam

is very close to the infinite mirror expectation. There is still a difference near the

outer edge of the beam, causing the intensity to decay more quickly with radius

than in the infinite mirror case.

Our numerical results suggest that the anomalous diffraction loss is related

to the deviation of the beam from the ideal Mesa shape. As D increases, the

clipping approximation predicts a smooth increase in diffraction loss due to

the widening beam. Finite mirror effects increase with the ratio D/R, so they

alone do not explain this unexpected behavior. For the values of D that yield an

anomalous diffraction loss, the variations around the plateau (Fig. 4.4b) have an

organized shape with an approximate wavelength of w0. The variations in these

cases have a shape such that they alter the falloff of the beam at the edge, i.e. in

the last two centimeters of the mirror. This has an obvious beneficial effect on

the diffraction loss.

We expect that the fundamental mode of the cavity (the hyperboloidal shape,

with no nodes), should have the lowest diffraction loss. However, this is not the

case for all choices of α and D. Surprisingly, the diffraction loss of the first

excited axisymmetric mode can decrease below that of the fundamental mode.

This occurs, for α = π, for a small range of D around 10.5 cm, with diffraction

losses around 4 ppm. The arguments of two eigenvalues remain well separated.

Fig. 4.5 shows the crossing of the two diffraction loss curves.

To investigate the cause of this crossing, we choose the specific value D =

10.52 cm and increase the mirror radius to 18 cm. The diffraction loss of the

fundamental mode decreases from 3.7 ppm to 0.4 ppm, while the first excited

mode only decreases from 3.6 ppm to 2.3 ppm so the diffraction loss of the
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Figure 4.5: The diffraction losses of the fundamental mode and the first
excited mode are plotted as a function of D for the α = π Mesa
configuration. The two curves cross due to finite mirror ef-
fects causing an anomalous diffraction loss for the first excited
mode.

fundamental mode is now lowest. Further increasing the mirror radius to 20

cm causes the losses of the second and third excited modes to cross. Despite

changes of the mirror radius, the arguments of the eigenvalues change by less

than a percent (we are only considering eigenvalues with losses less than 10,000

ppm because otherwise they would dissipate too quickly to be of interest). This

dependence on mirror radius tends to confirm that this is a finite mirror effect.

Having demonstrated that this effect can have substantial and beneficial effects

on the diffraction loss, we now turn our attention to studying the parameter

space of hyperboloidal beams in more detail. Further studies of the precise

cause of the anomalous losses may want to focus on the deviation of the beam

from its theoretical expectation, as well as the behavior with changing mirror

radius.
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4.6.2 Noises for fixed D

The width of the beam increases with increasing D, which averages the fluc-

tuations over more of the mirror surface and therefore decreases the noise. It

is less clear how the noise will behave when α is changed. We begin by fixing

D = 10 cm and ignoring the diffraction loss constraint. Fig. 4.6 shows that all

three types of noise increase as α moves away from 0 and π. Substrate thermoe-

lastic noise is most affected by changing α, followed by the coating noises (recall

that both types of coating noise follow the same scaling law).
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Figure 4.6: The noise ratios Noiseα/NoiseMesa − 1 for three types of noise
are shown as a function of α for fixed D = 10 cm. The minimal
Gaussian α = π/2 has the highest noise and Mesa (α = 0, π)
has the lowest noise.

As α is decreased from π, the noises increase if D is kept fixed. At the same

time, the diffraction loss decreases. If we keep the diffraction loss fixed, the

D can be increased as α decreases toward π/2. Widening the beam tends to

decrease the noise, which partially offsets the increase from changing α. We

fixed the loss at 1.4 ppm and found that the noise still increases for beams other

than Mesa. We expect that for larger diffraction losses this result will still hold.
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Figure 4.7: Diffraction loss as a function of D is displayed for α = π,
α = 0.95π, α = 0.90π. It can be seen that as α decreases the
minimum diffraction loss is lower and occurs for larger D.

However, at 1 ppm the anomalous behavior of the diffraction loss due to finite

mirror effects changes this conclusion.

4.6.3 Hyperboloidal beams with 1 ppm Diffraction Loss

As α decreases from π toward π/2, the beam loses its flat top and sharp falloff,

and approaches the minimal Gaussian. Also, the D corresponding to the local

minimum in diffraction loss increases, and the local minimum becomes deeper

and wider. Fig. 4.7 shows the diffraction loss versus D for three values of α,

while Fig. 4.8 gives D and diffraction loss at the local minimum for a range of

α. The local minimum of the diffraction loss for a Mesa beam (α = π) is at

D = 10.67 cm, and has 1.4 ppm. As discussed above, the Mesa is has the lowest

noise of the hyperboloidal family for this diffraction loss.

If a diffraction loss of strictly 1 ppm is required, the beam must be reduced
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Figure 4.8: The minimum diffraction loss in ppm (represented by crosses)
and the corresponding D (dots) are shown as a function of α.
The solid line represents the best exponential fit of the form
a + exp(b+ c sin2 α) with a = 0.094, b = −4.34 and c = 2.20.

to a width of D = 9.62 cm in the Mesa configuration. Alternatively, we can

consider other values of α. The local minima are displayed in Fig. 4.8, which

gives the values of D as well as the corresponding diffraction losses. Note that

for α = 0.9π, the diffraction loss at the local minimum is now below 1 ppm. Fig.

4.9a shows the maximum D that yields a 1 ppm loss, as α is varied. There is a

discontinuity between α = 0.91π and 0.92π because below 0.92π the diffraction

loss at the local minimum is below 1 ppm. The noises therefore drop substan-

tially when α = 0.91π as in Fig. 4.9b. The coating noise decreases by 12% and

the substrate thermoelastic by 19%, relative to the 1 ppm Mesa beam. A strict

requirement of 1 ppm diffraction loss therefore combines with the finite mirror

effects to make the α = 0.91π, D = 10.94 cm configuration the best choice.
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Figure 4.9: (a) The largest values of D giving a strict 1 ppm diffraction
loss are shown as a function of α. The discontinuity is caused
by finite mirror effects as explained in the text. (b) The corre-
sponding values of the noise, normalized so that the noises for
the 1 ppm Mesa (α = π, D = 9.62 cm) are all equal to 1. The
discontinuity in allowed maximum D leads to a sharp drop in
noise at α = 0.91π.

4.6.4 Correcting for Finite Mirror Effects

Restructuring the mirror to specifically account for finite mirror effects allows

us to increaseD in hyperboloidal beams (thereby reducing thermal noise), while

keeping within given diffraction loss constraints. The restructured beams can

reduce the diffraction loss by a factor of 30 to 100, allowing a wider beam. For

the Mesa case this allows for a net noise reduction of 30% for the beam satisfy-
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ing the 1ppm diffraction loss constraint.

