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CHAPTER 1 

IN TRO D U CTIO N

1.1 M otivation

As physicists and non-physicists alike, we are intrigued by the most fundamental 

questions about The Universe, namely: ’What is space, what is time, and what 

is matter?’ In the form of General Relativity and Quantum Field Theory, funda­

mental physics has made tremendous progress in addressing these questions, and 

as scientific theories they have proven very robust in their ability to describe phys­

ical reality. Both of these theories have made highly non-trivial predictions which 

have been empirically verified with tremendous confidence; Cosmology, armed with 

the tools of general relativity and statistical mechanics, has predicted and verified 

the expansion of the universe, gravitational radiation, the cosmic microwave back­

ground radiation (CMB), and has singled out the theory of cosmological inflation 

as the paradigm in which we should investigate the earliest moments in our uni­

verse’s history. Quantum field theory (in the form of the standard model) has 

predicted and found new particles, and made empirical predictions verifiable to 

seven decimal places, the most accurate of any scientific theory.

By any previous standard, GR and the SM are fundamental theories. But it can 

be shown that the predictions of these theories must become inaccurate in certain 

(not yet possible) experiments. Firstly, GR is not a quantum theory. This means it 

is a theory of waves, and not of quantized waves (which we call particles in QFT). 

In the year 1900, it was shown by Max Planck that by postulating electromagnetic 

waves to be quantized waves (photons), one could exactly account for the observed 

radiation of hot objects. A similar experiment cannot be performed directly for

1
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gravity. Efforts to quantize gravity in the same spirit as the other fields in the SM 

have been unsuccessful. Classically speaking, gravity is surprisingly similar to the 

other forces we have identified in our universe; all are geometric. Gravitational 

forces can be attributed to curvature of spacetime, while the Strong, Weak, and 

Electromagnetic forces can be attributed to curvature in a richer spacetime called 

a fiber bundle. Quantum mechanically, these four forces are naturally described in 

terms of particle exchanges, the photon for electromagnetism, and the graviton for 

gravity. Because gravity is so weak, no experiment in the foreseeable future can 

provide direct evidence for the existence of gravitons.

Lacking a quantum gravity, problems arise within QFT when one tries to in­

corporate GR. Specifically, it appears that information is lost when the particles 

in our universe interact with black holes. While this is not in violation with any 

experiment, it is at odds with the predictive nature we assume quantum theories 

to have.

The word we use to describe attempts to reconcile two separate theories is 

’unification.’ The only theory which has done this for gravity and quantum field 

theory is string theory. The largest problem facing string theory is due to the 

tremendous success of GR and the SM: The predictions of string theory are that 

we live in a universe that contains both gravity and gauge theory, both of which 

are already known. The point where string theory predicts this to be observably 

different from GR+QFT is out of reach of all foreseeable experiments. One partial 

exception to this is supersymmetry, which is possibly detectable at the LHC. Of 

course string theory allows for there to be no super symmetry, too! The versatility 

of string theory is both frustrating and unexpected. String theory is highly con­

strained as a theory, meaning it cannot be consistently modified. As a,n analogy,
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string theory would be like a magic square. Change any number and it doesn’t 

work. In this picture, the standard model of particle physics would be more like 

one’s phone number: almost any one could work provided it has ten digits, but 

only one is the right one.

Such mathematical stringency led early string theorists to assume they had 

found the theory of everything, and so by improving our computational power we 

could make arbitrarily many predictions about spacetime and matter. Unfortu­

nately it seems there are quite a few magic squares, although only one of them 

can describe the universe around us. It is very possible that there is no theory of 

everything, but if string theory is to be the closest we have, it needs to at least be 

correct; its rows and columns must model the nature we observe. Of course there 

is no way to measure each row and column of our universe, but much progress 

would be made by predicting just one new number in the specific ’’magic square” 

representing our string vacuum. There is much confidence among physicists that 

string theory is correct, partially due to it being the only candidate for unification 

of all observed forces in nature, but without a falsifiable prediction this confidence 

is too subjective to be science. If we were a strange species living on a small comet, 

we might have discovered string theory before we discovered gravity. Then string 

theory would have the credibility of an empirical science. Alas this is not the case, 

and so the search continues.

1.2 String Theory

String theory is built on the assumption that fundamental particles are actually 

one-dimensional objects (’strings’) whose individual properties are characterized 

by which vibrational modes have been excited. By applying quantum mechanics
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to these strings, one is automatically forced to accept that these strings propagate 

in nine spacial dimensions according to the laws of quantum mechanical supersym- 

metric GR and gauge theory. In addition, the theory contains higher dimensional 

membranes and a dynamical coupling constant. The theory has several dynamical 

’parameters’ which smoothly interpolate between many different vacuum (lowest 

energy) configurations, a small fraction of which closely resemble our universe. 

The many dynamical fields in string theory can be easily expressed in geometric 

terms, and even the coupling constant can take on the geometric character of a 

tenth spacial dimension. This is known as M-theory, and is remarkable because 

strings and membranes can interchange roles as fundamental degrees of freedom. 

Some predictions that are inescapable in string theory are the existence of extra 

dimensions, an infinite tower of ever heavier and higher spin particles, and grav­

ity as we know it (GR). Unfortunately, the two not-yet-measured predictions are 

unlikely to ever be tested by experiment. Still, the remarkable success of string 

theory are overwhelming. String theory predicts a consistent quantum gravity 

through the exceedingly delicate cancellation of inconsistent behavior (anomalies 

and divergences), it predicts supersymmetry (which may soon be discovered at 

the LHC), and it contains Dirichlet Branes which can generate exponential hier­

archies of different forces and drive inflation. All this makes string theory a very 

promising scientific theory worthy of continued investigation. Calculational diffi­

culty in the strongly coupled regimes of string theory has been partially addressed 

through profound dualities such as the AdS/CFT correspondence whereby certain 

supersymmetric gauge theories are equivalent to complimentary regimes of string 

theory.
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1.3 String Cosmology

String theory’s most resolute predictions (like the existence of extra dimensions) 

are most likely out of reach of all future experiments. This is because the energy 

scales required to probe the expected features are astronomically high. These high 

energy scales seem irrelevant to physics in the universe today, but we know that 

the universe was once much hotter than it is now. The farther back we look in 

the universe’s history, the larger the relevant energy scales are, and at some early 

time, string theory (if correct) must have been the only valid description of it. 

For this reason, cosmology seems to be the most promising tool for investigating 

the viability of string theory. This is especially true in light of recent progress in 

early universe cosmology. The recent data produced by the Wilkenson Microwave 

Anisotropy Probe (WMAP) team has decisively selected the theory of cosmologi­

cal inflation as the correct description of how our universe got so uniform and flat, 

and how the seeds of galaxies were sewn to allow for our very existence. A re­

markably intuitive description of this is possible using string theory: the so called 

Brane World [1,2]. This picture is the simplest known paradigm useful for de­

scribing the four known forces, and how they conspired to produce the universe we 

observe today. The Brane World/Brane Inflation scenario is composed of a (pos­

sibly warped) string compactification containing stacks of D-Branes upon which 

the standard model lives. Additional brane anti-brane pairs gave rise to inflation, 

and the subsequent collision heated up the open string degrees of freedom (SM). 

Using Brane Inflation and the Brane World as a starting point, we can calculate 

what features a universe must have, and then search for them using technology 

available today or in the near future. One of the most straightforward predic­

tions [3,4] to come out of the Brane World is the existence of so-called cosmic
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strings. Cosmic strings are one dimensional topological defects, like ultra-fine tor­

nadoes snaking through the cosmos at rapid speeds. Cosmologists first predicted 

cosmic strings would kick around the smooth matter in the universe, enabling 

structures like galaxies to form. We now know that inflation must be responsible 

for this, eliminating the hypothesis of cosmic string sourced density perturbations. 

Their relevance was reborn with the invention of the Brane World. Brane Inflation 

once again necessitates the existence of cosmic strings, at some level. Much of this 

work is dedicated to understanding and describing these potential fingerprints left 

on our universe by string theory.

• *
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CHAPTER 2 

COSMOLOGY

When we look deep into the universe today, we see our entire past light cone 

projected onto the two dimensional sky. On the largest scales, the features seen 

are isotropy, homogeneity, and the Hubble expansion rate (and its time variation). 

These observations determines the geometric evolution of the universe, and we 

can write down a metric quite easily which satisfies all three constraints as well 

as Einstein’s equations. The coupled Boltzmann-Einstein equations tell us how 

matter and geometry interact, giving a rather complete picture of the history of the 

universe. This works quite well all the way back to the last 55 e-folds of inflation, 

before which essentially nothing can be measured, in principle. Most physicists 

believe inflation is the earliest empirically relevant phase of the universe, and it 

is where string theory probably plays a distinguished role in the form of Brane 

Inflation. Inflation is an exponential expansion of the universe resulting from 

potential energy domination of spacetime.

2.1 History of the Universe

An open question in quantum cosmology is how the universe was created. The 

most intuitive approach is analogous to the quantum mechanical production of 

electron-positron pairs from “nothing” in an external electric field [5]. The instan- 

ton approach to this problem seems to allow one to calculate the probability [6] of 

tunneling to a given inflationary universe from “nothing.” Since this is a tunnel­

ing process, it is by definition off shell. This is why one speaks of tunneling from 

’’nothing,” meaning no classical space time. The earliest point in this universe is an 

off shell three-sphere of zero volume, and this phase ends with the emergence of a

7
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classical (on shell) de Sitter universe. Any initial structure or geometry is rendered 

unobservable by inflation, especially eternal inflation. Thus the earliest empirically 

relevant phase of the universe is that of an inflationary (de Sitter) vacuum. This is 

characterized by a vacuum dominated by positive potential energy, and it is thus 

exponentially expanding for a length of time over which linear scales are stretched 

by a factor of at least e60 and possibly much more. Toward the end of inflation, 

the universe is completely empty, cold, and smooth. If the inflationary potential 

is flat enough, inflation is eternal, meaning the universe will always be dominated 

by still inflating volume. The vacuum energy is dynamical in the sense that it is 

the potential energy of a scalar field, and so quantum mechanical variation results 

in scalar (density) perturbations to the early universe.

These primordial curvature perturbations are due the quantum mechanical vari­

ance of the inflaton field. This variance is imposed on every scale smaller than the 

horizon, and is frozen in as soon as the scale leaves the horizon. As the expansion 

of the universe slows, the perturbations re-enter the horizon, and subsequently 

evolve much like acoustic waves. These perturbations leave a visible signature on 

the surface of last scattering as they evolve. The primordial density (curvature) 

perturbations are adiabatic, Gaussian, and nearly scale invariant. Some of these 

will grow large enough to become non-linear, and they survive to the present day 

in the form of large scale structure.

Because the end of inflation can be viewed as a second order phase transition, 

one might expect the formation of topological defects. String theory predicts that 

co-dimension two defects (cosmic strings) will be copiously produced, while other 

defect production is suppressed [3,4,7]. Thus a network of cosmic strings will 

appear immediately after inflation, formed much in the same way as vortices in
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superconductors. Causality forbids the strings to be correlated at lengths greater 

than the Hubble length, although it is not inconceivable that tachyon perturbations 

will be correlated with the Gaussian inflaton perturbations. In any case, the non­

linear evolution of cosmic strings will result in perturbations that are completely 

uncorrelated with the adiabatic perturbations.

The universe will have acquired particles (possibly for the first time) through 

’’reheating” when the vacuum potential energy is converted to kinetic energy which 

excites the fields of all interacting particles (including dark matter) in a highly non- 

adiabatic process.

Cosmic strings leave wakes of over-density behind them because of their deficit 

angle geometry. These wakes, as well as finite string loops are additional sources 

of density perturbations that can seed structure formation. Although a pure ten­

sion cosmic string exerts no gravitational force on matter (or other strings), small 

scale wiggles including cusps and kinks endow the string with an effective matter 

density, which contributes to formation of density perturbations [8]. Perturbations 

can be classified by how their spacial components transform. Density perturba­

tions are scalar perturbations because they perturb the local 3-D curvature scalar, 

or what turns out to be equivalent, the scalar Newtonian potential. The other 

perturbations are thus vector (sourced by defects like cosmic strings) and (sym­

metric traceless) tensor, which are gravity waves. Non-adiabatic perturbations are 

called isocurvature perturbations. Isocurvature perturbations correspond to local 

perturbations to the equation of state (but not density). Sub-horizon isocurva­

ture modes subsequently evolve to produce density perturbations, since matter is 

pushed around. Tensor perturbations are primordially generated by the quantum 

mechanical variation of the graviton field. They are suppressed relative to scalar
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perturbations by the slow-roll parameter e < 1/60. Because tensor perturbations 

are not coupled to density perturbations (or vector perturbations, for that matter) 

they are proportional only to the Hubble rate during inflation. P+)X(fc) = 8~^//2

The homogeneity and isotropy of the universe is preserved on large scales, and 

so we may calculate the evolution of the now hot radiation dominated universe 

with the Priedmann-Robertson-Walker metric, whose only degree of freedom is the 

scale factor a(t). The Hubble rate is defined as H  =  A Thermal equilibrium is 

maintained for all particles whose interaction rate is greater than the expansion 

rate.

The Boltzmann-Einstein equations predict not only how the size of the uni­

verse will evolve, but how the matter in the universe will evolve, specifically: The 

energy density of radiation will scale like 1/a4, of matter like 1/a3, and of non­

interacting cosmic strings like 1/a2. A remaining vacuum energy density does not 

scale with expansion. This correctly predicts that matter will begin to domi­

nate the universe as the radiation is scaled away. We observe that cosmic strings 

do not dominate, as their 1/a2 scaling would naively imply. But cosmic string 

scaling is naturally modified by inter-commutation, which leads to kink and loop 

formation. Loops decay to gravitational radiation, which scales like 1/a4. Simu­

lations suggest a scaling solution whereby the number of long strings per Hubble 

volume is constant at about ten. String theory could modify this due to lower 

inter-commutation probability and network formation [9-12]. Today, as scaling 

would predict, the universe is vacuum energy dominated. The matter content of 

the universe determines both the evolution of the scale factor and the evolution of 

perturbations [13]. During the matter era, perturbations can finally grow large and 

become non-linear. This is because diffusion is mainly due to radiation. Baryonic
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matter cannot grow perturbations, because it remains coupled to the photon fluid 

until well after matter-radiation equality, and even for a while after recombination, 

due to the large number of photons present.

When the primordial density perturbations re-enter the horizon, evolution oc­

curs whereby over-dense regions begin gravitational collapse and heat up until the 

radiation pressure of the baryon-photon fluid builds enough to stop and reverse 

this infall. These are appropriately called acoustic oscillations, and the oscillation 

frequency depends on the sound speed of the baryon-photon fluid. Each pertur­

bation’s amplitude is related to the baryon density present. This is because more 

baryons mean the initial pressure is farther from the equilibrium pressure. Simi­

larly, more matter causes the return bounce (underdensity) to be less impressive, 

since the overdensity gravitationally prevents photons from leaving the potential 

well. Isocurvature perturbations first need to create overdensities before they can 

collapse. Isocurvature perturbations are 90 degrees out of phase with adiabatic 

perturbations of the same frequency [14]. Like all sound waves, diffusion is impor­

tant for wavelengths shorter than the mean free path of the fluid. This will damp 

the perturbations, and so one expects smaller scale perturbations to die out before 

last scattering. Because diffusion prevents the growth of perturbations, the matter 

dominated era marks the time when perturbations can grow and become non­

linear. Inflation predicts density perturbations that are six times larger than the 

observed temperature perturbations. Photon perturbations are not fast growing, 

unlike matter perturbations, and hence photon perturbations remain linear even 

up to the present time. [13] Perturbations at teq of order 10~5 are exactly what is 

needed to produce non-linear structure in the range of 1 Mpc to 10 Mpc [15]

Last Scattering is the relatively short epoch around z = 2* =  1100 when elec­
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trons and protons combined, making the universe transparent. Before this time, 

the universe consisted of a baryon-photon fluid and cold dark matter. We know 

that large modes re-entered the horizon at later times, and so one would expect 

those that entered after last scattering would not have undergone acoustic oscilla­

tions. More specifically, one would expect that the length of time between horizon 

entering and last scattering would determine the phase of oscillation at last scat­

tering. The acoustic peaks seen in the microwave anisotropy thus correspond to 

scales that evolved to maximum (or minimum) density just before last scattering. 

The density troughs (but Doppler peaks) correspond to scales that were transi­

tioning between maximum and minimum density when the photons decoupled. 

Because the sound speed is lowered when more matter is present, the oscillations 

take longer, and the acoustic peaks are shifted to higher k. Additionally, the 

slower fluid speeds caused by more matter will cause the Doppler effect to be less 

important. Doppler peaks are 90 degrees out of phase with density peaks since 

velocity is 90 degrees out of phase with density in a sound wave. Cosmic strings 

contribute to Doppler peaks because of the velocity fields they induce in passing 

matter. When diffusion is important, light can travel far enough to exhibit local 

quadrapole anisotropy. This quadrapole anisotropy is necessary for polarization to 

occur (via Compton scattering).