As noted above, the original Mesa beam used to construct the mirror is infi-

nite in extent. The mirror is designed to be a phasefront of the theoretical beam.

Since the mirror is actually finite, for D ∼ R there can be substantial effects due

to missing light that was incident on the mirror plane outside the mirror radius.

To account for these finite mirror effects we reconstruct the mirror, with the goal

of making the phase of the first eigenbeam constant at the mirror surface, rather

than the phase of the idealized infinite beam.

The propagator formulation allows us to explicitly calculate the phase of

the eigenbeams, as a function of r. As the mirror deviation from the fiducial

spheroid h(r) enters into the calculation of phase through the propagator, we

use an iteration scheme to adjust the mirror to match the eigenbeam phasefront

motivated by the argument of the propagator:

arg[K(r, r′)] ' π/2 + k0 (h(r) + h(r′) − L) (4.28)

−k0 cosα

(

r2

2L
+
r′2

2L

)

.

We see in Eq. (4.28) that if the phase of the eigenbeam is too large at some radius

r, reducing the value of h(r) should act to roughly reduce the phase of the new

eigenbeam.

With this motivation, we apply the simple iteration scheme:

hi+1(r) = hi(r) − c× arg
[

V
(1)
i (r)/V

(1)
i (0)

]

, (4.29)

where the i denotes the ith iteration, V
(1)
i (r) is the first eigenbeam for the mirror

with deviation hi(r), and c > 0 is an arbitrary constant less than unity, chosen to

prevent overshoot.
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Figure 4.10: The phase of the fundamental eigenbeam as a function of ra-
dius is shown for iteration zero and 250. It can be seen that
the iteration scheme drives it closer to zero as expected.

This iteration scheme successfully reduces the relative phase of the eigen-

beam, as shown in Fig 4.10. Optimizing the mirror surface to match the phase-

front of the primary eigenbeam also acts to reduce the diffraction loss for that

mode in general, with the iteration scheme providing convergence towards an

apparent lower bound for the diffraction loss, while increasing the diffraction

loss for other higher-order eigenbeams. This lower bound increases with D (Fig

4.11).

This diffraction loss is plotted against the iteration number for the Mesa

(α = π) case with D = 11.35 cm in Fig 4.12. The iteration scheme is shown to

lower the diffraction loss for this D from 46.5 ppm to a ∼ 1 ppm lower bound,

satisfying the required design constraint. The diffraction losses of higher order

modes are more than doubled in the iterated case as illustrated in Table 4.6.4.

The beam for the iterated mirror with D = 11.35 cm is close to the original

Mesa, but with variations in the central plateau of relative amplitude ∼ 1/30 and

variations of radial wavelength ∼ w0 (Fig 4.13). This seems to be an unavoidable
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Figure 4.11: The diffraction loss in ppm calculated using the clipping ap-
proximation is compared to that using the propagator eigen-
values for the iterated and original mirrors as a function of
D. As before, the configuration studied is α = π Mesa with
R = 17 cm. The iteration process lowers the diffraction loss
by a factor of 30 to 100.

consequence of a finite R, as even the original eigenbeam has roughly similar

features. Despite changing the variations in the plateau of the beam intensity

the process of iteration does not significantly affect the noises computed using

Eq. (4.17).

Similarly the iterated mirror has variations of the central mirror shape of

similar radial scale, with amplitude on the order of 2 nm, shown in Fig 4.14.

The most significant feature of the iterated mirror is the inward tilting of the

outer edge of the mirror, though preliminary studies show that the primary

contribution to reducing the diffraction loss is due to the variations near the

center of the mirror.

Reformulating the mirror to account for finite mirror effects allows us to

increase the D parameter of the beam from 9.62 cm to 11.35 cm for a concentric

Mesa beam while still maintaining a 1ppm diffraction loss. Though this design
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Figure 4.12: The diffraction loss is shown as function of iteration num-
ber for a α = π Mesa configuration with D = 11.35 cm.
The original beam (not shown) has diffraction loss at 46.5
ppm, and it can be seen that after a few iterations the diffrac-
tion loss begins to converge to an exponential with lower
bound ∼ 1 ppm. The best fit exponential is given by 0.96 +
1.616 exp(−0.013i) ppm, where i is the iteration number.

may introduce more complications in the construction of the mirror itself, it

allows a significant reduction in noise by broadening the beam. This iteration

scheme can also be used for other values of α, as shown in Table 4.6.4, where

the iterated mirror for α = 0.9π has a diffraction loss lower bound of 1 ppm for

D = 11.87 cm. However, we find that α = π is optimal for noise reduction.

4.7 Conclusions

In this paper, we studied thermal noise and diffraction loss for the hyper-

boloidal family of light beams and mirror shapes in detail for the first time. This

family had been initially proposed to unify the concentric (α = π) and nearly-

flat (α = 0) Mesa configurations through variations of the twist angle α. In this
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Figure 4.13: The intensity profile |Uπ|2 for the mirror with R = ∞, R = 17
cm uniterated and R = 17 cm at iteration 250 are compared
for the α = π Mesa configuration with D = 11.35 cm. The
finite mirror effects induce oscillations in the intensity profile
that do not disappear when the mirror is corrected. An inset
shows the central 8 cm ‘plateau’ of the beam in detail.

Figure 4.14: The correction hα to the mirror at iteration 0 and at iteration
250 are compared for the α = π Mesa configuration with D =
11.35 cm, R = 17 cm. The iteration scheme introduces some
bumps on the mirror of the size ∼ 2 nm. The inset shows the
central 8 cm of the mirror in more detail.
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paper we also presented an analytic proof that Gaussian beams are a limiting

case of the hyperboloidal beam as D → ∞. This was previously conjectured in

Ref. [42]. We developed a pseudo-spectral code both fast and accurate enough

to calculate the diffraction loss directly from the beam propagator. We find that

the finite radius of the mirror causes beam shapes to deviate significantly from

the infinite-mirror theoretical expectations. This causes a previously unnoticed

local minima in the diffraction loss that can be exploited to find a natural beam

widthD for the current diffraction loss constraints of about 1 ppm. For an α = π

Mesa beam a local minimum occurs at D = 10.67 cm giving 1.4 ppm diffraction

loss for a mirror of radius R = 17 cm. If one requires a strict enforcement of the

1 ppm diffraction loss we show that a hyperboloidal beam with α = 0.91π and

D = 10.94 cm has lower noise than that of the α = π Mesa with 1 ppm diffraction

loss. The coating noise changes by about 12% and the substrate thermoelastic

noise and substrate Brownian noise change by 5% and 19%, respectively.