The inhomogeneities at last scattering describe the anisotropy we see today. 

Because the plasma is optically dense for most scales, any co-moving observer at 

the time of recombination would observe mainly a monopole and, for smaller scales 

some dipole anisotropy. When diffusion is important, light can travel far enough 

to even transmit local quadrapole anisotropy. The effective monopole anisotropy 

at the time of recombination (0(fc, ?7*)t=o + $(k, rjt )) is converted to the anisotropy
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we see today simply by relating linear scales to angular scales at the distance to 

the surface of last scattering. (The flatness of the universe is measured by this 

correspondence.) Notice the effective photon anisotropy depends on the sum of 

the photon and gravitational potential inhomogeneities. This is the Sachs-Wolfe 

effect. The hotter regions at last scattering correspond to the more dense regions, 

and so the light we see must have climbed out of the gravitational potential to 

reach us. This effect is so strong for large scales that the over-dense (and thus 

hotter) regions appear cold on the sky. For smaller scales, which entered the 

horizon earlier (radiation dominated era) the radiation pressure acts to cancel 

the Newtonian potential. Matter-radiation equality occurs not much earlier than 

recombination, and so after recombination, left over radiation is significant. Unlike 

in a matter dominated universe, this causes gravitational potentials to vary with 

time, and so light traveling into and out of a gravitational potential will not emerge 

at the same frequency. This integrated Sachs-Wolfe effect thus contributes to 

temperature perturbations on smaller scales. They are of order ten percent. When 

cosmic strings push matter around after teq) their potentials distort the adiabatic 

perturbations through both the Sachs-Wolfe and Doppler effects.

In the tightly coupled limit, the baryon-photon fluid can be described entirely 

by its monopole (pressure) and dipole (velocity, and hence Doppler) contribution 

(perfect fluid like). This is because in the tightly coupled regime, the wavelength 

of any lasting perturbation has k «  1/Amjv and so all directions look very similar 

[13]. A quadrapole moment is relevant only when diffusion is important. A local 

quadrapole (0 2 (A ?/*)) anisotropy to temperature perturbations leads to linear 

polarization via Compton scattering.

Because scalar perturbations are axially symmetric, the polarization associated
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with them will be E-mode (gradient) polarization. The quadrapole anisotropy 

induced by vector and tensor perturbations, however can also contribute to 13- 

mode (curl) polarization. Two important sources of B-mode polarization are those 

due to vector mode polarization from cosmic strings, and those due to tensor 

perturbations. E-mode polarization corresponds to a gradient in the polarization 

strength that is parallel to the direction of polarization. The observables from the 

CMB include not only temperature correlation (C f T) but also E-mode, B-mode, 

and temperature-E cross correlation. Parity conservation predicts C f B = C f B = 

0 .

As the CMB free streams from the surface of last scattering to us, it may inter­

act with moving Cosmic Strings. Unlike a static cosmic string, a moving cosmic 

string can blue-shift passing light. One would see discrete steps in temperature 

given by [16]

S£ = (2.1)

where n is the outward pointing unit vector. The radiation is blue-shifted behind 

the cosmic string. This is a non-Gaussian perturbation, although the combined ef­

fects of many randomly moving strings makes detection via non-Gaussianity (non­

vanishing three-point function) difficult. The Kaiser-Stebbins effect exists only 

after last scattering, but similar physics before last scattering is the source of 

Doppler and integrated Sachs-Wolfe effects due to cosmic strings.

At some point the remaining matter in the universe became re-ionized. This 

must have happened relatively recently (z = 17 ±  5), and it is not observed to 

be important in the CMB A complete CMB observation allows one to know the 

polarization and temperature seen in any direction (or equivalently its deviation 

from the mean) = 0(0, (/?,7y0). We can expand this information into spherical
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harmonics via

ai,m = J  Q{9,(p)Yitm(6,<p)dto (2.2)

For Gaussian perturbations we would expect

Q‘l,m  >  =  0

^  Q'l,mQ'l',Tn'Q'l",m" ^  =  0

as is the case with free quantum fields. Because we have only one universe to 

observe, it is difficult to test these equations completely. But since the number 

of ms for each value of I is 2 1  +  1, and the right hand side of each equation is 

independent of m, one can measure the RHS of each equation by treating m as 

the ensemble index. This gives us the empirical value of Ci with statistical error

A Ci

a \cosmicvariance —

2.2 Inflation

Cosmological inflation is profound due to the striking predictions and subsequent 

verifications the theory has produced. It is also appealing that so many attractive 

features are contained in such a concise idea. The early motivation for inflation was 

to solve the apparent contradiction between the copious amounts of topological 

monopoles predicted by grand unified theories (GUTs) and the observed age of 

the universe which requires extremely low abundances of such heavy particles. 

Another seemingly unrelated conceptual problem remedied by inflation is the so 

called horizon problem. The FRW metric we use to describe our universe predicts 

that most of our visible universe has only recently come into causal contact. It

21 + 1
(2.3)
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seems odd that the universe could be so uniform after emerging from the big 

bang singularity, since no causal physics could have played a role in this. A third 

problem that inflation can solve is the flatness problem. The expansion rate of the 

universe after the big bang must have been fine tuned to extraordinary accuracy 

with the matter content to allow for a universe which has lived so many times 

longer than the Planck time [15], and yet has no obvious negative (or positive) 

spacial curvature. A generic big bang singularity could have produced a universe 

with any Hubble rate, so why such a large, but not too large of one?

The most stunning success of inflation comes in the form of the large scale 

structure seen in the universe today. Absent inflation, today’s universe would be 

a highly uniform, low density gas of hydrogen. In order for stars, galaxies, and 

clusters to form, the matter density of the universe needs to be perturbed, and 

these perturbations need to grow large enough that gravity can overcompensate the 

smoothing effect of cosmic expansion. Cosmic strings are also capable of seeding 

structure formation, but WMAP has conclusively shown that they play at most a 

secondary role to inflation.

2.2.1 Monopole, Horizon, and Flatness Problems

The solutions to the monopole, horizon and flatness problems are remarkably 

straightforward in the inflationary paradigm. Since the GUT scale is around 1016 

GeV, one can conclude that at least one monopole per Hubble volume is produced 

when the temperature falls below this scale. Inflation dilutes any previous matter 

density to insignificant amounts, so if the reheating scale is below the GUT scale, 

no new monopoles are formed.

The horizon problem is solved by the fact that the largest observable scales (for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



17

definiteness, take as a fiducial scale our current Hubble radius) must have been 

sub-horizon at some point during inflation. If we follow the scale of our current 

Hubble radius back to the very end of inflation, it is super-horizon (acausal). This is 

because the Hubble radius at the end of Inflation was very small (rapid expansion), 

and this overcompensates for the fact that this fiducial scale has been shrunk by 

the scale factor. But as we go farther back (into the inflationary epoch) the Hubble 

radius does not grow any further: a de Sitter phase is defined by a time independent 

Hubble rate. Since the fiducial scale shrinks with the scale factor, eventually the 

scale becomes sub-horizon (assuming enough e-folds are present, in this case 60), 

thus allowing for correlations in physical quantities such as energy density. Thus 

it is entirely expected that the temperature of the universe on opposite sides of us 

can be correlated up to one part in 105. In effect, inflation predicts that our entire 

visible universe was once extremely small, and thus in causal contact.

The flatness problem is solved since a de Sitter phase exponentially increases 

the spacial size of the universe without becoming less dense. This expansion will 

thus dilute the three-dimensional curvature to near zero even if it starts with a 

rather large value (like ~  1 in Planck units). This requires at least 60 e-folds, 

assuming large initial curvature. When the vacuum energy is thermalized into 

radiation, the energy density will of course be very near the critical value, since 

the expansion rate is determined by the inflation scale. The inflation scale is 

essentially the reheating scale, and this fixes the energy density to be extremely 

close to the critical density.
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2.2.2 Density Perturbations

The most empirically significant signature of inflation is the density perturbations 

revealed through the CMB and large scale structure. The quantum mechanical 

variance of the inflaton field produces the primordial curvature (density) pertur­

bations. This variance is imposed on any scale k that is sub-horizon (k > aH), 

and its magnitude is determined by the scale of inflation. Any perturbations 

become non-dynamical as soon as they leave the horizon, and remain so until 

they re-enter the local horizon some time after inflation ends. Very short scales 

were thus frozen toward the end of inflation, and became reanimated soon after­

ward. The largest scales were the first to freeze during inflation, and they don’t 

begin to evolve again until comparatively late. Of course, we cannot observe per­

turbations on scales larger than our Hubble radius. The evolution takes place 

governed by the Boltzmann-Einstein equations. The primordial density (curva­

ture) perturbations are adiabatic, Gaussian, and nearly scale invariant. Adiabatic 

refers to the fact that curvature perturbations yield zero variation in the number 

density per co-moving volume over all forms of matter [15]. Gaussianity is due 

to the fact that the inflaton field has very little self-interaction, and thus con­

sists of effectively independent Fourier modes. Each mode obeys the Schrodinger 

equation of a damped harmonic oscillator. (The damping is due to the expan­

sion rate.) This leads to a vanishing n-point correlation functions for all but 

the power spectrum (n =  2). Non-Gaussianity (if detected) will reveal devia­

tions from the simple slow-roll class of models. The power spectrum P<j>(/c) is 

defined by < $(k)$*(k') >= (27r)3P<i>(fc)<53(/c — k') and has /c-dependence given 

by k3 P%(k) oc kn~l. It is called scale invariant if n =  1. Deviations from scale 

invariance are due to a non-trivial inflaton potential.
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Figure 2.1: WMAP TT (top) and TE (bottom) data superimposed on the 
seven parameter best fit model (dashed-line) and the contribution 
coming purely from cosmic strings (solid line). The cosmic string 
curve is normalized to produce the same TT total power I  =
5F ^  l(l +  l)C fr (Taken from [8]).

2.3 The CMB: Inflation and Cosmic Strings

Cosmic strings will have contributed to CMB anisotropy both before and after 

last scattering. The aforementioned Kaiser-Stebbins effect allows one to bound 

the cosmic string tension by looking for step discontinuities (edges). One may do 

this statistically by looking at the power spectrum, or individually by looking for 

visible discontinuities. The power spectrum from this effect is approximately scale 

invariant, with an amplitude dependent on the energy density in the scaling cosmic 

string network. Figure 2.1 shows how cosmic strings are ruled out as the primary 

contribution to CMB power.

On large scales, cosmic strings produce linear density perturbations that can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



20

REVISED

t=CVJ
m
CD

U ,
0.01

+

V '* '

0.001

100 100010

1

Figure 2.2: Predicted B-mode polarization power spectra for tensor to scalar 
ratio r =  0.1, ar =  1.9 (dashed line) and a r =  1 (solid line) each 
with total power given by /  =  jd!plad = 0 .1. The light dotted 
line is the B-mode component from gravitational wave converted 
E-mode, and the light dash-dotted line is the predicted B-mode 
from tensor mode quadrapole anisotropy (Taken from [18]).

be calculated with the Boltzmann-Einstein equation. The strings will be endowed 

with a coherence length £(t), a tension and a wiggliness parameter a defined by

pL — tt/i T  =  a~Xji (2.4)

where /I is the mass per unit length and T  is the effective tension of the wiggly 

string. The inter-commutation probability may be significantly less than one [12, 

17]. This would increase the cosmic string number density.

The B-mode polarization from cosmic strings as well as other sources is sum­

marized in Figure 2 .2 .
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Table 2.1: Best fit results for purely adiabatic perturbations, and adiabatic 
+  cosmic strings. ar is the wiggliness parameter in the radiation 
era defined by Eqn. (2.4)

Parameter 5  =  0 B > 0

/ — < 0.068(68%), < 0.14(95%)

B — < 0.029(68%), < 0.062(95%)

ar — < 2.3 (68%), < 3.6 (95%)

A s 0.87«;?* 0.85«;S

ns 1 n+0.02 —0.04 1.0 ±0.026

ttBh2 0.024 ±  0.001 0 n 2 5 +0'0012 U.IMO_ 0 0016

D.Mh2 0.15 ±0.01 f) 1 k+0.013 u-i 0 -o.oi

h 0.69 ±  0.03 0.71 ±0.034

T 0.155 ±0.057 0.143 ±0.054

Fb 1-4618S 1 47+0-2 LAi -0.18
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2.3.1 Parameters

A best fit to the CMB (as well as SDSS) by varying the usual six cosmological 

parameters, as well as the galaxy bias factor (P6) and the cosmic string parameters 

(a and /i) was conducted recently by Wyman, Pogosian, and Wasserman [8,18]. 

Their results indicate that not more than 7 (14)% of the total power of the CMB 

anisotropy is permitted at 68(95)% confidence level. The cosmological parameter 

best fit is summarized in Table 2.1.
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CHAPTER 3 

BRAN E INFLATION

Brane interactions in the brane world have been proposed as the origin of infla­

tion [19-21], an epoch in the early universe that initiated the radiation-dominated 

big bang. In brane inflation [1] the inflaton is an open string mode, while the brane 

interaction comes from the exchange of closed string modes. A particularly simple 

scenario is the Dp-brane-anti-Dp-brane system. To obtain enough inflation in a 

realistic scenario, all string moduli need to be stabilized. A natural paradigm in 

which this is successful is flux compactification [22,23]. An added benefit to such 

geometries is the natural appearance of warping [24]. Perhaps the most famous 

scenario is the Klebanov-Strassler (KS) throat [25]. Such throats are expected to 

be generic features of stable Type IIB compactifications. These smooth, warped, 

stabilized compactifications allow for a realistic (A/- =  1) brane world. A stack of 

N  D3 branes is placed at the tip of a cone over T 1,1 with M D5 branes wrapped 

over the shrinking two sphere. The resulting warped, deformed conifold can be 

studied in the context of AdS/CFT, and has led to many interesting inflationary 

models [26] A distinctly stringy advantage to inflationary models comes in the 

form of the DBI action, which describes the dynamics of D-branes. Due to the 

nonlinear kinetic term of the open string degrees of freedom which arise from the 

geometric nature of extra dimensions, a natural speed limit [27-30] is imposed 

on the inflaton which is absent in four dimensional models with standard kinetic 

terms. This results in striking empirical predictions such as non-gaussianity in the

23
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CMB.

3.1 Compactification Effects

Although the naive potential between them seems too steep, it was proposed [31,32] 

that certain compactification effects in the special case of a hyper-cubic torus will 

flatten the inflaton potential enough for 60 e-folds of inflation. Let us call this the 

DD scenario.

The Poisson equation for the inflaton potential <E> in a compactified manifold 

possesses a background term [23], the so-called “jellium” term known from solid 

state physics. As a result, the slow-roll parameter rj in the DD inflationary scenario 

(in the simplified version where the stabilization of compactification moduli is 

independent of the inflaton) becomes

V — —2/dj_ (3.1)

where dj_ is the number of dimensions perpendicular to the branes, d± = 9—p < 6 . 

Since we need at least Ne — 50 e-folds of inflation, and \r]\ < l /N e, the DD scenario 

is not viable as an inflationary model. The impact of the jellium term is clearly 

important to the analysis of the inflationary properties in some of these scenarios. 

This was first studied in Ref. [33].

Here we would like to point out that the brane inflationary scenario where 

branes are at a small angle [2,34] remains robust because the jellium term is much 

smaller in this scenario. In the (n, 1), (n, — 1) wrapping scenario (which reduces to 

2n parallel D4-Branes after inflation),

where 6  is the angle between the two branes ( 6  ~  1 /1 2  and n ~  8 are reasonable 

values). When the jellium contribution to \rj\ is much less than 1/50, the slow-roll
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behavior of the inflaton is dictated by the other terms in the potential, in particular 

the quartic harmonic term as measured around the antipodal point, as studied in 

Ref. [2].

We would also like to point out that the DD scenario may still be possible under 

some special conditions. Whether that special condition on the background charge 

distribution is realized or not depends on the dynamics of moduli stabilization (the 

dilaton, the complex and Kahler structures of the compactified manifold etc.), an 

issue that needs better understanding [22-24].

In section 3.1.1, we give a review of the Poisson equation in compact spaces. A 

simple ansatz of calculating the potential energy between two charges is qx$ 2 where 

<I>2 is the potential due to the the second charge g2, irrespective of whether the 

source charges in compact space add to zero or not. We shall justify this ansatz by 

showing that it is equivalent (up to a constant) to the potential energy between two 

charges (NS-NS or RR) by directly integrating the potential energy density over 

the compact space. This equivalence is simply illustrated in the one-dimensional 

case [33]. In higher dimensions, the Green’s function in compact space may be 

represented in terms of Jacobi theta functions. In section 3.1.3, we generalize the 

method used in solid state physics to show how to obtain the Green’s function 

numerically. This method should be useful in more realistic brane world models. 

For flat compact spaces, the Green’s functions obtained by these two methods 

agree. In section 3.1.4, we apply the result to brane inflation in the cosmological 

context. As pointed out in Ref. [23], the slow-roll parameter 77 is too big for the 

brane-anti-brane scenario. On the other hand, the impact of the jellium term in 

the branes-at-small-angle scenario can be made negligibly small. In this sense, the 

branes-at-small-angle inflationary scenario remains robust. Section 3.1.8 contains
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discussion.

3.1.1 Poisson Equation and Potential Energy in Compact 

Spaces

In non-compact space, the determination of the potential energy (Coulombic or 

gravitational) between two charges is well known: we treat one of the charge q\ 

to be a probe charge, and the potential energy is given by qi§ 2 , where <I>2 is the 

potential due to charge q2  (even if |gi| > \q2\). Here, we argue that this simple 

ansatz is equally applicable in compact spaces, where $ 2  includes the contribution 

of the jellium term. That is, the potential energy between two charged (Coulombic, 

Ramond-Ramond, gravitational or NS-NS) objects in a compact space will include 

the same quadratic component due to the jellium term, irrespective of whether the 

sum of the source charges in the compact space vanishes or not.

Consider a compact manifold M  (dM = 0). The Green’s function is given by 

the Poisson equation,

V2G(r,r') =  <5( r - r ' ) - l / V

where 5 (r — r') is the dx-dimensional 5 function and V is the volume of the com- 

pactified manifold. Integrating both sides over the dx-dimensional compact space 

and using Stoke’s theorem, we obtain Gauss’s law. Since the compactification 

manifold has no boundary, this volume integral over V2G vanishes, as does the 

integral over the RHS of Eq.(3.3).

Consider the eigenfunctions u\  (r) of the Laplacian operator on the compact 

manifold with eigenvalues A < 0
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V2ua (r) =  Aua ( r ) . (3.3)

The eigenfunctions satisfy the completeness relation:

5 3 ux  (r ) ux =  5 (r  - (3-4)
A

Integrating both sides of Eq.(3.3) over M,  we obtain (dv = ddjLry/^g),

f  dv ux(r) =  0 A 0 (3.5)
J M

In a compact space there is a normalizable zero mode of the Laplacian, V2uo (r) = 

0 , where tt0 (r ) =  1/a/V- The Green’s function can be written as:

G (r, r -) = S ^ M  (3 .6)
ÂO

Note that the zero mode is absent in G(r, r') in Eq.(3.6), thus avoiding an obvious

divergence. Using Eq.(3.5) and (3.6), we have

[  dv G(r, r') = 0 (3.7)
JM

Let $  be the static potential due to a given set of charges (at rj), i =  1 ,2 ,...,

$ (r ) =  (3-8)
i

Using Eq.(3.8) and (3.3), the total static energy due to this set of charges ̂  is

V(rk) =  \  f  dv(V$)2 =  ~ [  dv ^ V 2<I>
2 J m Jm 2

Using Eq.(3.7) and Eq.(3.8), we see that the last term in Eq.(3.9) vanishes. So, 

irrespective of whether or not the net charge vanishes,

V(r„) =  — 5 3  qiGiji, Tj)qj +  constant (3.9)
i>]
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where the constant comes from the rj-independent self-interaction terms. When 

applied to the RR interaction, where qi = /q, we must have Y i  /q =  0 in our 

compact space. Fpr the NS-NS interaction, qi are the brane tensions T], Y i  7  ̂ 0 

and VNs-Ns(ri) has the opposite sign since same sign charges attract. Putting 

them together we obtain, up to a constant

v (rk) = + J 2 ( TiTj ~  (3-10)
i> j

where the presence of the jellium term is encoded in Gfa,  rj). In the two brane 

potential, the “Coulomb” (1 / rd~2) term and the jellium (r2) term have the same 

effective strength, namely TjT2 — Mi/^- This effective strength is very small for 

branes at a small angle. Since the constant term in the potential is linear in the 

brane tension T, V " fV  can be made arbitrarily small.

3.1.2 One-Dimensional Example

This well-known example (given in Ref. [33]) illustrates the above result. Consider 

a circle of circumference L. For 0 < y < L,

g ^  = - T l  + T - T 2  ( 3 ' n )

where the constant term may be determined by the ^-function regularization of

the divergent Green’s function G of the 1-dimensional lattice,

00

2G(y) = \y\ +  ^  \y +  nL\ + \y -  nL\ (3.12)
72 =  1

Notice that G(y) satisfies Eq.(3.7).

Let us put a charge qi = q at yi = 0 and a second charge q2 =  — q at y2  — y,

where 0 < y  < L so that the total charge in the circle is zero. Using Eq.(3.9), one
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finds

Vly) =  q'Ghj] + £ k  =  ,2 ( M  _  t .  _  +  « T
12 V 2 21 121 12 (3.13)

where the first term is the linear potential and the quadratic term is due to the 

jellium effect. The last term is the self-energy term and is independent of y. As 

we put the charges on top of each other, V (0) =  0, as expected. Note that we are 

constraining the flux around the circle to be constant.

Note that 0(x) is continuous and piecewise linear in x, i.e., 0i(0) =  02(A) and 

cf)i(y) = 02(y). Now we can integrate over the circle the energy density ((V0)2/ 2) 

to obtain the energy as a function of the relative position y of the charges. This 

exactly reproduces V(y) in Eq.(3.13). In short, 0(x,y) is the potential for a probe 

charge at x, while V(y) is what we are interested in.

For the case of two masses on a circle: m\  at y\ =  0 and m2 at y2  = y, the 

potential at x (0 < x < L) due to these 2 masses is 0(x) =  miG(x) + m 2 G(x — y), 

where there is a jellium contribution in each Green’s function. From this,

We may also calculate the potential at x due to these two charges (+q and —q)

X
01 (x) =  q j { L  -  y) -  qy +  0O 0 < x < y

02(x) =  +  0o y < x  < LL

L 2

m 2 y , mi +  m2 
—  1  ----L 2

y < x < L

0 < x < y

and, as expected, we have

where the last constant term is the self-energy contribution.
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3.1.3 Green’s Function in Arbitrary Dimension

When two branes are moving in a compactified space, we need to calculate the 

inter-brane potential. This requires finding <3>(r) =  —G(r) that satisfies Eq.(3.3). 

Our main goal is to determine the Green’s function around the antipodal point 

(the point farthest from the source). To simplify the problem, consider a square, 

flat d-dimensional torus of volume Ld. Using the identity

1  j ' O O

= ^ A' *  (A < 0) (3.14)

and the eigensolutions

un(x) = ^ e2™ x/L, An =  - ^ ^

we can regularize

g27rin-x/L

n€Zd
roo d

47T2 n 2 Ld ~ 2

= L2~d / (1 -  Y l  e ^ in̂ /L- ^ s)ds
Jo j=injez

d
= n

poo 
2 —d /

3=1

ds

Where 03 is a Jacobi theta function [35]

\  n

The rapid convergence of the above expression makes the flat d-torus especially 

simple to numerically simulate.

When one considers compactification on a manifold (T2, K 3, CY3) with a non­

trivial metric, another numerical method suggests itself. Developed by Ewald and 

others [36], this method is suited to spaces that may be represented as a periodic
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lattice (perhaps modulo some additional discrete symmetries). To illustrate the

method, we proceed with a simple example, a square, flat torus. Let us again write 

5> as in Eq.(3.6):

where kj £ is a reciprocal lattice vector and kj its magnitude. This sum

area of a d-dimensional ball). Alternatively, one may treat the torus as an infinite 

lattice and sum over the source and its images at the lattice points:

As we saw in the one-dimensional case, this will lead to a divergence and the need 

to regularize it. The answer depends on how the lattice points are summed and 

how the regularization is carried out.

Ewald’s method is to add and subtract a diffuse charge distribution around

zero, aiding the convergence of the real lattice sum. This additional charge (minus 

a jellium term) is convergently subtracted away in reciprocal space, since a recip­

rocal space sum converges for non-singular charge distribution. The final result is 

independent of the diffuse charge distribution used to regulate the sums. Details 

on how to implement this method in two, three and four dimensions are included 

in sections 3.1.10 - 3.1.12. The numerical data generated by the Ewald method

(3.16)

diverges for d > 2, since the number of terms grows as kd 1 (i.e., with the surface

j
(3.17)

where

(3.18)

each lattice point. The added charge makes the monopole moment of each cell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



32

may be fit to an expression for the potential near the source of the form:

c5W (r ) =  ^2  +  +  (Î ~ ic (r ) +  c ° n s t a n t ,  d >  2

=  ~ h ln  ( z )  +  i v  +  +  c o n s t a n t , d  =  2

Notice that although individual terms in <1^ (r) are not periodic, their sum is. The 

constant is fixed by requiring T ^ (r)  to be independent of the added and subtracted 

charge. The harmonic piece satisfies the Laplace equation (when restricted to the 

cell containing the origin):

=  0 (3-19)

For a hypercubic torus (with V = Ld) it has the general form

=  T i l  +  r) +  ^ ^ ( r )  +  . . .  (3.20)
V d

where the hlf*  are polynomials of order n  with coefficients determined by Eq(3.19).

For example, for a hyper-cubic lattice with coordinates aq measured from the source

(podal point) and r =  (aq, x i , ..., Xd)

d
hf (r) =

1
d+2V .1=1

= - L r E  & A + ( d - 2 1)8(o ~ 1 ) E ^  -  ^  E * f ^V-5-

In two dimensions, terms of order 4m +  2 are not present in the harmonic piece. 

Beyond the sixth order terms in the hypercubic case, and for d > 2 for a rectangular 

lattice, there is more than one undetermined coefficient A^\ at each order. A 

two-dimensional rectangular lattice has only one parameter at any even order. 

At a given order n, the number of parameters for a hypercubic lattice reaches a 

maximum and becomes independent of dimension for d >
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There is an expression similar to Eq.(3.19) for the potential near the an­

tipodal point. This is the expression that is suitable for applications in brane 

inflation. With coordinates Zi now measured from the antipodal point (z = 

r — (L/2, L /2 ,...)), <f> has the form

£  zi + W  +  B f h f ( z )  +  . . .  (3.21)
i= 1

The results for the coefficients in Eq.(3.19) and Eq.(3.21) were obtained by the 

method described below, and are summarized in Tables 3.1 and 3.2. The lattice 

spacing has been set to one. At least four terms in (1>harm were kept in each 

dimension, but the accuracy of the numerical values could be improved by keeping 

more. In general, the convergence of Eq.(3.19) is somewhat better than that of 

Eq.(3.21).

It is easy to check that the integral of $  over a unit cell is zero, that is, $  satisfies 

Eq.(3.7). In solid state physics, the Madelung constant is found by considering the 

potential due to both the positive and negative ions. Since the negative ions are 

found at the antipodal point in a simple cubic lattice, the Madelung constant is 

given by am =  Cs — Ca. In three dimensions, our value for the Madelung constant 

of a simple cubic lattice agrees with Ref. [37]. The constants Ca in Table 3.2 agree 

with Eq.(3.15) evaluated at the antipodal point, and are four times those listed in 

Ref. [32],

For rectangular torus, there will be quadratic harmonic terms of the form z f—Zj. 

Their impact on inflation is discussed in Ref. [2]. The hypercubic way to sum the 

lattice generates only the harmonic terms. The numerical values of BA is at least 

a factor of 3 smaller than that given in Ref. [2]. This weakens the potential and 

improves the inflationary scenario.

*w> (Z) =  £ ± L  +  J _
antipodal\ J \ } d~2 2 d V
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Table 3.1: Constant, fourth order and sixth order coefficients in potential 
near source.

d± 2 3 4

cs -0.21 -0.21 -0.17

a 4 0.12 0.44 0.34

0.00 0.0072 3.05

Table 3.2: Constant and coefficients of the fourth order and sixth order terms 
in the potential near the antipodal point .

d± 2 3 4

Ca -0.055 -0.064 -0.070

b a -0.62 -0.53 -2.20

b g 0.00 0.0024 -101.5
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3.1.4 Application to Brane Inflationary Scenarios

Let us consider a few brane inflationary scenarios, where the moduli stabilization 

effects are ignored. In order to find the potential of the inflaton as seen by a 4D 

observer we need to calculate the low-energy effective action for the brane system. 

The interaction between the branes due to the exchange of closed strings depends

on their separation, so we will decompose the coordinates of the two (stacks of)

branes into the center-of-mass and the relative separation.

Assuming that the branes wrap n and m  times the volume V\\, the low-energy 

effective action is obtained by expanding the DBI action:

Seff =  n r p I  cF+14 i V ^ + ^ ^ ^  +  m Tp J  ^ W 1 +

~ (ra  +  n) l\\Tp + nTp J  d F ^^d p y id ^ y i  + m r p J  
where rp is the brane tension

t p = M p + 1 /(2ir)pgs (3.22)

where Ms is the string scale and gs the string coupling. The coordinates of the

brane in the transverse directions are expressed as:

m
2/i =  Vc m  H------- ;— Vr

m  +  n  
n

2/2 =  Vc m  ;— 2h
m  +  n

and substituting these into the expression for Sef /  we obtain:

s c ,  = rp2 ( ™  J  dP~H J  df(  c U - a v  = J  d ^ a ^ i ,  (3.23)

The relationship between yT and ip is given by:

, mn  T r
^  =  V r \  ,  , <t p V\I ( 3 -2 4(m + n)

where V\\ = f  dp 3£ = E  3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



36

3.1.5 The DD Scenario

The DD potential is given in Ref. [2,31], with d±_ =  9 - p

k 2I3t? E  3
V ( y ) = 2 Trt{-’ - — j f - L  (3.25)

where
..2 9s {2tt)7
k  — 87tG io  -  2.M& (3.26)

and (3 = 2a given in Eq.(3.18). Measured relative to the antipodal point, the 

position of the anti-brane is given by z, which is simply y shifted by half the 

lattice size. The important pieces of the potential for the slow-roll condition on 

inflation are the constant term and the quadratic piece due to the jellium term :

K2r 2£P-3
V (z) =  2 r X f 3 ~ (3.27)

where V =  VI- As pointed out in Ref. [23], the relevant slow-roll parameter rj is 

given by:

"  “  m 1 t  “  ( 3 ' 2 8 )

where the derivative is taken with respect to the scalar field ip that appears in 

the low-energy effective theory, Eq.(3.24). Since d± < 6, the slow-roll condition 

is never satisfied in this case, that is, the branes will collide far too early for any 

significant inflation to take place.

A priori, it is still possible that the stabilization dynamics of the extra dimen­

sions has some unusual features that suppress 77 and realize the condition required 

for the viability of the DD inflationary scenario. One such possibility utilizes a 

warped geometry to suppress the inter-brane attractive potential [23].
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Here, let us consider

V2<I> = Y 1 ‘̂ ( r - r i ) - F ( r - ( I / 2 , I / 2 , . . ) )
i

F ( z )  =  2 i * + / ( z )

where /(z) is multi-periodic and consistency requires it to satisfy

f  dvf{z) = 0 (3.29)
Jm

It is not hard to imagine that / ( z) originates from the stabilization of the moduli 

in the extra dimensions. As one can easily see, DD inflationary scenario is viable 

if F(z) vanishes at the antipodal point. To suppress the quadratic term in the 

inflaton potential, we need to decrease the value of F(z) at the antipodal point so 

that

M ^  |2Vi?(0)/dj_| < 1/Ne (3.30)

Suppose, for a torus, measured with respect to the antipodal point,

F (z) =  1 -  n cos(fcjZj-) ^  E (kjZj) 2 (3 31)

so that F(0) =  0. This implies that the inflaton potential does not have an 

anharmonic quadratic term around the antipodal point. Such a DD scenario will 

be able to give enough inflation to render the model viable. (In fact, one may choose 

F(z) to reduce the contribution of the quartic term to rj as well.) Among other 

factors, the form of F(z) depends on the dynamics of moduli stabilization, an issue 

that is not fully understood [22-24]. Generically, we should consider F(0) <<  1/V 

as a fine-tuning. Since rj is generically around 1 for the DD system, we need a fine- 

tuning of 1 in 100 on F(z) to suppress r]. In more realistic constructions of string 

models, it will be very interesting to see how such a condition can be satisfied.
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u/n

Figure 3.1: Two branes wrapping different cycles in a rectangular torus. 
Theangle between the branes is tan 9 ~  8  = 2u.

3.1.6 Branes at a Small Angle

Let us consider the simple scenario [34] where p =  4, d± =  4, but with different 

wrappings of the branes. The X 4 , X 5  torus, has sides i\\ and ui\\ and the branes 

wrap one-cycles on the torus, as shown in Figure 1. These branes are separated in 

the X 6, X 7, A 8, X 9  directions by a distance y.