We also propose new mirror and beam shape configurations that explicitly

account for finite mirror effects by reformulating the mirror surface to coincide

with the phasefront of the primary eigenbeam. These beams reduce the diffrac-

tion loss by more than an order of magnitude for the range of D considered

here (between 10 cm and 11.8 cm). This allows the use of wider beams for the

same diffraction loss constraints on the primary eigenmode, while the diffrac-

tion losses of higher order modes (both axisymmetric and non-axisymmetric)

are increased. We are able to widen the α = π Mesa beam for a R = 17 cm mir-

ror while keeping the diffraction loss fixed at 1 ppm from a width of D = 9.62

cm to D = 11.35 cm. This lowers the coating thermal noise by about 30% (com-

pared to the smallerD Mesa) and the other noises (substrate Brownian and sub-

strate thermoelastic noise) by comparable factors. However, feasibility of the
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construction of the mirrors must also be taken into account.

The non-iterated beams taking advantage of the local minimum in diffrac-

tion loss discussed above are supported by strict hyperboloidal or Mesa mirrors,

which would be no harder to make than the current Mesa designs, and would

still lower the coating thermal noise by 12%. If one is to consider the more ambi-

tious goal of lowering the coating thermal noise by 28% while using a beam that

is very similar to Mesa through the iteration scheme described, the limitations

on mirror manufacturing errors are likely to be more stringent, but still less than

the currently considered conical beams [51, 40]. In addition, the methods devel-

oped here for reducing the diffraction loss of the Mesa beam may be applied in

the case of the conical beams previously considered [40, 51]. The phase fronts

of conical beams considered there have not been optimized to match the finite

mirror surface.

Recently, parametric instability [53, 59, 60, 61] was found to be a serious

problem in Advanced LIGO. Choosing D at the minimum of the diffraction loss

curve of the hyperboloidal beams increases the diffraction loss of the higher

eigenmodes, thus in principle somewhat improving the parametric instability.

The effect is most pronounced in the case of the iterated mirrors which also have

the most drastic thermal noise reduction.
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Table 4.3: The phase separation for the axisymmetric (m = 0) modes with
diffraction losses less than 10%, both before and after the it-
eration scheme is applied. The phases do not change signifi-
cantly as the mirror is iterated. The absolute value of the eigen-
values with nonzero phase (and hence the diffraction loss) in-
crease upon iterating. Preliminary calculations show that non-
axisymmetric modes have diffraction losses increased by the it-
eration process while the phases change by no more than 5%.

α = π D = 11.35 cm
(Uniterated)

Diffraction Loss Phase

46.5 ppm 0.0

128.5 ppm -0.4313

341.7 ppm -1.1895

10530.8 ppm -2.1470

38445.0 ppm 3.0277

α = π D = 11.35 cm
(Iterated)

Diffraction Loss Phase

1.0 ppm 0.0

320.6 ppm -0.4319

1100.1 ppm -1.1920

26167.4 ppm -2.1593

66808.7ppm 2.9873

α = 0.9π D = 11.87 cm
(Uniterated)

Diffraction Loss Phase

43.5 ppm 0.0

205.0 ppm -0.4173

371.2 ppm -1.1665

10626.6 ppm -2.1082

50723.6 ppm 3.0878

α = 0.9π D = 11.87 cm
(Iterated)

Diffraction Loss Phase

1.0 ppm 0.0

366.6 ppm -0.4185

2013.4 ppm -1.1701

32628.3 ppm -2.1267

87359.8 ppm 3.0335
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Table 4.4: The coating, substrate Brownian and substrate thermoelastic
noise are displayed after the iteration process. The diffraction
loss is kept constant at 1 ppm. The noises are normalized to
noises of the original (α = π) Mesa (with D = 9.62 cm) which
gives the 1 ppm diffraction loss. The iteration scheme lowers the
noise by about 30% for α = π by allowing larger D for the same
1 ppm diffraction loss.

α D

[cm]

Coating

Noise

Substrate

Brownian

Noise

Substrate

Thermoelas-

tic Noise

π 11.35 0.72 0.84 0.63

0.9π 11.87 0.80 0.90 0.69
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CHAPTER 5

F(R) MODIFICATIONS OF GRAVITY

5.1 Introduction

5.1.1 The dark energy problem

Cosmological measurements indicate that the expansion of the Universe is

accelerating. Cosmology treats the Universe as homogeneous and isotropic,

which is a good approximation on scales larger than 100 megaparsecs. Observa-

tions of the cosmic microwave background and galaxy clustering determine the

spatial geometry to be very nearly flat, which is the result expected if the Uni-

verse underwent a period of inflation early in its evolution. The stress-energy

tensor is modelled as a cosmological fluid made up of several components. Ra-

diation and other relativistic particles were an important contribution only in

the early Universe. For most of the history of the Universe, matter has been

the dominant component, and as a result the expansion has been decelerating.

However, relatively recently the expansion has begun to accelerate. The most

economical explanation in standard GReneral Relativity is that the remaining

component of the cosmological fluid is a cosmological constant. As the matter

density has been diluted by the expansion, the cosmological constant has begun

to dominate.

While in principle the cosmological constant could take any value, there is

a quantum mechanical contribution whose scale can be estimated. Loop effects

from quantum field theory contribute to the cosmological constant. The con-
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tribution from these loop effects is divergent, but the cosmological constant is

obviously not infinite. We can impose a cutoff on the zero-point energy by as-

suming that there is some new physics which first appears at the lowest energy

that has not yet been probed with accelerators, which is approximately 1 TeV.

The mass density resulting from a cutoff at energy scale E is on the order of

E4/~3c5, which gives a mass density ρ ∼ 1032 kg/m3.

The actual value of the cosmological constant, which makes up approxi-

mately 70 percent of the current energy density of the cosmological fluid, is

ρΛ = 7 × 10−27 kg/m3. The natural value of the cosmological constant is about

60 orders of magnitude above the value that is actually measured. Obtaining a

value this low for the zero-point energy would require a tremendous amount

of fine-tuning. This is the so-called cosmological constant problem. A similar

question is the coincidence problem of why it is only relatively recently in cos-

mological history that dark energy has begun to dominate.

5.1.2 The F(R) Idea

Another way to explain the cosmological observations is by modifying gravity.