The Planck mass is given by

M M uVl
M p = (3.32)

gl-w (2tr)6

We start with the example shown in Figure 3.1 where the wrapping numbers are 

(1,1) and (1 ,-1). We shall consider small 8 , so the angle between the branes is 

8  ~  tan 8  =  2u. The constant piece of the potential is given by:

V0  = Tpi || (2 V l+ U 2  -  2 )  ~ (3.33)

and the full potential is:

V  (y) = r4£ p 2 - Qy2 PQ + harmonic

where Q includes the contributions from both the NS-NS and RR sectors.

sin20

(3.34)

M 2
Q =  --27r sin 8

1 - — cos 8 ) a  M 2 8 ' /167r ~  M 2u /2tc (3.35)
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where the (1 — sin2 6/2) term comes from the NS-NS sector while the — cos 6  term 

comes from the RR sector. The sin 6  in the denominator comes from the length of 

the brane along the t\\ direction, y measures the relative positions of the branes. 

With the above expressions for the potential and the Planck mass, we evaluate the 

potential V(z) at the antipodal point. The relevant slow-roll parameter rj there 

becomes:

y» M iquV x Q ( d y \ 2 P
' P V  dj.V±T4e , ^  (dt / i )  d± 4 '

For u ~  l /M s£\\ ~  a CUT — 1/25 (a reasonable choice, where olgut is the standard

model coupling at the GUT scale), the slow-roll condition is easily satisfied, and

it is possible to obtain more than 60 e-foldings of inflation since Ne ~  I / 77.

A few comments are in order. As the jellium term contribution to 77 is very

small, the number of e-foldings is dictated by the first non-zero harmonic term.

Here it is the quartic term with strength B 4  given in Table 3.2. As we pointed out

earlier, the B 4 obtained here are at least a factor of three smaller than those used

in Ref. [2], Thus the inter-brane potential is weaker than Ref. [2] uses, and so it is

much easier to get sufficient inflation than they indicate.

The Madelung term Ca will shift the vacuum energy of the inflaton potential.

As is clear from Eq.(3.34) and Table 3.2, this shift is positive, that is, it increases

the vacuum energy term in the inflaton potential. Its contribution tends to decrease

the magnitude of 77.

After collision, the two branes at a small angle reduce to two parallel branes

(horizontal in Fig. (3.1)) with zero vacuum energy. In an orientifold, the tension and

RR charge of these two branes are canceled by the presence of orientifold planes.

This implies that during inflation, the branes at angle will have a non-zero force

with the remaining branes and orientifold planes. For example, the interaction
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between the (1 ,-1 ) D4-Brane and a (1,0) D4-Brane is proportional to

«<’■»>"- 2 & e  f 1 -  ^  -  cos' ^ 2>) “  T t <3 '37)

and its interaction with orientifold planes is also suppressed by the same factor of 

16, but with opposite sign. These contribute a small correction to the interaction 

between the (1, —1) and the (1, l)-branes. One can always place the (1, l)-brane, 

the (1, — l)-brane, and the (l,0)-branes at initial positions that are favorable to 

inflation.

3.1.7 Other Branes at a Small Angle Scenarios

Next we consider branes wrapping the long dimension of the torus more than once. 

Suppose one branes has (n, 1) wrapping and the other has (n, —1) wrapping. After 

collision, we are left with 2n parallel branes. In this case the angle between the 

branes is 6  =  2u/n  and the constant piece of the potential is:

/   \
V0  = 2tp£\\ \^/n 2  +  u 2  — n j  ~  Tp h ~  (3.38)

The branes now intersect in r? points, so the charge Q is given by:

q  =  n2»k!L  = ^  (3.39)
2 ir n6  2 ir n

The relationship between 'ip and y becomes:

'iP = yyTP£\\-̂  (3A 0)

and the slow-roll parameter rj becomes:

u 2
rj ~ -----  (3-41)n

For small u and large n, the slow-roll condition is easily satisfied, and it is possible

to obtain many more than 60 e-foldings of inflation since Ne ~  1/M- The other
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slow-roll parameter e =  0 at the antipodal point. In the actual case, the slow- 

roll parameters are dictated by the quartic harmonic term where e is negligibly 

small. For a reasonable choice n = 8, we see that the number of e-foldings that 

can be obtained for inflation is further improved. In fact, the quadratic term is 

negligible in this case and the inflaton rolling is dictated by the quartic harmonic 

term discussed in Ref. [2].

We may also consider branes with dimensionalities other than p = 4. In the 

p =  6, d± = 2 case the D6-Branes span the X 4, X 5 torus and wrap different cycles 

of the X 6,X 7 torus. They are localized in the X s, X 9 torus and the interaction 

potential is logarithmic. The potential and the Planck mass are given by:

M lV n m V x
M l  =

(27r)e

T, ^  t 6 V4S£\\ tan2 9 Qy2V (y) =---------\ 2d̂ Vl -  PQ loS (MsV)
where Q ~  M403/167t. Again, in the small angle approximation, the relevant 

slow-roll parameter becomes:

„ K (3.42)
(Msr , ) 2

The slow-roll parameter is again small in this case, and the end of the slow-roll 

is determined by the attractive logarithmic potential. The region yielding enough 

slow-roll is reasonably large and there is no need to fine-tune the initial conditions.

It will be interesting to work out the situation of other brane inflationary sce­

narios [38-40].

3.1.8 Discussions

In the simplified scenario discussed here, the DD inflationary scenario is not viable. 

On the other hand, the branes at a small angle scenario remains a viable model
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for inflation. Cosmic strings are generically produced at the end of the brane 

inflationary epoch. Using the temperature fluctuation in the cosmic microwave 

background radiation to fix the superstring scale, the cosmic string tension arising 

from the brane recombination in the branes at a small angle inflation happens to be 

much bigger than that in the DD scenario [2,3]. If branes-at-a-small-angle scenario 

is preferred, one consequence is that the cosmic string tension will be on the high 

side, up to values just below the present experimental bounds. This enhances the 

hope to test the brane inflationary scenario via the search of signatures of cosmic 

strings.

As is clear from the analysis, the brane inflationary scenario depends on the 

dynamics of moduli stabilization. Presumably compactification moduli are stabi­

lized by some strong dynamics, or effective potential. The minimum of such an 

effective potential measures the cosmological constant. Understanding the mod­

uli stabilization problem implies some understanding of the cosmological constant 

problem, or in a less ambitious framework, moduli stabilization must accommo­

date the smallness of the observed dark energy [22]. Hopefully, brane inflation in 

string theory allows us to address this important issue.
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3.1.9 Ewald’s M ethod

Here we will detail Ewald’s technique and extend it to suit our purpose. Consider 

the d-dimensional torus as an infinite lattice and let $(r) satisfy

V23.(r) = £ - 4 ( A r j )  +  i
j

l>(r) =  $i(r) +  $ 2 ( 0  +  constant

V24?i(r) = Y  - P ( A r j )  exp(-e2Ar2) +  1/V
j

V2$ 2(r) = Y  [-5  (Arj) + P( Ar j )  exp(-e2 Ar2)]
j

Where Arj =  r — rj, and rj is the j ih lattice vector. Here P(Arj) exp(—e2A r|) can 

be thought of as a charge distribution inserted at the j th lattice site, normalized 

so that

f  P(r) exp(—e2 r2)dv = 1 (3.43)
J ud

The charge distribution may extend outside the unit cell, but integrating one dis­

tribution over all space is identical to integrating all distributions over the unit 

cell. The effect of adding and subtracting a diffuse charge distribution is to regu­

larize the summation over the lattice. The full potential 4>(r) is the sum of ^ ( r )  

(the real-space sum) and $i(r) (the reciprocal lattice sum). For a good choice

of P(r) the sums are separately convergent, and together reproduce <I>(r) for the

original point-charge distribution. Clearly, <E>(r) should be independent of P(r) 

and e, which are chosen to enhance the convergence of the sums. There is a range 

of choices of e (for our calculation 18 < e < 24) for which the results of Eq.(3.43) 

are independent of e. Other crucial conditions are listed and demonstrated in the 

next section. This procedure is well tested since it is widely used in solid state 

physics to compute the Madelung constant.
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3.1.10 Three Dimensions

In three dimensions, a simple choice is to add and subtract a Gaussian charge

distribution at each lattice site. This gives P(r) =  e37r_3//2. Then we have

T (3) /  ̂ 1 exp(-fc?/4e2)exp(ik,- • r)
1 W k2k 3

«>f(r) =  i -  W  1 -
A'rr < J  A r  •47r 4—' Ar,-Ar, J

where kj is the j th reciprocal lattice vector. Note that the following necessary 

conditions are satisfied:

1) The terms in converge faster than k j 3.

2) reduces to Eq(3.16) when e —> oo.

3) The terms in <h2 converge faster than A r j 3.

4) <E>2 goes to zero as e —> oo.

5) $2  reduces to Arj"1 as Arj —> 0.

Any other choice for P(r) must lead to potentials that satisfy these same limits 

for the method to work.

In principle there is also an arbitrary constant of integration, but the require­

ment that (h be independent of e yields

<I>M(r) = <I><3>(r ) + <I,«(r) -  ^  (3.44)

The e-dependent term comes from the missing zero mode in <hi(r), as can be seen 

by differentiating with respect to e. The constant vanishes as e —> oo, so that 

Eq.(3.44) recovers Eq.(3.16). This also satisfies Eq.(3.7). In practice, a suitable 

choice of e increases the convergence of the calculation. In condensed matter a 

jellium is always used to make the lattice neutral, but a more general term can 

be easily incorporated into this technique by including the appropriate Fourier
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expansion in <E>i.

The numerical potential generated by summing Eq.(3.44) over the lattice can 

be fit to a potential of the form given in Eq.(3.19)

i 2
$(3) ̂  =  4 ^  +  +  v T  + ^ 3)/l43) ̂  + A63)/l63) (®«) +  • ■ •

where the quadratic piece comes from the jellium, and the constant is related to 

the Madelung energy of the lattice. The data generated by the Ewald method can 

also be used to fit the potential near the antipodal point. We expect this expansion 

to be harmonic, except for the r2 term. With coordinates now measured from the 

center of each cube, this is

antipodal

Of course, if the expression near the podal point is known exactly, Eq(3.45) can be 

obtained algebraically using z\ = x\ — f , etc. Generally, though, the higher order 

coefficients Aio, Ai2, . . .  will not be small, so it is best to use a numerical fit.

3.1.11 Four Dimensions

To implement the same procedure in dimensions other than three, we first need to 

choose a suitable form for P(r). We will need the Laplacian in d dimensions:

rd- t «
(3.45)

The choice for P[r) is guided by the behavior of Ti and (I>2 in the limits mentioned 

below Eq(3.44). In particular, each should converge at least faster than ^ 2  or 

since the number of points in the sums over the lattice grow as the (d—1) power of r 

or k. Also, $ 2(r) should reduce to the usual Coulomb potential as r —> 0. Taking
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e —» oo, which amounts to eliminating the added charge distributions, recovers 

Eq(3.16). In four dimensions, a simple choice is [36]:

=  4^5E exP ( - e2A4 )  ( ^ 3  +  “ 2 + +  - )  <3'46)
Arj '  3 '

The coefficients (a, 6,..) can be adjusted to give a single term in the charge distri­

bution P(r) oc rn. The choice of how many higher powers of r  to include in the 

above equation is a matter of taste and simply changes n. Consider a = b =  0. 

Then

e6r 2
P m (r) =  ^

*(*)/ \ _  1 V ' eM ~ kj/4e2) exp(ikj • r) /  _  _ g \
Ai W v  2 ^  fc2 I 8e2 J

k^o  ̂ v y

$(4)(r ) =  ci>(4)(r ) +  cl)(4)(r ) - - i _

The constant in the last expression above guarantees that is independent of e.

3.1.12 Two Dimensions

In 2 dimensions, a useful form for the real-space part is

$42̂ (r ) = J  exP(—e2̂ 2) ^ “7 + a^2r> + be4 r ' 3  +  dr1 (3.47)

To evaluate <I>2 in the Ewald sum, note that some convenient expressions for the 

exponential integral are:

exp(—u) ^  1 )ntnf  exp(—u) , . . v-^
/  du =  - 7E ~  log(t) -  2 J

J t  u 72 =  1

= exp(—t)

n ■ n\

1 + 1  ~  3+t----4
5 -f  t  —...
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For the simplest choice a = h =

p ( 2 ) ( r )

$S2)(r)

$ ( 2) ( r )

Extending the techniques from the previous three sections, we now have a well- 

defined way to evaluate the potential numerically for general dimension, charge 

configuration, and metric.

3.2 Return of Cosmic Strings

An exciting feature of Brane Inflation is found in the dynamics of brane antibrane 

annihilation. As the branes approach each other, the open string modes stretched 

between them become lighter, and eventually tachyonic. The existence of this com­

plex tachyon triggers the dissolution of the branes into lower dimensional degrees 

of freedom, most notably D(p — 2) branes. Because of the large expansion rate, 

the tachyon must be uncorrelated over distances larger than the Hubble radius [41] 

(and possible much smaller). This guarantees the production of co-dimension two 

defects which must extend in the expanding (non-compact) directions at a density 

of at least one per Hubble volume. [3,4]. Thus the question remaining is what 

impact, if any, these cosmic strings have on today’s universe.

V  V j  V/ w

7T
1 ^  exp(-/c2/4e2) exp(zkj • r)
V k̂&o k]

(2 ) / 1
4Ve2
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CHAPTER 4 

TH E O RIEN TIFO LD  FORM ALISM

In order to find solutions to string theory which describe our universe, one must 

compactify the six extra dimensions in a way which does not conflict with particle 

phenomenology or cosmology. The simplest way to compactify would be toroidal, 

with six mutually orthogonal circles. The high degree of (holonomy) symmetry 

in such a compactification manifold would manifest itself as D = 4, M  =  4 su­

persymmetry, which is incompatible with the chiral standard model. Since chiral 

theories have at most M  = 1 SUSY, the task at hand is how to break most, but not 

all of the underlying ten dimensional super symmetry. (Compactifications which 

preserve M  — 1 SUSY can have light fermions.) A powerful technique known as 

orbifolding is able to do just this. Geometrically, such a compactification can be 

thought of as a simple limit of some Calabi-Yau three-fold, albeit with singular 

points. Surprisingly, these singularities are completely smooth and well-behaved 

as a background on which strings can propagate. The string states which appear 

on these singularities parameterize the geometric moduli smoothly, and allow for 

continuous transitions between singular and non-singular versions of the geometry. 

An algebraic way to view such a background is as a projection onto invariant states 

and inclusion of new “twisted” sectors which live at, and smooth out the singular­

ities. An attractive generalization of the orbifold construction would be to allow 

for D-branes and other objects to be introduced. Simply adding them by hand is 

not guaranteed to be a consistent solution of string theory, and will generically in­

troduce anomalies. An alternative which guarantees wold sheet consistency is the 

orientifold construction. This is mathematically very similar to orbifold construc­

tions, but projects and twists more general world-sheet symmetries. While this

48
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is very powerful as a model building tool and can generate semi-realistic versions 

of the standard model, we would like to take it one step further by introducing 

anti-branes. By choosing a model with stacks of branes and anti-branes separated 

in the compact directions, we can realize brane inflation in a realistic context. The 

orientifold formalism is naturally able to generate string backgrounds which are 

consistent, phenomenologically interesting, and possess an inflationary era which 

ends with brane annihilation.

4.1 Discrete Symmetries

The GSO projection of the type II string theories may be thought of as gauging 

the discreet symmetry (—1)F where F  is the world-sheet fermion number. Gaug­

ing, in this sense refers to two actions: a projections onto invariant states, and 

(to preserve modular invariance) adding new ’’twisted” (Ramond) sectors whereby 

states are only required to be single valued modulo the action of (—1)^. Thus, 

the modular invariant superstring theories come in QA/B and I I A / B  varieties 

depending whether odd/even states are kept, and whether the left and right mov­

ing sectors are given the same/opposite GSO projection [42]. This practice of 

projecting and twisting can be used with any world-sheet symmetry, including 

spacetime isometries (toroidal compactification, orbifolding) and world-sheet par­

ity (orientifolding). The most general orientifolds [43-46] combine spacetime and 

world-sheet (e.g. fi) symmetries. The consistency of orientifolds always guaran­

tees both tadpole and anomaly cancellation. Tadpole cancellation is accomplished 

through a balancing of the number of D-Branes with the orientifold planes present. 

Orientifold planes are non-dynamical negative tension charged branes which cancel 

the R-R and (often) NS-NS tadpoles from D-Branes. Consistency still allows for
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non-vanishing NS-NS tadpoles. The field content of many orientifold models can 

often be uniquely fixed by anomaly cancellation. For six dimensional supersym- 

metric theories, the field content must obey

fiH ~  nv = 244 — 29nx (4.1)

where n//,ny, and ny +  1 correspond to the number of hypermultiplets, vector-

multiplets, and tensormultiplets in the D = 6 J\f =  1 supergravity [47]. Of course,

a four dimensional compactification is also required to have no six-dimensional 

(or ten-dimensional, for that matter) gravitational anomaly, but this consistency 

condition is not manifest in four dimensional calculations. For this reason, four 

dimensional orientifolds often require more careful consistency checks.