In this approach the dark energy is not a component of the cosmological fluid;

instead, we modify Einstein’s equation so that a Universe with only matter and

radiation can produce acceleration. The modification considered in this paper

is F(R) gravity, which is derived from the action [65]

S =

∫

d4x
√−gF (R) . (5.1)

Here R is the Ricci scalar and F (R) is a function of the Ricci scalar. The usual

Einstein-Hilbert action with a cosmological constant Λ corresponds to F (R) =
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R− 2Λ. The equations of motion resulting from the F(R) action imply covariant

conservation of the stress-energy tensor, just as in GR. However, the equations

of motion now contain fourth-order derivatives of the metric, rather than two

derivatives as in GR.

We will often use the notation F (R) = R + f(R), so that f(R) is the correc-

tion to the usual Hilbert action. We will use primes to denote derivatives with

respect to whatever variable is indicated, while derivatives of f with respect to

R will be denoted with subscripts, i.e. fR = df/dR. We set ~ = c = 1 through-

out, and make use of the reduced Planck mass MP l = (8πG)−1/2. The Hubble

parameter in these units corresponds to a mass H0 = 1.5 × 10−33 eV.

5.1.3 Original CDTT Model

The original model introduced by Carroll et. al. to explain the cosmological

acceleration [65] had the form

f(R) = −µ2

(

µ2

R

)n

(5.2)

where n is a positive integer. This model is often referred to as the “CDTT”

model. The mass scale µ is of order the Hubble scale H0. One would expect

that in local tests of gravity, the density of matter is very high and the curvature

should also be high, making the correction Eq. (5.2) small. By contrast, at the

low density at the cosmological scale today, this correction Eq. (5.2) contributes

significantly to the action and causes a modification of the dynamics.

Chiba [66] showed that the model Eq. (5.2) does not work as intended. In

GR, we have R = ρ/M2
P l for pressureless matter with density ρ. In F(R) grav-

ity, the identification between high density and high curvature breaks down.
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In models like CDTT, R is generally of order µ2 even in high density regions.

Chiba showed this by showing that F(R) theories are equivalent to scalar-tensor

theories in which the scalar field mass is of order µ2. The resulting very long-

ranged scalar field causes easily detectable deviations of the metric of the Sun

from the predictions of GR.

5.1.4 The Chameleon Effect

Khoury and Weltman [67, 68] and others [69] have shown that scalar-tensor the-

ories can be constructed where the perturbation to the cosmological background

value of the scalar field due to the Sun cannot be treated as a linear perturbation,

as is often assumed. In these theories, the scalar field perturbation generated by

the Sun is much smaller than the linear prediction, suppressing the modifica-

tions to Solar System observables. Because they hide the scalar field, these are

named “Chameleon” models. Other papers [70, 72, 73] have constructed F(R)

theories that utilize the chameleon effect. The scalar-tensor description of an

F(R) theory has a nonlinear potential for the scalar field. The effective mass of

the scalar field is of order H2
0 outside a planet, as in the CDTT model ( Eq. (5.2)

). However, the potential in a chameleon theory is such that a small perturba-

tion of the scalar field pushes it into a nonlinear regime of the potential where

the scalar field becomes much more massive. The result is that only a thin shell

near the surface of an object contributes to the scalar field; at points interior to

the thin shell, the scalar field is effectively short-ranged and does not contribute

to the field outside. Because of the Chameleon effect, some f(R) models can

evade the problem pointed out by Chiba and are not ruled out by Solar System

observations.
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5.1.5 Observational Constraints on F(R) Models

The first requirement is that the F(R) theory reproduce the observed cosmic ac-

celeration. We will simplify our discussion by considering only spatially flat

FLRW metrics. The Friedmann equation in GR relates the Hubble parameter to

the density. There are two more derivatives of the metric in F(R) theories, so

the modified Friedmann equation involves the next two derivatives of the scale

factor a in the form of the deceleration parameter and the jerk, which are di-

mensionless second and third derivatives of the scale factor. Our cosmological

measurements effectively tell us the Hubble parameter, deceleration, jerk, and

matter density at the current time, and with the Friedmann equation these give

us one constraint on the F(R) parameters.

Solar System tests of gravity measure the metric of the Sun to high precision,

and the results can be expressed as constraints on the post-Newtonian parame-

ters. These constraints set a limit on how thick the thin shell of the Sun can be,

in a chameleon model. This gives a constraint

|Φ| . 5 × 10−11 (5.3)

for the asymptotic value of Φ outside the Solar System. (See Sec. 5.4 for details).

Considerations of cosmological structure formation by Hu and Sawicki [70]

place constraints on the value of the scalar field on cosmological scales, where

the curvature is on the scale of H2
0 . It is not certain whether these constraints

are valid because the evolution of the scalar field in chameleon models during

structure formation is not yet known. We will assume that the galaxy has a thin

shell, which implies the constraint

|Φ| . 10−6 (5.4)
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for the asymptotic value of Φ outside the Galaxy.

We will show that for F(R) models that utilize the chameleon effect, satisfy-

ing the above constraints requires an unnatural fine-tuning. Our conclusion is

that F(R) models are not appealing as a solution to the dark energy problem. We

will also show that the fine-tuned models which successfully evade the Galaxy

constraint tend to easily satisfy the Solar System constraint as well.

5.2 Equations of Motion

The equations of motion can most easily be written in terms of a new scalar field

Φ = fR(R) (5.5)

(recall that F = R + f and fR = df/dR). They are

(1 + Φ)

(

Rµν −
1

2
gµνR

)

+ gµν�Φ −∇µ∇νΦ − 1

2
gµν (f − RfR) = M−2

P l Tµν . (5.6)

A more useful way of writing Eq. (5.6) involves splitting into the trace and

traceless parts. Taking the trace gives an equation for the scalar field:

�Φ − 1

3
(R + 2f(R) − RfR(R)) =

1

3M2
P l

T . (5.7)

This is a wave equation for the field Φ, with a potential term and the trace T of

the stress-energy tensor as a source term. The potential term (R + 2f − Rf ′)/3

can be written in terms of Φ by inverting the relation Φ = fR(R). An alternative

form of this equation is

fRR�R + fRRR(∇µR)(∇µR) − 1

3
(R + 2f − RfR) =

1

3M2
P l

T , (5.8)

which does not require solving for R in terms of Φ. Because the function R(Φ)

typically includes branch cuts and other problems, this second form may be

95



more amenable to computation; however, in our analysis we will use the first

form.