We interpret twisting by Q as identical to the open string doubling trick [48]. 

Hence fi-twisting, while not related to modular invariance, introduces open strings 

for the world-sheet consistency of the theory.

4.2 Application to Brane Inflation

Sugimoto [49] generalized the supersymmetric orientifold by adding DD  pairs to 

the simplest type IIB orientifold. This has several interesting effects. The gauge 

content is enlarged due to the existence of new open string sectors, and supersym­

metry is broken via the large cosmological constant 2 72979. In effect, this can be 

thought of adding D9D9 pairs to the ten dimensional type I theory. No inflaton 

field is present in this theory, but a similar construction can be done with more 

general IIB orientifold compactifications involving D5 or D3 branes. In this case, 

a consistent compactification can give rise to both a realization of brane inflation, 

and reduce to a phenomenologically interesting vacuum afterward.
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Below, we consider two D5-Branes at two angles. If the angles are the same, the 

two D5-Branes are BPS with respect to each other. This is the case in conventional 

orientifold models like T 6 / Z 3, T 6 /Z 4, T 6 /Zq, and T 6/Z 12 [50]. These models have 

a single Kahler modulus. However T6/Z 2 has more than one Kahler modulus. By 

varying them, an attractive potential between the angled D5-branes appears. In 

the construction below, the angles between D-branes will be equal and opposite, 

producing an attractive force which can be tuned with the Kahler moduli.

4.3 M odel

We construct a model by compactifying the Type I theory on T6. We choose all tori 

to be orthogonal and all radii to be equal. This is motivated by our desire to lift 

this model to an orientifold, such as type IIB modulo Z 2  and/or Z3 groups [47]. 

We include 5i — 5i pairs [49]. The subscript signifies the chosen orientation of 

wrapping the 4-5 plane (the first of three tori). We calculate the partition function 

for this model in section 4.10, including the generalization to arbitrary additional 

5 — 5 and 9 — 9 pairs. The added five branes are co-dimension four objects in the 

nine branes and as such contribute bi-fundamental N  = 2 hyper multiplets to our

4-D theory. In section 4.5 we include the generalized Gimon-Polchinski spectrum, 

although for simplicity we will focus on the non-orbifolded theory described above.

4.4 The Massless Spectrum

The gauge group is

50(32 + n§) x SO{n§) x U(ns) x U(n5). (4.2)
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We expect the 9 — 9 sector to produce a (D = 4) Af = 4 V S F  and the 5 — 5 and 

5 — 5 sectors to each produce Af =  2 VSFs.

Following Sugimoto, we find that the 9—9 sector yields fermions in the symmet­

ric representation. In four dimensions this corresponds to a pair of Dirac fermions. 

The 9 — 9 sector, in addition to the bifundamental tachyon, has massless fermions. 

Counting degrees of freedom yields four Dirac fermions in the bifundamental. This 

is the case for the 5 — 5 sector, as well.

The 9 — 5, 9 — 5, 9 — 5 and 9 — 5 sectors each produce Af = 2 hypermultiplets 

(in the bi-fundamental representation). The spectrum of this model is illustrated 

in Table 4.1.

Table 4.1: Massless fermion multiplets in the modified Type I

50(32 -f- 77,9) x SO(n<j) x U(n5) x U(n5)

(Adj., 1, 1 , 1) Af = 4 VSF

(1,1,Adj., 1) Af =  2 VSF

(i,m , 1 , 1) Af =  0 fermion

(1 , □,!,□) Af — 2 Hyp. Mult.

(□ ,□ , 1, 1) Af =  0 fermion 4 Dirac

(1, ! ,□ ,□ ) Af = 0 fermion 4 Dirac

4.5 Gimon Polchinski with 52 — 52 pairs

Now we consider adding 5-branes to the R4 x T2 x T4/Z 2 Orientifold of Gimon 

and Polchinski. We place the branes perpendicular to the orientifold 5-planes. The 

orientation is given in Table 4.2
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Table 4.2: New 5-branes

X» --- 2 3 4 5 6 7 8 9

Original 9 X X X X X X X X

Original 5 X X X X

New 5 — 5 X X X X

The new gauge group is £7(16) x £7(16) x U(n5) x U(n5). With the exception of 

the 5 — 5 sector, the six dimensional supersymmetry imposes D = 4, TV — 2 SUSY 

on the entire spectrum, summarized in Table 4.3.

Table 4.3: Massless fermion multiplets in the modified T2 x T4/Z 2

£7(16) x £7(16) x U(n5) x £7(n5)

(Adj., 1, 1, 1) U  =  2 VSF

2 (0  , 1,1 ,1) M  =  2 Hyp. Mult.

(□,□ 1, 1) N  =  2 Hyp. Mult.

(□, 1, □, 1) A7 =  2 Hyp. Mult.

(1 , ! ,□ ,□ ) A7 =  0

4.6 Configuration

The non-orientifold configuration described above may be T4589 dualized to leave

5-branes in the 0123 and 67 or 89 directions as can be seen in Table 4.4.

We thus have 16 D5-Branes and 16 05 planes in the (0123 and) 67 directions 

and ni Db and 775-Brane pairs in the 89 directions. In the 45 plane (T2) we see
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Table 4.4: Making orthogonal 5-branes

x »  = 2 3 4 5 6 7 8 9

9 X X X X X X X X

5 - 5 X X X X • •

T4589-Dual 1 1 I 1 1 I I 1

New 5 X X • • X X •

New 5 — 5 X X • • X X

two stacks of branes, namely the D53 and D5;j stacks. The original 16 D52 are 

divided among these two locations as well, and the interstack separation yi will 

be the inflaton. For simplicity we may take there to be only a single D 5 3  — Db$ 

pair. Now we split-join the Db3 with one of the original 5-Branes, and do the 

same with the partner Dbz and an original 5-brane. This is illustrated in Figure 

4.1. Topologically, the new “joined” 5-branes go from being R4 x T 2  to R 4 x T2 

where T2 is the genus two Riemann surface. The appearance of T2 may be seen 

as the unique way to split-join two stable tori which intersect transversally at a 

single point. Consequently, the new D5-branes cannot be everywhere Ricci flat. 

It is interesting to note that the pairs we have joined were BPS with respect to 

each other, being orthogonal in both the 68 and 79 planes. This process thus 

corresponds to motion along a flat direction of moduli space. After split-joining, 

the two genus-two Riemann surfaces are not BPS since the two angles between 

them are opposite. One key feature in this construction is the equal (but opposite) 

footing between the 68-plane and 79-plane. As can be seen in the illustration below, 

the new 5-branes (which are still separated in T 2 by a distance yi) will feel a strong 

force between each (other unless the Kahler moduli are fine-tuned), since the angle
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Figure 4.1: Creating our branes at angles from orthogonal D5 pairs: Line thick­
ness is indicative of location in 4-5 plane.

between the branes in the 68-plane is opposite to that in the 79-plane. In other 

words, we have taken a DD configuration to a branes-at-angles configuration. By 

modifying the appropriate Kahler moduli, we can tune the angles to be arbitrarily 

small (but still opposite). On the other hand, we could introduce BPS 5-branes 

(and additional 05 planes) to create branes at equal (not opposite) angles.

4.7 Branes at Angles and BPS Intersections

A striking result in string theory is the preservation of half of the remaining super­

symmetry (i.e. eight supercharges) when two D4-branes are rotated with respect to 

each other by an SU(2) rotation. [42]. Albeit with fewer available parameters, this 

result applies to D5-branes. Such is the case when the only two non-zero relative 

angles are equal. This implies that the inter-brane potential is equal to a constant. 

Such a ’branes at angles’ inflation scenario is not new [40]. Not surprisingly, the 

zero force result applies to the low energy effective action, as well. Because we 

build our model out of a brane anti-brane scenario, it is not surprising that the
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angles produced in Figure 4.1 axe not BPS.

4.8 Classical Action

Let us calculate the interaction potential between two Dp branes oriented at an­

gles and 6b in two 2-planes. The positions of the branes are described by the 

coordinates:
/

XP =  p < p

X p - 1 =  ^ P - l c o S ^

XP = $p cos 0 2

X p+i =  fp-igin#!

X p+2 =  ^ s i n ^

X 1  = y ' i ? 1) I > p  + 3

The background generated by one brane is (in the string frame):

^string =  HP  (X±) d4 +l +  HP (*-0 dsl

X 11 = £p p < p 

XP =  0 p > p
(4.3)

e~<t> =  Hp 4 (x±)

A0...p = 1 -  H 1 (x±)

In the probe brane approximation we use the string-frame BI +  WZ actions for 

one brane in the background created by the other brane. The action is:

Sp = Sbi +  Swz

Sbi =  - T P J  dP+^e- ^ - d e t  (GMN (X) dpXMdwX N)

Swz = —Tp J
We proceed to calculate the pull-back of the p + 1 form field in the world-volume 

of the second brane. The field is given by: Ap — AQ...pdX° A • • • A dXp such that
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Swz  becomes:

Swz  =  - T p J A 0...PJ  d$° A ■ • ■ Ad e  =

-T p cos cos $2 J d?-lX d ? - ld ?  (l -  H~l (z±))

We now calculate the pull-back of the metric in the probe brane worldvolume. We 

use the indices i , j  if fi, u < p — 1.

9 ij

9 p - i , p - i

9p,p

9 p - i ,p

G u d i v '  ({") V  K ") =  H P  (>)„ +  (?") d]V,  ( e »

/ 'a x ’- ' V  , „  / s x - ’+ V
;  +  W+1.P+1 )

Hp 2 [cos2 + Hp sin2 $i]
P 8 X P\ 2 f  d X p ^ 2 \ 2  _i

J  + Gp+ w  [ ~ d ^ J  = Hp * Icos20 2  +  Hpsin202]

=  0

Using these results in the expression for the BI action we obtain:

S b i  = - T p J  d P ^ X d ^ d ^ H ^  cos 9 1 cos 92 yj  1 + Wp tan2 0! x 

\Jl + Hp tan2 02 x /7p__j£ ^ /-d e t fay +  (ff*) (^ ))

The distance between the branes now depends on the position along the brane:

x \  =  X2 j +  fp_1 sin2 0! + ?  sin2 d2 (4.4)

If we choose the two angles to be equal, 9i = 92  = 9 and assume the branes to 

be straight and not moving, d(yi (£,J) = 0, we obtain:

SB] + Swz  = - T p cos2 9 J  d P ^ X d ^ d ^
=  - T p  J  dP+1Z

Hp — 1 1 +  Hp tan2 9
Hr, Hr,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



58

which is completely independent of the separation between the branes. The in­

teraction force is zero, in accord with the string theory calculation. Since no 

cosmological constant is present, no inflation can take place in such a scenario.

4.9 F-Theory Connections

F-theory is a non-perturbative generalization of the Type IIB string theory and its 

orientifold descendants. Specifically, F-theory accurately describes the orientifold 

theories even when their moduli are taken outside of the perturbative region in 

which the orientifold is defined [51]. (Example: Up to T-duality, orientifold planes 

on which no D-branes sit are seen to be bound states of four (p,q) sevenbranes [52].) 

For this reason, F-theory is a bridge between otherwise disconnected perturbative 

IIB orientifolds.

Our model has been constructed to easily mature to the Gimon-Polchinski 

orientifold [46]. There are in fact many six dimensional orientifold models, all of 

which represent different limits of the I<3 (D-)manifold. It can be shown that 

K3 is the unique Calabi-Yau 2-fold which permits compactification of D =  10 

J\f = 1  —> D = 6 N  = 1 models. All of these K3 orientifolds are conjectured to be 

different D-manifold limits of F-theory on an elliptically fibered C P 1 x C P 1 [53]. 

In a sense, this bridges two six dimensional theories which resemble our model, 

namely T4/Z 2 and T 4/ Z 3. The Z3 model is a natural place in moduli space for 

our theory to grow all of its compact radii to be of equal size. This is evident 

when one tries to impose a Z3 global —> gauged symmetry on a (spacetime) torus. 

The C/(Z ® tZ) identification is compatible with the identification only for 

r  =  eI7r/3. When we look at the Z2 model, we notice no such restriction, i.e. 

r  =  el7r/2 is only one point on a moduli space Im[r] £ [1,00 ). In fact it is logical
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that the Z2 model has more (all 80) gravitational moduli available to it, since 

the GP spectrum comes with twenty additional neutral hypermultiplets, each with 

four real scalar degrees of freedom.

4.10 The Partition Function

Our partition function may be broken up into four topologies T2, A”2, M2, and 

C2. The 5-brane sector will only contribute to C2, whereas additional 99 pairs 

contribute to both M2 and C2. Each topology can be factored into a bosonic and 

a fermionic part.

Z  =  Z ^  +  Zk2 +  Zc2 +  Zm2

7   7 X 7 1 P
6  m — 6 m Zjm

For simplicity, we assume the compactified tori to be orthogonal, and that 

all are of radius R. Compactification has two effects, namely a discretization of 

momentum and additional nontrivial winding sectors. Then

7-T‘ =  \  fF ^ - » ' /1(27r/J)6(i)?j(r)}"s (4jr2r2a ' ) - 5 ^  ^  j  z * 2( t )

(4.5)

The initial factor of |  is due to the fl-projection. The Klein Bottle is a trace 

over states with identical left and right moving quantum numbers and thus has no 

winding states:

Z K2 = y " ^ i V t (2 n R f(V( 2 i t ) ) - \ i T H a r s ( ^ e - ^ \  Z * p U )  (4.6)

The Cylinder may be broken into terms coming from all pairings of {9,9,5,5}. 

We orient all 5-branes to wrap the 8th and 9th dimensions only. A simple prescrip­

tion for determining the contribution from DD cylinders is to perform an opposite

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60

GSO projection (i.e. flip the sign of the R-R exchange). As can be seen below, the

bosonic modes are only trivially modified in DD cylinders.

/  \  6, 2  r  oo
z c ?  =  y  /  s{8ir2a't) 5 ( ^  e s^ ~  j Z%2(it)

\mez J

z’c? = ‘~i ja |^ > '/i(2irBjr,r;!it)',’'(8-2o:'t)-5 Z*

4 _ §  _  ^ ^ _ W t { 2 n R M a r 8(8TV()- 5 j £ e- ^ y z ; r

■̂ c75 =  ns I  7T - M  {2nR)2ri(it)~8(8tt V t )~3 ^
•̂ ° ^ mez2,nez4

=  n l J o ̂ V r4(27ri?)277(ii)-8(87rVi)“3 ^  Mw n z g
0 "" me22,n£Z4

Ẑ T5 = 2n5n5 f  ^ i V 4(2TrR)2ri(it)-8(8n2alt)-3'Y  ̂ e~7L̂ ~ ~ Û ' n
^ mez2,fiez4

As expected, the 5-Branes display V4 from the non-compact integration, and 

47r2R2 from the two Neumann directions of discrete momentum. The four Dirich- 

let directions allow winding sectors, and no momentum. The 9-5 cylinders will 

have four Neumann-Dirichlet directions, which are half-odd-integer moded. The 

corresponding Ramond fermions must then be half-odd-integer moded, and the NS 

fermions integer moded.

Zl~5 = 2n9n5 J  -^ZiV4(2irR)2r)(it)-A{8TT2a't)-3 ^^ e ~ Ê h ]  Z°(it)~2Z^2~5
® \ m £ Z  J

(4.7)

Because a 5-brane and a 5-brane are identical when embedded in a 9-brane, 

the 9 — 5, 9 — 5, and 9 — 5 cylinders differ only by the combinatoric coefficient.

Since the 5-Branes we are inserting into the Type I theory are fl-invariant, they 

make no contribution to the Mobius Strip vacuum amplitude. A prescription for 

ZMi§ is simply to flip the sign of the R-R contribution (i.e. opposite Q-projection
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in the R-R sector).

z lr2 =  y  j o ^ t iV4(27rR)6r){2it)-8Z${2it)-*(8Tr2a't)-5 Z%?2

z m2 =  Y  JQ ^ ^ 4 ( 2 7 r i ? ) 677(2zt)-8Z0° ( 2 ^ ) - 4( 8 7 r V t ) -5 Z f h

The explicit fermionic contributions are based on the Jacobi 6 and Dedekind rj 

functions via

z ^  = W ) e[w m T )  (48)

Z *M  =  jlZSt^)4 -  Zi°(’-)4 -  Z »M 4 -  Z \ ( t )1} (4.9)

Then

Z*<r) =  I Z * ( t ) I2 

Zf(J 2 U j  =  Z * ( 2 i t )

Z t , - ,(« )  = Z*(it)

Z t r-p(i*) =  i[Zo°(«)4 + Z?(«)4 -  Zo‘(«)4 + Z;<«)4]

Notice that the signs of the (3 = 1 terms (R-R exchange) has been flipped in the p—p 

term. The dimensionality of the Dp-Branes does not affect z c2P~p since Dirichlet- 

Dirichlet strings are moded like Neumann-Neumann strings with no momentum. 