Accompanying the trace equation is the traceless part of Eq. (5.6), which is

(1 + Φ)

(

Rµν −
1

4
gµνR

)

−
(

∇µ∇ν −
1

4
gµν�

)

Φ = M−2
P l

(

Tµν −
1

4
gµνT

)

. (5.9)

The equations of motion therefore consist of a nonlinear wave equation for the

scalar field Φ, equations for the traceless part of the Ricci tensor, and the relation

Eq. (5.5) between Φ and the Ricci scalar R.

5.2.1 Exact Solutions

We will first consider some exact solutions to the theory with no stress ten-

sor, Tµν = 0. In standard GR, the vacuum solution is simply the flat space

Minkowski metric which has Rµν = 0. The vacuum solution of GR with a cos-

mological constant is either deSitter space or anti-deSitter space, depending on

the sign of the cosmological constant.

We can easily show that the vacuum solutions of F(R) theories are either

deSitter or anti-deSitter. The deSitter metric and Ricci tensor are

ds2 = −
(

1 − Λ

3
r2

)

dt2 +

(

1 − Λ

3
r2

)−1

dr2 + r2(dθ2 + sin2 θdφ2) , (5.10)

Rµν = Λgµν , R = 4Λ . (5.11)

Here Λ is the cosmological constant; the metric is deSitter for Λ > 0, anti-deSitter

for Λ < 0, and flat Minkowski spacetime for Λ = 0. From now on, we will sim-

ply refer to all three possibilities as deSitter metrics. The constant Ricci scalar

implies constant Φ, and the terms in the equation of motion involving deriva-

tives are now zero. We see that Eq. (5.9) is satisfied because the Ricci tensor has
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no traceless part. The allowed values of Λ are given by Eq. (5.7), which yields

the condition R + 2f − Rf ′ = 0. A given F(R) theory may have several allowed

values of Λ, possibly including Λ = 0.

Some other exact solutions of F(R) gravity are the Schwarzschild-deSitter

and Kerr-deSitter solutions for non-spinning and spinning black holes with a

cosmological constant. The Ricci tensor of these metrics is still Rµν = Λgµν .

Birkhoff’s theorem in GR says that the metric exterior to any spherical star is

the Schwarzschild metric, but this result does not apply to F(R) gravity. Black

holes are the same in F(R) and GR, but the exterior solutions of even spherical

stars are different.

5.2.2 Cosmological Evolution

The Universe has been evolving cosmologically from high curvature to low cur-

vature, so it is only at late times that the cosmological evolution of F(R) mod-

els will diverge from ΛCDM. Cosmological measurements effectively give us

knowledge of time derivatives of the scale factors at the present epoch. We will

need three derivatives: the Hubble parameter H , the deceleration parameter q,

and the jerk j. These are defined by

H =
1

a

da

dt
, q = − 1

aH2

d2a

dt2
, j =

1

aH3

d3a

dt3
. (5.12)

Assuming a spatially flat Universe, the Ricci scalar is

R == 6

[

(

1

a

da

dt

)2

+
1

a2
d2adt2

]

= 6H2(1 − q) . (5.13)
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The modified Friedmann equation [70] for F(R) gravity is

H2 +
1

6
f − fR(H2 +HH ′) +H2R′fRR =

1

3M2
P l

ρ , (5.14)

where a prime denotes the derivative with respect to ln a. Substituting in the

definitions above, the Friedmann equation becomes

H2 +
1

6
f + qH2fR + 6 (j − q − 2)H4fRR =

1

M2
P l

ΩM , (5.15)

with R = 6H2(1 − q), and ΩM the observed fraction of matter. This equation

will provide a single constraint on the parameters of the F(R) model. If the next

derivative, called the “snap”, could be measured accurately another constraint

would be possible by taking a derivative of the Friedmann equation and using

energy conservation on the right hand side.

Values suggested by the WMAP 5-year data [75] for the ΛCDM model are

ΩM = 0.26, q = −0.61, and j = 1. In fact, a GR model with only matter and

cosmological constant (radiation is negligible) always has j = 1, and q is de-

termined by ΩM and the flatness assumption. The increased range of freedom

of an F(R) model allows us to fit cosmological measurements that would not

be consistent in ΛCDM. Rapetti et.al. [71] have used various cosmological ob-

servations to find H , q, and j without assuming ΛCDM. The values that they

give are q = −0.81 ± 0.14, j = 2.16+0.81
−0.75, and ΩM = 0.306+0.042

−0.040. We will also use

H = 72km/sec /Mpc.

5.2.3 Perturbative Solution

We now focus our attention on the scalar field equation of motion:

�Φ − V ′(Φ) =
κ

3
T . (5.16)
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The potential term V ′(Φ) is equal to

1

3
(R + 2f −RfR) , (5.17)

except rewritten as a function of Φ by using the relation Eq. (5.5) betweenR and

Φ. We find the effective mass of the scalar field from

m2
Φ = V ′′(Φ) =

(1 + fR − RfRR)

3fRR
. (5.18)

The mass of the field depends on the background value of Φ. Consider a back-

ground with low curvature R ∼ H2
0 ; for an F(R) theory that explains the cosmic

acceleration, the mass on this background is also order H2
0 .

We now attempt to model an isolated spherical star in a cosmological setting.

There is a time-dependent background cosmological value of Φ that we will

write as Φc(t), and we will assume that mΦ(Φc(t)) ∼ H0 on this background.

The background cosmological stress-energy tensor has trace Tc(t). We write the

field and the source as Φ = Φc(T ) + δΦ and T = Tc(t) + δT . Eq. (5.16) becomes

�Φc(t) + �δΦ − V ′(Φc(t) + δΦ) = − 1

3M2
P l

Tc(t) −
1

3M2
P l

δT . (5.19)

This can be split into an equation for the background evolution and for δΦ as

�Φc(t) − V ′(Φc(t)) = − 1

3M2
P l

Tc(t) , (5.20)

�δΦ − V ′(Φc(t) + δΦ) + V ′(Φc(t)) = − 1

3M2
P l

δT . (5.21)

The background equation, evaluated with an FLRW metric (neglecting backre-

action from the perturbation), is the companion cosmological equation of mo-

tion to the modified Friedmann equation, Eq. (5.15). It can be derived from Eq.

(5.15) by taking a time derivative and using conservation of the stress-energy

tensor.
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The key assumption will be that

V ′(Φc + δΦ) − V ′(δΦ) = m2
Φ(Φc) δΦ + O(δΦ2) . (5.22)

When the length scale of the source is much shorter than m−1
Φ and Eq. (5.22) is a

valid approximation, we will say that the field is in the perturbative regime.

We will only be concerned with the field at short distances and for short peri-

ods of time compared with cosmological distance and time scales. We consider

only weakly gravitating stars, so the d’Alembertian in Eq. (5.16) becomes a flat-

space Laplacian; we also can neglect the pressure of the star so that T = −ρ. We

also assume that the length scale of the source is much shorter than m−1
Φ , so we

can neglect the mass of the scalar field. We have

∇2δΦ = − 1

3M2
P l

ρ . (5.23)

The variables are now simply functions of r. If M is the mass of the star, it is

easy to show that the solution is

δΦ(r) =
1

12πM2
P l

M

r
=

2GM

3r
, (5.24)

where we have restored Newton’s constant in the second equality. In the per-

turbative regime Φ couples to matter with about the same strength as gravity.

Chiba’s transformation to a scalar-tensor theory [66] shows that for a spheri-

cal star in the perturbative regime, there will be large, measurable deviations

from GR. The same result can be obtained considering the parameterized post-

Newtonian metric [74] outside a spherical static star with a scalar field pertur-

bation given by Eq. (5.24).
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5.3 The Chameleon Effect

The nonlinearity of the potential V (Φ) of the scalar fields means that the ef-

fective mass (5.18) is dependent on the value of the Φ field. The cosmological

background value of the field generically has a mass of order the Hubble scale.

The field is in the perturbative regime when it is near this value of Φ. The per-

turbation of the field produced by a massive source,assuming it stays in the

perturbative regime, is

δΦ =
2

3
φN (5.25)

where φN = GM/r is the Newtonian potential of the source. If this perturba-

tion is large enough to push the field to a value where it becomes sufficiently

massive, the perturbative approximation breaks down.

The chameleon effect requires the field to become massive and hence short-

ranged at large curvatures. If the perturbation of the field reaches the value of

Φ where the scalar field becomes massive compared to 1/Rs where Rs is a char-

acteristic size of the source, then the perturbative approximation breaks down.

When the scalar field becomes very massive, the derivatives in the scalar field

equation (5.16) become insignificant. The field “locks in” to a value

Φad = Φad(ρ) (5.26)

of the field given by the algebraic equation

V ′(Φad) =
1

3M2
P l

ρ . (5.27)

This is called the adiabatic regime; the derivatives of the field are no longer

important and the field tracks the minimum of an effective potential given by

Veff(Φ) = V (φ) − 1

3M2
P l

ρ Φ . (5.28)
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Substituting the definition of the potential, Eq. (5.17), into Eq. (5.28), yields the

equation

Rad + 2f(Rad) −RadfR(Rad) =
ρ

M2
P l

(5.29)

for the curvature in the adiabatic regime, Rad. We typically consider models

where f(R) � R and fR � 1 when R� H2
0 . In this case, the field tracks the GR

value of R ≈ ρ/M2
P l.

If the field becomes short-ranged at some radius inside the star, the mass

interior to that radius does not contribute to the scalar field outside. A massive

scalar field has a Yukawa potential

Φ =
1

r
exp−mΦr (5.30)

which is exponentially suppressed at distances larger than 1/mΦ, so matter in

the regime where the scalar field has an effective mass mΦ � 1/Rs does not

contribute to the field outside. The effective coupling of the scalar field to the

matter in the star is decreased, and so deviations from GR are suppressed. The

suppression of the effective coupling to matter is called the chameleon effect. It

is this behavior that allows an F(R) theory to pass Solar System tests.

To evaluate whether the chameleon effect works for a specific source, we use

the formula for the thickness of the thin shell from [67]. This formula assumes

a spherical, static source of constant density, with a different constant density

outside. Translated into our notation we have

∆Rs

Rs
=

Φad(ρs) − Φ∞

2GMs/Rs
(5.31)

where ∆Rs is the thickness of the thin shell as compared to the radius of the

source Rs; MS and ρs are the mass and density of the source. Φad(ρs) is the
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value of the scalar field inside the source, assuming that the field is in the adi-

abatic regime. Φ∞ is the value of the scalar field far (relative to the size) from

the source. Φ∞ may be the adiabatic value of the scalar field corresponding to

the exterior density. It may instead be the cosmological value as discussed in

Section 5.2.3.

The thin shell condition is that

∆Rs

Rs
� 1 . (5.32)

The chameleon effect requires that the thin shell condition be satisfied. If this

is the case, and if the scalar field is short ranged at the adiabatic value inside

the source (m(Φad(ρs) >> 1/RS), then the scalar field outside the source is sup-

pressed to

Φ(r) =
2

3

3∆Rs

Rs

GMs

r
(5.33)

rather than the perturbative result

Φ(r) =
2

3

GMs

r
. (5.34)

5.4 Applying the Constraints

We will consider two cases when applying constraints. The first case treating

the Sun as if it were embedded directly into the cosmological background, so

that we have a single spherical source. The Solar System constraints require

two facts. First, the Sun’s Newtonian potential is GMs/Rs = 2.1× 10−6. Second,

the metric of the Sun has been measured quite precisely [74], and the effective

coupling of the sun to a long-range scalar field must be less than 2.3× 10−5. The

thickness of the thin shell then must obey the constraint ∆Rs

Rs
≤ 2.3 × 10−5, or
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|Φad(ρs) − Φinfty| ≤ 4.8 × 10−11. The example models that we will consider in

the next section have values for f(R) that are negative at R ∼ H0 and approach

zero as R goes to infinity. The density of the sun is very high compared to H0,

so Φad(ρs) is effectively zero. Therefore, we have constrained |Φ∞| ≤ 4.8×10−11.

In this case, Φinfty = Φc and we have constrained the cosmological value of the

scalar field.

The other case that we consider is for the Galaxy to have a thin shell, so

that it is in the adiabatic regime. We treat the galaxy as an idealized, uniform

density sphere. With an average density of ρg = 10−21kg/m3 and radius of about

Rg = 25 kpc, for the Galaxy GMg/Rg ∼ 10−6. The galactic density is about 5

orders of magnitude higher than the cosmological density, and so the value of

Φad(ρg) is once again negligible compared to Φinfty. We can therefore constrain

the cosmological value to be |Φ∞| =≤ 10−6.

When the scalar field is in the adiabatic regime in the galaxy, if we embed

the Sun within the Galaxy, we can be treat it as a perturbation to Φad(ρg) rather

than to Φc. In this scenario, Φ∞,Sun = Φad(ρg), yielding a constraint on the adi-

abatic field at galactic densities. Our model must now satisfy both |Φc| ≤ 10−6

and |Φad(ρg)| ≤ 4.8×10−11. We no longer treat the value of Φad(ρg) as negligible.