Finally,

Zfh = ^1rr ~-̂ sns>> [Z°1 {2it)4 Z^(2it)A] (4.10)

For the 9-5 cylinder, we take the fermionic partition function for four dimensions 

to be the usual Z^  terms for four dimensions, and then flip the spacial periodicity 

for the four Neumann-Dirichlet directions (i.e. a —» a + l(mod 2)).

Z&9-S(«) = \ {Z>t?Z l (? tY  -  Zj(it)2Z](it)2 -  Z l ( i t ) X ( « ?  ~ Zi‘(ii)2Zf(it)2] 
(4.11)
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Notice that both the NS-NS (first and third) term and R-R (second and fourth) 

term are each separately zero. This means that the net R-R tadpole is unaffected 

by the 9-5 sector. If we use the Poisson resummation formula and modular trans­

formation properties of the partition function, we can deduce the vanishing R-R 

tadpole conditions:

Tig = 32 -p Tig 

n5 = ng

4.11 Summary

We have used a toy model to demonstrate how the orientifold construction can 

be used to realize brane inflation. Key features of these orientifolds are encoded 

in the partition function, which determines both the vacuum energy (inflationary 

potential) and consistency of the model. The massless spectrum and gauge group 

structure reveal consistency through the vanishing of gravitational and non-abelian 

anomalies. The existence of stable defects is determined by K-theoretic analysis 

of the gauge symmetry breaking, and (seemingly) anomalous U(l) symmetries 

(cancelled by the Green-Schwartz mechanism) give cosmic string candidates in 

four dimensions. To decipher the gauge symmetry breaking, one simply sets n§ 

and ng to zero everywhere.

A more realistic attempt to realize brane inflation would include moduli sta­

bilization, as in the KKLMMT scenario of flux compactification. The presence 

of fluxes is also favorable due to the generic warping they induce. Since world- 

sheet calculations are extremely difficult in these more complicated backgrounds,
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attempts to build the standard model (or its extension to SUSY GUTs) are quite 

limited. This is not disastrous for brane inflation (which benefits dramatically from 

warping), since much progress can be made using both low-energy supergravity and 

the AdS/CFT correspondence.
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CHAPTER 5 

COSM IC STRINGS

5.1 Dynamics and Description

The simplest cosmic strings is described by the Nambu-Goto action

S n g  =  - f i  [  > / “ R -  ( 5 - 1 )
J m 2

This string has no structure or thickness, and is characterized entirely by it’s 

tension ji and embedding. The Polyakov action, used to quantize the Bosonic 

string is a slight improvement because it carries an independent world sheet metric, 

whose equations of motion equate it with the pull back metric used in Sng, provided 

this pull back is non-singular. Although this is almost never the case, it can be 

arranged e.g. by a rectangular loop initially at rest. For such a string loop, the 

corners eventually will contain a finite amount of energy despite being points. This 

means that the stress-tensor cannot be completely specified by the embedding, 

and thus represents a failure of Sng- The independent world sheet metric can 

represent this missing degree of freedom, much in the same way a massless point

particle cannot be completely described by it’s embedding, but rather needs an

independent world-line metric to characterize its energy [48]. The equations of 

motion for a Nambu (or Polyakov) string in flat space is

x(cr, t) — x"(<t, t) =  0 (5.2)

in a gauge where x • x' =  0 and x 2 + xn =  1.

The general solution for a cosmic string loop can be obtained formally, c.f. 

Eq.(6.17), although inverse functions are used. For strings in an FRW spacetime, 

see [54,55].

64
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In field theory, the simplest cosmic string is given by the Abelian Higgs model. 

Abelian Higgs strings are topologically stable, and the arguments for this may be 

carried over to certain string theoretic cosmic strings [56]. However, it is possi­

ble to destabilize these vortices by expanding the field content via the introduc­

tion of magnetic monopoles. For example, if a symmetry is sequentially broken 

via: 5(7(2) —> (7(1) —> 0, monopoles are produced under the first breaking, and 

strings under the second. But since 7Ti(5(7(2)) =  0 =  7t2(5(7(2)) no topologi­

cally stable strings or monopoles exist. Instead, meta-stable strings can break by 

monopole pair nucleation. The topological stability then becomes only a dynami­

cal (meta)stability. Polchinski has conjectured [57] that all cosmic strings in string 

theory are topologically stable if and only if an Aharanov-Bohm phase exists for 

some (otherwise neutral) particle which can be scattered off the string. This is 

motivated by the fact that string theories seem to saturate the Dirac quantization 

condition. It is easy to show that a non-trivial Aharanov-Bohm phase indicates 

that string breakage would violate the Dirac quantization condition. Several insta­

bilities seem to plague stringy cosmic strings. The first, pointed out by Witten [58] 

assumed that cosmic strings were fundamental strings. In the type I background, 

an F-string is not BPS. Such a string lacks a two-form field (electrically sourced by 

strings) and is thus unstable to breakage. If such a source did exist, then in four 

dimensions this field would be associated with a massless axion via Hodge duality: 

d<f> =  *4<7B2. It is well known that any axion not protected by a symmetry must 

develops a potential from instanton effects. This would force all BPS cosmic strings 

to bound domain walls, whose tension would prevent any long-lived cosmic strings. 

While this seems to rule out cosmic strings, a third mechanism [56,59,60] is able 

skirt both issues. If the classically massless axion is “eaten” by a gauge field, it is
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protected (by gauge invariance) from non-perturbative corrections. At the same 

time, the existence of an axion gives the string a conserved charge (flux) which for­

bids breakage except on monopoles of the same charge as the flux contained within 

the string. The breakage rate per unit length per unit time would be exponentially 

suppressed by the monopole mass via the factor e~7rm~//x. It is easy to find models 

where this renders strings stable over cosmological length and time scales. Prom 

a stringy perspective, the various U(l)s of some six-dimensional compactification 

can be Higgsed via the four dimensional Green-Schwartz mechanism. This means 

that a stringy cosmic string parallel to the non-compact directions will appear as 

an abelian Higgs-like vortex. Monopole-antimonople formation can occur when 

the string breaks on D-branes or orientifold planes. If stringy monopoles are suffi­

ciently massive, stringy cosmic strings produced via brane-antibrane annihilation 

will survive as long-lived cosmic strings in the Brane World.

5.1.1 History

Cosmic strings have drawn interest for many years, and are cosmologically relevant 

for a variety of reasons. The attention given to them throughout the past two 

decades was based on the prospect that cosmic strings formed in the early universe 

during a second order phase transition (like GUT symmetry breaking) could be 

responsible for the density perturbations leading to large scale structure seen in 

the universe today [41]. This has been successfully ruled out by observations of 

the CMB, which strongly support inflation as the seed of structure formation. But 

string theoretic investigations of inflation lead again to the rise of cosmic strings, 

this time in the form of much lower tension strings which are left behind at the 

end of inflation [3,4]. This is due to the most successful model of inflation within
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string theory: Brane Inflation [2]. A generic prediction of Brane Inflation is that 

cosmic strings are left behind after the phase transition which triggers the end of 

inflation. In a wide variety of models these cosmic strings are predicted to be soft 

enough to avoid conflict with current cosmological observations, and yet are not 

so soft as to be out of reach of near future cosmological experiments. Because of 

this, string cosmology has become the most likely field to find empirical evidence 

in favor of string theory.

Brane Inflation is attractive because it has a natural place in the most elegant 

and simple model of our universe in string theory: The Brane World. The Brane 

World scenario describes the Standard Model of particle physics living on a stack 

of fundamental objects in string theory called D-Branes. The ten dimensions of 

string theory are compactified on four large dimensions (our universe) with the 

remaining six very small (giving rise to internal degrees of freedom). Dp-Branes 

are (p +  1) dimensional membranes spanning our four large dimensions, and are 

carriers of all charged particles in string theory (open strings), while closed strings 

(gravitons) are free to propagate throughout the bulk. The bulk volume, which in 

many models is highly warped by RR fluxes, dilutes the strength of gravitational 

interaction and determines the relationship between the fundamental (string) scale, 

the Planck scale, and the electroweak scale. The simplest Brane World scenario 

involves a stack of D3-Branes (3+1 dimensional planes localized at points in the 

six-dimensional bulk) on which the SU(3) x SU(2) x U( 1) standard model lives. 

Inflation is realized by including a D3 anti D3 pair (anti D-Branes have negative 

charge, but positive tension) separated a distance away in the six-dimensional extra 

dimensions. The (internal) distance between the standard model and the anti-D3 

is the 4-D inflaton field, and its potential is generated by the attraction between D3
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and anti-D3 Branes. The universe inflates while the branes approach each other, 

and when the separation becomes of order the string length, the open strings 

connecting the D3 and anti-D3 become tachyonic. This (complex) tachyon rolls 

to its minimum, annihilating the anti-D3 and one D3. Because regions that are 

separated by distances larger than the Hubble length are uncorrelated, the complex 

tachyon will necessarily form co-dimension two defects in our universe with an 

initial number density greater than or equal to one per Hubble volume. The fact 

that the defect is co-dimension two is guaranteed by the complex tachyon vacuum 

manifold (S l ). The Hubble length argument (Kibble mechanism) guarantees that 

the defect is extended in our universe.

The energy of annihilation of the D-Branes leads to a hot big bang, and a 

radiation dominated universe containing cosmic strings. Because cosmic strings 

are linearly extended, their number density should naively scale like 1/a2, which 

would lead them to dominate the universe very quickly. However, because cosmic 

strings are two dimensional objects propagating in effectively four dimensions, one 

can show that they will generically intersect. When two string segments intersect, 

a topology change can occur in order to minimize the cosmic string length. This 

nonzero intercommutation probability causes the cosmic string network to break off 

loops which loose energy to gravitational radiation. Like all radiation, this scales 

as 1/a4. As expected, the rate of cosmic string intercommutation depends on the 

density of strings, the expansion rate, and the probability of nontrivial interaction. 

These factors combine in a remarkable way, leading to the so called scaling solution 

of cosmic strings [9]. It is a generic feature of cosmic string networks and the 

simplest simulations lead to a predicted number density of approximately ten or 

twenty long strings per Hubble volume, along with many small loops [61].
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In string theory, the aforementioned cosmic strings are fundamental objects 

(Dl-branes or F-strings), although the field theory description of these is very much 

akin to the well known abelian Higgs model. String theory is not the only theory 

to predict cosmic strings, and the features that distinguish competing theories 

are worth studying. The most striking feature of string theory cosmic strings 

is the possibility of multi-tension networks formed by three way junctions of so- 

called (p,q) strings whose spectrum of tensions is rich and model dependent [62]. 

Field theory cosmic strings would generically not bind into such networks, and 

the intercommutation probability cannot be less than one in four dimensional field 

theories such as Abelian Higgs under normal conditions [12,17].

5.1.2 General R elativity and Cosmic Strings

The most direct detection of a cosmic string would be a lensing event. The geom­

etry of a cosmic string is crucial for this prediction. For simplicity, we can source 

Einstein’s equations with a static cosmic string. One could start with the abelian 

Higgs model and compute the components of the energy-momentum tensor. One 

finds that in the limit of thin vortex core diameter that the string is characterized 

by a single parameter, the tension /1 . This means that the string has no sub­

structure (like matter density) that could give rise to a natural rest frame, and 

so not only is the string uniform along its axis, but boost-invariant as well (the 

string is “slippery”). (Dynamically, the string is expected to be endowed with an 

effective matter density due to wiggles propagating along the string.) The thin 

string source is described by the Nambu action which sources the Einstein-Hilbert 

action via the pullback of the metric onto the string’s world sheet. As desired, this 

gives the string’s potential energy as tension x length. The complete action and
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equations of motion are

S  =  Y ^ Q  J  d4 x y / ^ d e t [ g \R -p  J  dtdzy/—det[x*(g)]

= ^ R ^ - ^ R g f iu  =  87TGfiS{2 )(x,y)x^(g)fll/

We can find the metric by solving the above Einstein equations for an axially 

symmetric, translation invariant, boost invariant, time independent spacetime. 

These symmetries are characterized by the following equation for the metric:

d
— giu, =  0 x*e {t, z, tp}

d d 
{ta-z+ z di}O'* = 0

This is satisfied by the following ansatz.

ds2 =  —dt2 + dp2 +  p2(l — ~ ) d p 2  + dz2 (5.3)
27T

The parameter 50 in the above solution is the so called deficit angle. The metric 

describes the geometry of a cone. The space is everywhere flat except at the vertex, 

where the cosmic string sits. If we examine the solution near the core we should 

regulate the singularity by substituting a smoothed out Heaviside function in place 

of S0 via (say) 50 —> So tanh(+oop) then we find

So = 8 irGp. (5.4)

Light passing on one side of the cosmic string will thus be uniformly deflected by 

60 relative to the light going around the opposite side. The two images are thus 

undistorted and identical as in Figures 5.2.a, separated by an angular deviation 

Sip given by

5ip =  n  DT n ~ 5° sin(0) =  (5-5)■‘-'OfCS "1 i-'s,cs U s ,0
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D s,0

cs

Ds,cs

Figure 5.1: A straight cosmic string introduces a deficit angle <5. Here, the 
sources s and s' are to be identified.

where 9 is the relative angle between the cosmic string and the line of sight, and 

D.r,cs is the normal distance between x and the cosmic string. This is illustrated 

in Figure 5.1.

One can show that the geometry due to a straight cosmic string is equivalent to 

that of a point particle in 2+1 dimensions, where the Ricci tensor completely and 

locally determines the Riemann curvature tensor. Thus regions with vanishing T ,IV 

are flat. This is why straight cosmic strings produce such simple images. Because 

there are no forces between local cosmic strings we can solve the lensing problem for 

very complicated networks of cosmic strings, including three-way junction lensing 

events which produce an image as seen in the far right of Figure (5.2.b) [63].

We can calculate the effects of a moving string by appealing to Lorentz invari­

ance with the result that the effective deficit angle 5 is given by [64]

<5 =  <5o7(l + n • v )  (5.6)

with n the outward pointing unit vector. The most general case is discussed in 

section 5.2.1.
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Figure 5.2.a: Images from a single Figure 5.2.b: Three way lens- 
string. ing. The pairwise compatibil­

ity of the images is equivalent 
to the equilibrium condition.

5.1.3 Observables

A potential string candidate is thought to be responsible for the anomalous bright­

ness fluctuation in the lensing system Q0957+561A,B [65]. A foreground galaxy 

lenses the quasar in a way that results in a 417 day difference in arrival time. 

Brightness fluctuations with much smaller delay must therefore be due to an oscil­

lating object in the foreground. A cosmic string loop is the most likely candidate, 

although more information would be needed to confirm or reject this hypothesis.

The cosmic microwave background provides several opportunities to detect cos­

mic strings. They include

• A linear discontinuity in the CMB temperature due to moving cosmic strings 

between us and the last scattering surface.

• Density perturbations caused by the wakes of moving cosmic strings at the 

last scattering surface
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Hot

Cold

Figure 5.3: The sky is warmer behind a moving string.

• B-mode polarization in the CMB from vector and tensor perturbations due 

to cosmic strings

Figure 5.3 illustrates the most direct and dramatic of these signatures: a linear 

step discontinuity in the observed CMB temperature (Kaiser-Stebbins discontinu­

ity). One can calculate the blue-shift due to a moving cosmic string to be [16]

ST n usinfa) . .
( 5 ' 7 )

where a is the relative angle between the cosmic string velocity and the outward 

pointing unit vector. The WMAP bound on such a discontinuity places an upper 

bound on Gp <=  3.3 x 10-7 [61].

Another striking imprint on the CMB could be found in the power spectrum. 

One can examine both C j T and C f B to bound the tension of cosmic strings. The 

bottom line [66] is that C BB will peak at much smaller angular scales (700 < 

t  < 1000) due to cosmic strings than it will for adiabatic perturbations, which 

peak around i  < 100. Current data places a bound of Gp <= 1.3 x 10 

where p < 1 is the intercommutation probability and B  < 0.1 is the fractional 

contribution to perturbations due to cosmic strings. Jackson, Jones, and Polchinski 

find that 10~3 < p < 1 for F-strings, and 0.1 < p < 1 for D-strings [12,17].
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CuspKink

Figure 5.4: A smooth cosmic string containing only first and third harmonic 
excitations develops cusps for much of its evolution. A kink has 
been added for comparison.

Lastly, the CMB polarization measurements will be sensitive to the gravitational 

radiation emitted by oscillating cosmic strings. All in all, current CMB data 

suggest Gy < 2.7 x 10-7 [18].