However, once the chameleon is tuned to satisfy the first constraint at a cosmo-

logical density, the second constraint is very easily satisfied. The next section

will explain why this is, and why these models require fine-tuning.
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5.5 Fine-Tuning

To argue that chameleon models require fine-tuning, we will write them in

terms of the cosmological curvature today, R0. We write the model in the form

f(R) = R0f̄

(

R

R0

)

, fR(R) = f̄

(

R

R0

)

. (5.35)

We can now write the constraints in dimensionless form. In terms of cosmo-

logical parameters, R0 = 6(1 − q0)H
2
0 , where H0 and q0 are the Hubble and

deceleration parameters respectively. Taking the most probable value from [71],

we will use q0 = −0.81.

Our first constraint is Φc ∼ −10−6, which translates directly into f ′(1) ∼

−10−6. More difficult to deal with is the Friedmann equation constraint (Eq.

(5.15)). The Hubble and deceleration parameters are reasonably well-measured,

but the jerk is more uncertain. We will simply neglect the term containing fRR.

The Friedmann equation becomes

R0

6(1 − q0)
+

1

6
R0f̄ + q

R0

6(1 − q0)
f̄ ′ = ΩM

R0

6(1 − q0)
. (5.36)

This produces the constraint f̄(1) ∼ −.4. We see that introducing the curvature

scale R0 is a natural choice because |f̄ | is of order unity. However, this function

is not natural because the dimensionless derivative is 6 orders of magnitude

smaller. Any function that satisfies both the condition on f̄(1) and f̄ ′(1) must be

fine-tuned.

As an example, there is a class of chameleon models with a transitional be-

havior from high to low curvatures. At high curvature, f is effectively constant

and so it mimics a cosmological constant. At low curvatures, f goes to zero. Hu
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and Sawicky [70] consider a model of the form

f(R) = − c1H
2
0

1 +
(

R
c2 H2

0

)−n , (5.37)

where c1 and c2 are dimensionless parameters and n is an integer. Starobinsky

[76] considers

f(R) = c1H
2
0

(

(

1 +
R2

c22 H
4
0

)−n

− 1

)

. (5.38)

We have taken the liberty of altering the notation. Also, we have used the cur-

vature scale H2
0 to clarify the physical meaning. Both models have tunable pa-

rameters n, c1, and c2. The degree of the power law is controlled by n, the value

of the cosmological constant by c1, and c2 controls the value of the curvature at

which the transition begins.

We use the same constraints as in the more general case, except that now

we use the full Friedmann equation without neglecting fRR. The parameter n is

freely specifiable, so we will consider n = 1 and n = 2. In the Hu and Sawicki

model with n = 1, c2 = 2.8 × 10−5. With n = 2, we have c2 = 1.2 × 10−2. The

n = 1 Starobinsky model coincides with the Hu and Sawicki model with n = 2,

so we will consider n = 2, which gives c2 = 3.1 × 10−1. In all cases, c1 ≈ 4.16.

There is a fine-tuning required for the model to work; the fine-tuning is that

the mass scale of the cosmological constant is quite different from the scale at

which the transition to zero effective cosmological constant occurs. In our no-

tation, c1 controls the value of the cosmological constant while c2 controls the

value of R at which a transition occurs to behavior that is distinguishable from

a cosmological constant.

As n increases, the tuning becomes seemingly less extreme. However, for

none of the models considered is c2 more than one. This represents a transition
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that becomes significant when R ≈ H2
0 , while today and in the past R > 9H2

0 .

5.6 Conclusion

We have reviewed F(R) gravity, and its behavior in both the perturbative and

chameleon regimes. The chameleon mechanism is required to hide deviations

from General Relativity in Solar System tests. If the Galaxy is assumed to be in

the adiabatic regime, these Solar System tests are easily satisfied. However, the

requirement that the Galaxy be in the adiabatic regime puts strong constraints

of the parameters in the models that we consider. We have made a general

argument that any model which satisfies the constraints must be fine-tuned. We

gave an example of two models where we found the values of the parameters

that had to be fine-tuned for the F(R) theory to be viable. We have also shown

that these models are therefore nearly equivalent to a cosmological constant,

with corrections that must be tuned to be very small. These corrections define a

curvature scale which is at least an order of magnitude smaller (for n = 1 and

n = 2) than the effective cosmological constant. The curvature scale at which

the corrections to the effective cosmological constant become important is much

lower than the curvature scale of the Universe today. While we have not ruled

out these models, this fine-tuning makes them less attractive as an alternative

to the cosmological constant.

107



BIBLIOGRAPHY

[1] J.D. Brown and J.W. York, Jr., Phys. Rev. D 47, 1407-1419 (1993)

[2] C-C.M. Liu and S-T. Yau, Phys. Rev. Lett. 90, 231102 (2003)

[3] R.A. Hulse and J.H. Taylor, ApJ Lett. 195 L51 (1975)

[4] S.M. Carroll, Spacetime and Geometry (Addison Wesley, CA) (2004)

[5] F. Zwicky, Physica Acta 6, 124 (1933)

[6] V.C. Rubin, W.K. Ford, and N. Thonnard, ApJ 238, 471 (1980)

[7] E. Corbelli and P. Salucci, MNRAS 311, 441 (2000)

[8] D. Clowe et.al., ApJ Lett. 648, L109 (2006)

[9] M. Kowalski et.al. arXiv:0804.4142v1

[10] H. Bondi, M.G.J. van der Burg, A.W.K. Metzner, Proc. Roy. Soc. Lond. A269,
21-52 (1962)

[11] R. Arnowitt, S. Deser, C.W. Misner (1962), ”The Dynamics of General Rela-
tivity”, in Gravitation: An Introduction to Current Research, edited by L. Wit-
ten (New York: Wiley)

[12] C.W. Misner, Phys. Rev. 130, 1590-1594 (1963)

[13] L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields (Addison-
Wesley, Reading, MA) (1962)

[14] J.D. Brown, S.R. Lau and J.W. York, Jr., Phys. Rev. D 59, 064028 (1999)

[15] H.W. Braden, J.D. Brown, B.F. Whiting, and J.W. York, Phys. Rev. D 42,
3376-3385 (1990)

[16] J.W. York, Phys. Rev. D 33, 2092-2099 (1986)

[17] L.B. Szabados, Living Rev. Relativity 7, (2004), 4. URL (cited on 05/27/2006):
http://www.livingreviews.org/lrr-2004-4

108



[18] C. Misner, K. Thorne, and J. Wheeler, Gravitation (W.H. Freeman and Co.,
NY) (1973)

[19] S.R. Lau, Class. Quant. Grav. 13, 1509-1540 (1996)

[20] I.S. Booth and R.B. Mann, Phys. Rev. D 59, 064021 (1999)

[21] R.J. Epp, Phys. Rev. D 62, 124018 (2000)

[22] A. Armenti, Jr., in Proceedings of the 8th International Conference on Gen-
eral Relativity and Gravitation - GR8, Waterloo, Ontario, Canada), p. 72
(1977)

[23] S. W. Hawking and D. N. Page, Comm. Math. Phys. 87 no. 4, 577–588 (1983)

[24] J. Maldacena, Adv. Theor. Math. Phys. 2 231 (1998); hep-th/9711200

[25] E. Witten, Adv. Theor. Math. Phys. 2, 505–532 (1998) hep-th/9803131

[26] G. ’t Hooft (1993), gr-qc/9310026

[27] A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers, Phys. Rev. D 60
064018 (1999); hep-th/9902170

[28] A. Chamblin, R. Emparan, C. V. Johnson, and R. C. Myers, Phys. Rev. D 60,
104026 (1999); hep-th/9904197

[29] S. Carlip and S. Vaidya, Class. Quant. Grav. 20, 3827–3838 (2003)

[30] G. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2752–2756 (1977)

[31] J. W. York, Phys. Rev. D 33, 2092–2099 (1986)

[32] B.F. Whiting and J.W. York, Phys. Rev. Lett. 61, 1336-1339 (1988)

[33] A. Abramovici et. al., Science, 256, 325-333 (1992).

[34] Advanced LIGO.
http://www.ligo.caltech.edu/advLIGO

[35] E. D’Ambrosio, R. O’Shaughnessy, S. Strigin, K. S. Thorne and S. Vy-
atchanin, [arXiv:gr-qc/0409075].

109



[36] R. O’Shaughnessy, S. Strigin and S. Vyatchanin, [arXiv:gr-qc/0409050].

[37] J. Agresti, Y. Chen, E. D’Ambrosio and P. Savov, [arXiv:gr-qc/0511062].

[38] P. Savov and S. Vyatchanin, Phys. Rev. D 74, 082002 (2006). [arXiv:gr-
qc/0409084]

[39] E. D’Ambrosio, Phys. Rev. D 67, 102004 (2003).

[40] M. Bondarescu, Ph.D. Thesis, California Institute of Technology.
http://resolver.caltech.edu/CaltechETD:etd-05282007-231321/

[41] J. Sidles and D. Sigg, LIGO Report Number P030055-B (2003).
www.ligo.caltech.edu/docs/P/P030055-B.pdf

[42] M. Bondarescu and K. S. Thorne, Phys. Rev. D 74, 082003 (2006). [arXiv:gr-
qc/0409083].

[43] M. Tarallo, J. Miller, J. Agresti et.al., Appl. Opt. 46, 6648-6654 (2007).

[44] M. Tarallo, Thesis (Tesi di Laurea Specialistica), Universita di Pisa.
http://etd.adm.unipi.it/theses/available/etd-09092005-145828/

[45] G. Lovelace, Class. Quantum Grav. 24, 4491 (2007). gr-qc/0610041.

[46] R. O’Shaughnessy, Class. Quantum Grav. 23 7627 (2006).

[47] Y. Levin, Phys. Rev. D 57, 659 (1998).

[48] Y. Liu and K. Thorne, Phys. Rev. D 62, 122002 (2000).

[49] J. Agresti and R. DeSalvo, LIGO report LIGO-T050269-00-R)
http://www.ligo.caltech.edu/docs/T/T050269-00/T050269-00.pdf

[50] V. Pierro, V. Galdi, V. Castaldi, I. Pinto, J. Agresti, and R. DeSalvo,
[arXiv:0707.0579]

[51] M. Bondarescu, Y. Chen and O. Kogan, in preparation.

[52] P. Barriga, B. Bhawal, L. Ju, D. Blair, J. Opt. Soc. Am. A 24, 1731 (2007).

110



[53] V. Braginsky, S. Strigin, S. Vyatchanin Phys. Lett. A 287 331 (2001).
[arXiv:gr-qc/0107079]

[54] V. Galdi, G. Castaldi, V. Pierro, I. M. Pinto, J. Agresti, E. D’Ambrosio and
R. DeSalvo, Phys. Rev. D 73, 127101 (2006). [arXiv:gr-qc/0602074].

[55] M. Abramowitz and I. Stegun, “Handbook of Mathematical Functions”,
Handbook of Mathematical Functions, New York: Dover, 1972.

[56] O. Miyakawa et.al., Phys. Rev. D 74, 022001 (2006).

[57] B. Saleh and M. Teich, “Fundamentals of Phototonics,” John Wiley and
Sons, USA, 1991.

[58] J. Boyd, “Chebyshev and Fourier Spectral Methods,” Dover, NY, 2001.

[59] V. Braginsky, S. Strigin, S. Vyatchanin, Phys. Lett. A 305 111 (2002).
[arXiv:gr-qc/0209064]

[60] C. Zhao, L. Ju, J. Degallaix, S. Gras, D. Blair Phys. Rev. Lett. 94 121102
(2005). [arXiv:gr-qc/0502079]

[61] V. Braginsky, A. Gurkovsky, S. Strigin, S. Vyatchanin, Phys. Lett. A 362 91
(2007). [arXiv:gr-qc/0608007]

[62] GNU Scientific Library:
http://www.gnu.org/software/gsl/

[63] IT++: http://itpp.sourceforge.net/

[64] AMD Core Math Library: http://www.amd.com/acml

[65] S.M. Carroll et.al., Phys. Rev. D 70, 043528 (2004)

[66] T. Chiba, Phys.Lett. B 575, 1 (2003)

[67] J. Khoury and A. Weltman, Phys. Rev. Lett 93, 171104 (2004)

[68] J. Khoury and A. Weltman, Physical Review D 69, 044026 (2004)

[69] P. Brax et.al., Physical Review D 70 123518 (2004)

111



[70] W. Hu and I. Sawicki, Phys. Rev. D 76, 064004 (2007)

[71] D. Rapetti et.al., MNRAS 375, 1510 (2007)

[72] T. Faulkner et.al., Phys. Rev. D 76, 063505 (2007)

[73] I. Navarro and K. Van Acoleyen, JCAP 0702, 022 (2007)

[74] C.M. Will, Living Reviews in Relativity 9, 3, (2006)
URL (cited 07/2008) http://www.livingreviews.org/lrr-2006-3

[75] G. Hinshaw et.al., arXiv: astro-ph/0803.0732

[76] A.A. Starobinsky, JETP Lett. 86, 157 (2007)

112