Gravitational radiation is the dominant source of energy loss of the cosmic 

string network. One expects a stochastic background supplemented with stark 

bursts from so called cusps and kinks. Cosmic string loops lose energy to gravity 

at a rate of E  = TGy 2 where T ~  100 is a pretty standard prediction for most 

simulations. The majority of this radiation is in the form of Gaussian “confusion 

noise” generated by the large oscillations of characteristic frequency i?-1 where R 

is the size of the loop, as well as from kinks and wiggles. A kink is a discontinuity 

in the direction of a cosmic string, and results from the intercommutation of long 

strings, or self intersection of loops. Any point on the string that is not smooth 

(finite second derivative) must move at the speed of light. These produce a fan 

shaped burst of gravitational radiation loosely directed along the plane of motion 

of the kink. A cusp is a sharp discontinuity with characteristic shape y = x2/"3 that 

generically appear on smooth cosmic string loops [67]. Figure 5.4 illustrates both 

a kink and a cusp radiating gravitationally.
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Turok [68] developed an analytic solution to the cosmic string equations of 

motion by expanding the left and right moving waves in their Fourier modes. In­

terestingly, the non-linearity in gauge fixing limits this method to the first and 

third harmonics only. Nevertheless a rich class of string loops emerged from this 

which often possessed cusps (at least two per period) and rarely self intersected. 

Cusps produce highly focused bursts of gravitational radiation in the direction 

that the cusp moves. Fine scale wigglyness tends to smooth these cusps, and 

causes the cusps to launch away very tiny closed loops [69]. The smoothing of 

the cusps also widens the forward cone of gravitational radiation to subtend an 

angle 6  < yf 1 — Notice that a pure cusp (no wiggles or gravitational back- 

reaction) has vcusp =  1. The focused burst of gravitational radiation is in stark 

contrast to the Gaussian “confusion noise,” and could be detected much more eas­

ily. Damour and Vilenkin predict that tensions as low as Gfi & 10-13 could be 

detectable by LIGO/VIRGO and LISA [70]. (But see also [71].) Their predictions 

for gravitational wave amplitudes (in the frequency band appropriate for the vari­

ous experiments) is plotted in Figures 5.5.a - 5.6.b. Pulsar timing observations do 

not benefit from these extremely intense cusp events because they are too focused 

(rare) to affect pulsar experiments over the course of only a few tens of years. The 

current bound from gravitational wave detection is c3̂ 2Gfi < 10-7 where c is the 

average number of cusp appearances per string oscillation period.

One may divide the gravitational radiation spectrum into three scales, all of 

which are relevant to cosmic string detection. Those with wavelength much greater 

than one light-year will leave an imprint on the CMB polarization measurements. 

Those with wavelength much shorter than one light-year can be observed directly 

with experiments such as LIGO, VIRGO, and highly tuned solid state devices.
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Figure 5.5.a: Fixing c =  1 and varying Figure 5.5.b: Fixed p = 1 and varying 
the recombination probability p. x-axis the loop-length parameter e = a/TGp. 
is logw(Gp). The x-axis is logw(Gp).
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Figure 5.6.a: Constraints on Gp for Figure 5.6.b: Constraints on Gp for 
various intercommutation probabilities various loop size parameter e. The 
p. The KTR line is from eight KTR line is from eight years of timing 
years of timing millisecond pulsars PSR millisecond pulsars PSR 1855+09 and 
1855+09 and PSR 1937+21. The PTA PSR 1937+21. The PTA line repre­
line represents (disputed) sensitivity sents (disputed) sensitivity from a sev- 
from a seventeen year timing of PSR enteen year timing of PSR 1855+09. 
1855+09. The SKA line represents ex- The SKA line represents expected sen- 
pected sensitivity from pulsar detection sitivity from pulsar detection from the 
from the square kilometer array of ra- square kilometer array of radio tele- 
dio telescopes. scopes.
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Figure 5.7: An amplitude2 vs. frequency plot for gravitational waves from 
cosmic strings and other sources. Included is the detection win­
dows of various experiments, (taken from [72]).

The space based LISA will measure such frequencies as well. Wavelengths of order 

one light-year can be measured using long term observation of millisecond pulsar 

timing. Passing gravitational waves momentarily lengthen and shorten directions 

perpendicular to the direction of propagation. LIGO/VIRGO can detect this with 

extremely precise interferometers.

Cosmic strings are not the only source of gravitational radiation in the universe. 

A potentially strong source is accreting neutron stars, which reach an equilibrium 

state around 300 Hz at which point all in falling angular momentum is radiated 

away as gravitational waves [73]. The electron capture rate is temperature depen­

dent, which leads to density variations large enough to supply adequate quadrupole 

moment for radiation amplitude of hc ~  10 26. LIGO/VIRGO are most suited to 

detect this radiation. A summary of gravitational wave amplitudes expected at 

various frequencies is represented in Figure 5.7.
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There is an interesting puzzle called Olber’s Paradox regarding radiation sources. 

The stochastic gravitational radiation power measured from each source (cosmic 

string loop, accreting neutron star) decreases as the inverse square of the distance 

from the source to the observer. However, since the universe is homogeneous on 

large scales we know that the number of sources at a given distance increases 

quadratically with the distance, r). This seems to imply that the total luminosity 

of (gravitational) radiation for any co-moving observer is the divergent integral 

f  V2 ^dr}, that is, the contribution from each shell of radius r] and thickness dr) 

does not depend on r}\ The resolution of this paradox comes from the finite age of 

our universe. The total power integral has a natural cutoff of rjmax = rjo — rji, the 

amount of time since such sources were first created. This means that despite the 

potentially infinite volume of our universe, only a finite power is incident upon us 

because only sources closer than the age of the universe can contribute.

5.1.4 Summary

Table 5.1 illustrates various bounds on cosmic strings in our universe. As a refer­

ence, the KKLMMT framework predicts models with [23,74].

4 x 1(T10 <G)m< 5 x 10 '7. (5.8)

Near future experiments, including LISA, LIGO II & VIRGO, SKA, PTA, 

Planck, QUIET, and pCMBR data will be able to test the KKLMMT Brane In­

flation paradigm.
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Table 5.1: Bounds on Cosmic String Tension

PSRs J1713+0747, B1855+09, B1937+21 [75] Gp < 2 x 10~7

WMAP non-gaussianity (Kaiser-Stebbins) [61] Gp < 3.3 x 10~7

WMAP & SDSS [8,18] Gp < 2.7 x 10~7

WMAP & 2dFGRS [66] Gp < 1.3 x lO-6^

7 yr. obs. PSRs B1885+09, B1937 +21 [76] G p < 6 x 10-6

WMAP Anisotropy (statistical) [77] Gp < 8.2 x 10"6

LIGO I burst detection [70] Gp < 10"6

WMAP Anisotropy (patern search) [77] Gp < 1.54 x 10~5

5.2 Lensing by (p,q) Strings

Some time after the existence of cosmic strings was proposed [41], several re­

searchers recognized that the conical spacetime generated by cosmic strings leads 

to a unique gravitational lensing signature: undistorted double images [78,79]; 

the discovery ofeven a single such gravitational lensing event would be seen as ir­

refutable evidence for the existence of cosmic strings. Previous detailed studies of 

string lensing phenomena have focused on infinite strings and string loops, whether 

straight or wiggly [64,80-85]. For standard, abelian Higgs strings, these are the 

only lensing effects that one would expect to find.

But string theory’s enriched cosmic string phenomenology includes the exis­

tence of two basic cosmic string types: fundamental, or F-strings, and Dirichlet 

one-branes, or D-strings. These two kinds of strings are able to interact and form 

bound states. These bound states are known as (p, q) strings, as they are composed 

of p F-strings and q D-strings [12,86]. String binding allowsfor a variety of new
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observational phenomena, yet does not cause any cosmological catastrophes [11]. 

In particular, the existence of string binding interactions generically implies that 

there will be Y-shaped junctions of three strings that form each time there is a 

string binding event. These Y-shaped junctions give rise to lensing phenomena 

that are qualitatively distinct from anything abelian Higgs models can produce.

Since cosmic strings are perhaps the only directly observable remnant of brane 

inflation, it is vital that we identify any distinctive effects that are peculiar to 

the cosmic “superstrings” that are produced in brane-collision reheating. Cosmic 

superstrings may be our best hope for directly observing some aspects of string 

theory. The observation of even a single distinctive lensing event -  one that could 

not be explained in an abelian Higgs model -  would be a “smoking gun” for the 

existence of a non-trivial cosmic string network that is the hallmark of cosmic 

superstring models. We note, however, that similar junctions are found in non- 

abelian string networks as well (e.g., the S3  networks studied in ref. [87,88]).

Here, we describe the principal novel phenomena arising from the binding junc­

tions that characterize non-trivial networks of cosmic superstrings. In §5.2.1, we 

review lensing by a straight cosmic string, writing down some general formulae 

that have not previously appeared in the literature.

In Figure 5.8 we illustrate the quintessential signature of a (p, q) network junc­

tion. This is an imaginative construction of what the galaxy NGC 2997 1 might 

look like if it were lensed by a Y-shaped string junction. In §5.2.2, we derive the

simple procedure used to generate this image.

1 Anglo-Australian Observatory/David Malin Images
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Figure 5.8: Illustration of lensing of a single galaxy by a (p, q) network junc­
tion. Note that each image is partially obscured, which is a 
generic feature of cosmic string lensing events [89]. This is not 
an actual observation.

5.2.1 Review of Straight String Lensing

The lensing due to a straight string is surprisingly simple; this comes about be­

cause the surrounding spacetime is locally flat. Many details of this lensing can 

nevertheless be quite subtle, and so here we correct two errors found in the liter­

ature, namely the angular separation formula and the orthogonality of the image 

pairs with respect to the observed cosmic string. A string oriented in a direction 

s produces two images on opposite sides of the string separated by an “angular 

separation vector” of magnitude

\8 p\ =  8 n G p \ / j 2(l +  n  • v)2 — cos2 6 Ĵ*,CS. (5.9)
■ L ' 8 , 0

In our notation, bold face variables represent 3-vectors, bold hatted variables 

are unit 3-vectors, and over-arrows signify 2-vectors which live in the plane or­

thogonal to the direction of sight. Here G(i is the dimensionless string tension, 

7  =  l / \ / l  -  v2, v is the string velocity, n  is the unit vector directed along the 

line of sight, 9 is the angle between the cosmic string and n (i.e., it is defined
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by n • s =  cos 6 ), Ds ĉs is the distance from the source to the cosmic string, and 

D Sy0 is the distance from the source to the observer. The distances should be in­

terpreted as the light travel distances in the observer’s reference frame. Because 

cosmic strings are boost invariant along their axis, we will always work in the 

gauge where v satisfies v • s =  0. Equation 5.9 can be derived by working in the 

cosmic string rest frame, where light rays will be deflected by a fixed angle 8 irG/i, 

and then rotating and boosting the string to give it the desired v and 9. Since 

the scalar product k^k'^ is invariant under such a boost, and must equal the rest 

frame value of u u > ' ( l  —  c o s ( 8 t t G 7 v , ) ) ,  we can extract the angular separation in any 

reference frame. We only keep the lowest order in Gji. Vilenkin [78,79] pointed 

out that a straight cosmic string in motion will appear curved, like a large hyper­

bola in the sky; we note that, as expected, the apparent vanishing point of the 

hyperbola corresponds to the point where the magnitude of the angular separation 

vector goes to zero (£</? —> 0). This is an important consistency check. The reason 

for the apparent curvature is because what we see is the cosmic string world sheet 

intersected with our past light cone, which we mentally project onto the t  = 0 

hyper-plane. The cosmic string equations of motion are solved by

x(n, t )  =  scr/q + v t  + b (5.10)

with impact parameter b (with respect to the origin/observer) orthogonal to both 

s and v. The observed cosmic string is described by the illusory embedding

y (M ) = x(<r,t- |y(<M)|)- (5-11)

This equation simply states that the apparent location of any point on the string 

is given by the actual location at an earlier time. This amount of time is given 

precisely by the time it took the light to travel from that perceived location to our
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eye. Solving for y yields

y(cr, t) = sa / 7  +  v (7  H — \/b27 2 +  a2 + v 27  H2) + b. (5.12)

The apparent string then has orientation given by sapparent = y '(&, t) /|y '|, which is 

in general not equal to s. These string orientation vectors may be projected onto 

the sky via

The difference between apparent and actual string orientation can then be charac­

terized by the angle between these two 2-vectors:

implies that the angular separation vector is always orthogonal to the apparent 

cosmic string as in Figure 5.9.

One might wonder how it is possible for a cosmic string that appears to be 

bent in the shape of a hyperbola to produce an undistorted image. Indeed since 

the lensed images appear perpendicular to the bent string, the image pairs must 

differ by a very slight distortion. This is not in contradiction with the fact that 

the spacetime surrounding the string is flat: The images are moving at slightly 

different velocities, which gives rise to both the Kaiser-Stebbins (blue-shift) effect, 

as well as a relative “hyperbolic distortion” due to the finite travel time of light. 

So the distortion induced by an extremely relativistic string is none other than the 

distortion that all moving bodies appear to have; c.f. Eqn. (5.11).

s =  s — (n • s)n (5.13)

Sapparent 'apparent'apparent (5.14)

|s| | S apparent\ sin0 >/7 2(l +  n • v )2 — cos2 6
S * $ apparent COS $V  * ( n  X s ) 7 (5.15)

Interestingly, the relative angle between 5ip and s can be shown to be tt/2+/? which

^ P  ‘ ®apparent 0 (5.16)
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Figure 5.9: A schematic view of the lensing due to a single string in the most 
general case; when the string’s velocity is non-zero, the angular 
separation vector is perpendicular to the apparent string, rather 
than to the actual string.

5.2.2 Lensing by Y -Junctions

A feature of superstring networks is that they are composed of at least two distinct 

string species: so-called fundamental or F-strings as well as Dl-branes, or D- 

strings. These different types of strings can mutually interact via binding, creating 

(p, q) bound states composed of p F-strings and q D-strings [12,59,86]. The tension 

of such strings is given by

!b,<i =  ‘ +  q2i4> (5.17)

Networks of such strings are cosmologically safe, as they are expected readily 

to go to scaling [11].

It is in the region near the Y -shaped junctions formed after collisions that 

the new string lensing effects are seen. In Figure 5.8, we showed an image as it 

might actually appear, with the invisible strings and angular separation vectors
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/

Figure 5.10: The imaging pattern of a three-way junction. The dark lines 
represent the force-balanced string junction; in reality, strings 
themselves are invisible. The dotted and dot-dashed lines rep­
resent, schematically, the angular separation vectors associated 
with the strings. We suppress the heads of the vectors, since 
their orientation is arbitrary. For string tensions in the upper 
range allowed by observations -  that is, G/j, 10“7 [8,66,90-92] 
-  the size of the angular separation vectors would be of order 
1 arc-second. The stars represent the lensed images, with the 
angular separation vectors drawn in for illustrative purposes.
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Figure 5.11: The imaging pattern is shown for two overlapping cosmic 
strings. The dotted and dot-dashed lines represent, schemat­
ically, the angular separation vector associated with the strings. 
Notice that only the object and two of the three images are 
visible.

suppressed. In Figure 5.10, we show a mock-up of the triple image formed in the 

vicinity of a T-junction together with the strings that produce the image. In brief, 

each leg of the T-junction lenses exactly like an infinite straight string.

To motivate the above result, let us begin by considering a source simultane­

ously imaged by two long strings.

For two overlapping strings, it is straightforward to construct a set of rules 

for the multiple imaging of a single source. Each straight cosmic string has an 

associated two dimensional “angular separation vector” the length of which is 

given by Eqn. (5.9). For string tensions in the upper range allowed by observations 

[8,66,90-92], the magnitudes of these angular separation vectors are of order 1 arc- 

second. The orientation of the angular separation vector is perpendicular to the 

associated cosmic string.
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1. Begin with an original image (i.e. the object); the choice of which image to 

begin with is arbitrary.

2. Construct a parallelogram originating at the object and generated by the 

angular separation vectors associated with each cosmic string; each corner 

represents a new image.

(a) Each image (except the object) will be associated with the set of cosmic 

strings whose angular separation vectors were used to create it.

(b) If exactly those strings that are associated with an image -  and no 

others -  lie between the object and that image, then that image will be 

visible; otherwise, that image will be invisible.

3. Thus, given the existence of one visible image (the object), the location and 

status -  visible or invisible -  of the other three images is known. An example 

of this is shown in Figure 5.11.

4. This procedure is consistent with the fact that a visible image is made invis­

ible when and only when any cosmic string moves across it, and an invisible 

image is made visible only when a cosmic string moves across it.

For three overlapping strings, we follow the same procedure as before, with the 

same rules. The only difference is that rather than forming a parallelogram, three 

angular separation vectors lead to a parallelepiped. We show an example of this 

sort of diagram in Figure 5.12.

Finally, let us stipulate that the three strings are coplanar and intersect at one 

point. If they are to be in force balance, then their orientation unit vectors must

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



88

Figure 5.12: The imaging pattern for three overlapping cosmic strings is 
shown. Only the object and two of the seven images are visible.
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obey
3

^ / / i 7 iS = 0. (5.18)
2 = 1

The 7 -factors correct for the Lorentz contraction caused by boosting in a di­

rection not perpendicular to all three strings.

If the three infinite strings satisfy Eqn. (5.18) then one may “cut-and-paste” 

them into two T-junctions without changing the energy-momentum tensor. One of 

the y-junctions can then be pulled away to reveal a single junction and its lensed 

images.

When cosmic strings intersect at a three-way junction, the background metric is 

solvable if and only if [93] the strings obey the force balance equation. Dynamically, 

however, the force balance equation is always satisfied since the neighborhood of 

the junction point can be taken to have an arbitrarily small mass, thus allowing 

it to respond instantaneously to any net force. This would not be the case if the 

vertex had a large mass (e.g., if it were a monopole). Thus there is a consistency 

check that must be performed for lensing by T-junctions: each string lenses the 

two images surrounding it, and so the picture is over determined. In other words, 

each object has two images which must also satisfy the lensing equation of the 

string separating them. This means we must check that the angular separation 

vector triangle closes:
3

E * h  = 0. (5.19)
1=1

In fact, we find that the force balance Eqn. (5.18) is a sufficient condition for Eqn. 

(5.19) to be satisfied. This could be inferred from the first claim of this paragraph, 

but is also possible to verify directly using the equations found in §5.2.1.
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5.2.3 Conclusion

We have presented an exact solution for both the lensing of three-string junctions 

and for multiple overlapping strings. We do not yet know how prevalent such 

junctions would be in realistic networks of (p,q) strings. Since they are expected 

to be somewhat rare, however, our chief hope for locating such a junction would be, 

first, to locate an actively lensing cosmic string. Ira Wasserman has pointed out 

that the multi-image signature of crossing or bound strings is much less ambiguous 

than two images with identical spectra, since galaxy collisions cannot simulate such 

an image. As of now, no astronomical observations have yielded unambiguous 

evidence for a string lensing event, In passing, we note that, since high velocities 

generally enhance lensing (see Eqn. 5.9), there cannot be a firm lower bound placed 

on the tension of the inferred string from a single lensing event. Should such an 

event be found, we might hope to track it across the sky by interpolation between 

further lensing events or through the Kaiser-Stebbins effect [16,77,94,95] until a 

junction could be located along its length. If it so happens that a single cosmic 

string lensing event is discovered, an eager modern-style search would doubtless 

ensue in hopes of tracking down further such events; in such a scenario, the sort of 

cross-sky tracking suggested above might become possible. Within any such search, 

the discovery of even one triple imaging event as described in this paper would be an 

unmistakable indicator of the existence of a cosmic string network with non-trivial 

interactions, the very kind predicted in brane inflationary models. Finding this 

sort of smoking gun -  so rare as to be invisible to serendipitous discovery -  might 

be possible in such a scenario, giving us hope for an experimental examination of 

string theory unthinkable even a few years ago.
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CHAPTER 6

THE IMPOSSIBILITY OF CLOSED TIME-LIKE CURVES FROM 

COSMIC STRINGS

6.1 Introduction

Although cosmic strings as the seed of structure formation [96] has been ruled 

out by observations of large scale structure and the cosmic microwave background, 

their presence at a lower level is still possible. Indeed, cosmic strings are generically 

present in brane inflation in superstring theory, and their properties are close to, 

but within all observational bounds [2,7,23,59,66,97]. This is exciting for many 

reasons since current and near future cosmological experiments/observations will 

be able to confirm or rule out this explicit stringy prediction. If detected, the 

rich properties of cosmic strings as well as their inflationary signatures provide 

a window to both the superstring theory and our pre-inflationary universe. The 

cosmic strings are expected to evolve to a scaling string network with a spectrum 

of tensions. Roughly speaking, the physics and the cosmological implications are 

entirely dictated by the ground state cosmic string tension fi, or the dimensionless 

number G//, where G is the Newton’s constant [96]. The present observational 

bound is around G/r < 2 x 10-7. Recently, it was shown [7] that the cosmic 

string tension can easily saturate this bound in the simplest scenario in string 

theory, namely, the realistic D3 — D3-brane inflationary scenario [23]. This means 

gravitational lensing by such cosmic strings, providing image separation of order 

of an arc second or less, is an excellent way to search for cosmic strings. Generic 

features of cosmic strings include a conical “deficit angle” geometry, so a straight 

string provides the very distinct signature of an undistorted double image. Cosmic
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string lensing has been extensively studied [79,83,98,99].

In the string network, some segments of cosmic strings will move at relativistic 

speeds. It is therefore reasonable to consider the gravitational lensing by highly 

relativistic cosmic strings. We also confront another interesting feature of cosmic 

strings, first realized by Gott [100]: the possible appearance of closed time-like 

curves (CTCs) from two parallel cosmic strings moving relativistically past each 

other. As the strings approach each other fast enough in Minkowski spacetime, the 

path encircling the strings in the sense opposite to their motion becomes a CTC. 

This is sometimes called the Gott spacetime or Gott time machine.

Although there is no proof that a time machine cannot exist in our world 

[101 , 102], their puzzling causal nature leads many physicists to believe that CTCs 

cannot be formed. This skepticism has been encoded in Hawking’s Chronology 

Protection Conjecture (CPC) [103]. However, CPC as proposed is not very precise; 

even if we assume CPC is correct, it is not clear exactly what law of physics 

will prevent the specific Gott spacetime. There are a number of interesting and 

insightful studies attempting to apply CPC against the Gott’s spacetime :

• Recall that the original Chronology Protection Conjecture [103] is motivated 

by two results. The more general of the two is the semi-classical divergence 

of the renormalized stress-energy tensor near the “chronology horizon,” or 

Cauchy surface separating the regions of spacetime containing CTCs from 

those without. These (vacuum) “polarized” hypersurfaces led Hawking to 

conjecture that any classical spacetime containing a chronology horizon will 

be excluded from the quantum theory of gravity. However, a recent pa­

per [104] found an example where this chronology horizon is well defined in 

the background of a string theory (to all orders in a1). So, in superstring
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theory, the CPC is not generically true: the Taub-NUT geometry receives 

corrections that preserve the travsersibility of the chronology horizon. Un­

like classical Taub-NUT, stringy Taub-Nut contains time-like singularities, 

although they are far from the regions containing CTCs. The second hint 

that CPC is true is the theorem proved by Hawking and Tipler [103,105] 

that spacetimes obeying the weak energy condition with regular initial data 

and whose chronology horizon is compactly generated cannot exist. These 

theorem depends crucially on the absence of a singularity, and so Hawking’s 

claim that finite lengths of cosmic string cannot produce CTCs is only true 

if one rejects the possibility of a singularity being present somewhere on the 

chronology horizon [106].

• When we consider possible formation of CTCs coming from cosmic string 

loops (though this is not necessary for our general argument), Tipler and 

Hawking make use of the null energy condition and smoothness to argue 

against CTCs. The null energy condition can be satisfied even when one 

smooths out the conical singularity (with a field theory model) at the core of 

the cosmic strings. However, in superstring theory, such a procedure is not 

permitted. The cosmic strings are either D 1-strings or fundamental strings. 

Classically, the core is a 5-function with no internal structure (e.g., energy 

distribution) in the string cross-sections, so the string has only transverse 

excitation modes. Suppose we smooth out the 5-function. Then one can 

rotate the string around its axis and endow it with longitudinal modes. The 

presence of such longitudinal modes violate the unitarity property of the 

superstring theory. (In fact, in the presence of such longitudinal modes, 

general relativity is no longer assured in superstring theory.) In this sense, the
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string geometry is not differentiable, and one must generalize the appropriate 

theorems before they may be applied.

• Cutler [107] has shown that the Gott spacetime contains regions free of CTCs, 

that the chronology horizon is classically well defined, and that Gott space­

time contains no closed (as opposed to just self-intersecting) null geodesics. 

Hawking points out that this last feature must be discarded for bounded 

versions of Gott (and similar) spacetimes. This means that if one can avoid 

the Tipler and Hawking theorems (by including singularities), a cosmic string 

loop could create a local version of Gott spacetime with closed null-geodesics. 

Cutler found a global picture of the Gott spacetime very much in agreement 

with general arguments made by Hawking regarding the instability of Cauchy 

horizons, specifically the blue-shifting of particles in CTCs. Here, we find a 

concrete example of this phenomenon using a lensing perspective.

• As parallel strings move relativistically past each other to create CTCs, a 

black hole may be formed by the strings before the CTC appears, thus pre­

venting CTCs. If this happens, one can consider the formation of a black hole 

as a realization of CPC. However, it is easy to see that, using Thorne’s hoop 

conjecture, there is a range of string speed where the CTCs appear, but no 

black hole is formed. The results of Tipler and Hawking suggest that either 

the strings are slowed to prevent CTCs, or a singularity forms somewhere 

else in the geometry. We will argue that the strings are slowed, and no CTC 

forms.

• Tipler [105] proved that whenever a CTC is produced in a finite region of 

spacetime, a singularity must necessarily accompany the CTC. This Singular-
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ity does not represent a no-go theorem, since the CTC and its sources need 

not encounter the singularity. In fact Tipler’s physical argument against the 

creation of CTCs is the unfeasibility of creating singularities. However, it is 

well-known that singularities such as orbifold fixed points and conifolds are 

perfectly fine in superstring theory, where Einstein gravity is recovered as 

a low energy effective theory. Furthermore, under the appropriate circum­

stances, topology changes are perfectly sensible. This consistency is due to 

the extended nature of string modes.

• One may consider the Gott spacetime in 2+1 dimensions. The 2+1 dimen­

sional gravity relevant for the problem has been studied by Deser, Jackiw and 

’t Hooft [108]. For a closed universe, ’t Hooft [109] argues that the universe 

will shrink to zero volume before any CTCs can be formed. For an open 

universe, Carroll, Farhi, Guth and Olum (CFGO) [106] show that it will 

take infinite energy to reach Gott’s two-particle system which has space-like 

total momentum. However, the argument depends crucially on the dimen­

sionality of spacetime. We argue that this last property is quite specific to 

2+1 dimensions. In 3+1 dimensions, we show that it is easy to realize Gott’s 

two-string system. For example, a long elliptical string with slowly moving 

sides will collapse to two nearly parallel segments at high velocity, and can 

do so without forming a black hole. So CTC formation from the evolution 

of cosmic string loops seems quite easy to construct. This feature is purely 

3+1 dimensional.

If none of the above arguments against CTCs are fully applicable to the Gott 

3+1 spacetime, does this mean CPC fails and Gott spacetime can be realized in 

the real universe? Or axe there other mechanisms which prevent the formation of
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CTCs?

In this paper, we use a lensing framework to demonstrate the classical instability- 

near the Cauchy horizon which we argue will prevent the formation of cosmic string 

CTCs in any realistic situation. To be specific, our argument goes as follows :

• A particle or a photon gets a positive kick in its momentum in the plane 

orthogonal to the strings each time it goes around a CTC [16,106,110].

• Once inside the chronology horizon, such a particle is generically attracted 

to a CTC; that is, a worldline in the vicinity of the CTC will coalesce with 

the CTC. This is our main observation.

• The particle will go through the CTC numerous times (actually an infinite 

number of times) instantaneously; that is, the particle will be instantaneously 

infinitely blue-shifted.

• It follows that the back-reaction must be important; conservation of angular 

momentum and energy implies that the cosmic strings will slow down, or, 

more likely, bend; this in turn prevents the formation of CTCs. Note that 

this back reaction must disrupt the closed time-like curve, otherwise the in­

finite blue-shift can not be prevented. Thus a single particle, say a graviton 

or photon, no matter how soft, will bend the cosmic strings so that CTC 

cannot be formed. The following picture seems reasonable: as the two seg­

ments of cosmic strings move toward each other, they are bent and so radiate 

gravitationally. This slows them down to below the critical value for CTC 

formation. We expect no singularity/divergence to appear.

• Since there is a cosmic microwave background radiation in our universe, these 

photons preclude the existence of CTCs. Of course, the cosmic microwave
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background radiation is not the only wrench in the machine. Gravitons or 

some other particles can be emitted by the moving strings, either classically 

or via quantum fluctuation. In particular, gravitons must be present in 

spacetimes of dimensions 3+1 or greater. A single graviton, no matter how 

soft, will lead to the above effect. We argue this is how the chronology 

protection conjecture works in the Gott spacetime.

This result is not too surprising in light of the likely (blue-shift) instability of 

Cauchy horizons discussed by Hawking and others, although a counter example 

was found by Li and Gott [111] while analyzing possible vacua of Misner space, 

whose Cauchy horizon can be free of instability. As in our example, a divergence 

occurs only in the presence of particles, although we find that blue-shifting (and 

not particle number) is the cause.

The blue-shift instability is well studied in the literature [112]. The strong 

cosmic censorship conjecture predicts that a Cauchy horizon is, in general unstable 

(e.g. that of a Reisner-Nordstrom black hole in asymptotically flat spacetime), and 

that this instability is the result of the infinite blue shift of in falling perturbations. 

This must be similar to the instability we describe, but our picture is resolved 

differently. We find that the CTC never forms because surrounding particles scatter 

off the cosmic strings, bending and slowing them. Hence no Cauchy horizon (stable 

or not) ever forms.

’t Hooft [113] argues that, since the local equations of motion for a cosmic string 

are well-defined, one should be able to list the Cauchy data at any particular time, 

and demand the Laws of Nature to be applied in a strictly causal order. If one 

phrases the logic this way, there are no CTCs by construction, in agreement with 

the chronology protection conjecture and strong cosmic censorship. So the question
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is: what is wrong with Gott spacetime? His answer to this question is that the 

Cauchy planes become unstable: in terms of these, the Universe shrinks to a line 

in 3+1 dimensions. The moment a disturbance from any tiny particle is added 

somewhere in the past, it generates so much curvature that the inhabitants of 

this universe are killed by it. In our scenario, we give a specific mechanism with 

more details: a single graviton or photon, even a very soft one, will suffice. An 

infinitely blue-shifted photon (or any particle) will cause so much curvature th a t ’t 

Hooft’s collapsing scenario occurs. Here, we agree with the chronology protection 

principle a n d ’t Hooft that a CTC is not formed. However, we believe that, due to 

the energy-momentum-angular momentum conservations, the back-reaction will 

bend the cosmic strings and induce gravitational radiation so that the CTC is 

never formed. Neither the curvature nor the energy of the photon blows up. Note 

that the bending of the strings can not happen in 2 + 1  dimensions.

In this paper, the motion of a photon/graviton around the cosmic strings is a 

crucial ingredient of the analysis. We shall start with a review of the gravitational 

lensing by a straight moving cosmic string. Here we correct a mistake lensing 

formula mistake in the literature (see Appendix A). Next we review the evolution 

of a simple string loop to a loop with two long segments that are moving past 

each other at ultra-relativistic speed. Far away from the ends, we treat the two 

long segments as if they were two infinite parallel strings. Next we review Gott 

spacetime. Finally we show that the CTCs encircling the two strings are attractors 

for particles. Our analysis ends here. Supplemented with plausible reasonings, we 

argue that the above mechanism is a way to prevent CTCs in the real universe. 

Throughout, we shall assume do =  8 ttGii to be very small (say, less than 10"5).
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Figure 6.1.a: A Cosmic String Figure 6 .1 .b: The images must lie 
near a galaxy on opposite sides of the string.

6.2 Cosmic String Lensing

One may calculate the observational signatures of rapidly moving cosmic strings 

(straight and loops), in particular their lensing effects on distant galaxies and the 

CMB. The simplest case of a straight, nearly static cosmic string has the distinctive 

signature of producing two identical images, each being undistorted and equidistant 

from the observer.

Above is pictured a cosmic string moving to the right across a distant galaxy. 

We call the angular separation of the images 5<p, and the photon deflection angle 

5, as in the diagram below. Although the double images on the left picture of Fig. 

1 may be due to two almost identical galaxies (a rare but not impossible scenario), 

the picture on the right will be a much cleaner signature of cosmic string lensing. 

If one sees a double image candidate, one expects to see other candidates nearby. 

Searching for incomplete images will be important.

This leads to the well known result 5ip = The spacetime around a

static cosmic string is Minkowski space with the identification of two semi-infinite
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Ds,0

cs

Ds,cs

Figure 6.2: A straight cosmic string introduces a deficit angle 5. Here, the 
sources s and s' are to be identified.

hyperplanes whose intersection is the cosmic string world sheet. This is equivalent 

to identifying every event s in space time with a dual s' where the relation between 

s and s' with a static cosmic string located at rcs is

S' = RSo{s - T e a )  + rcs. (6.1)

Here Rs0 is a pure rotation (counter clockwise). (Notice rcs can be any point 

on the cosmic string world-sheet.) It should be noted that s is visible only when 

it appears to the right of the cosmic string, and s' is visible only when to the left.

The general case involves a cosmic string moving at some four-velocity vcs. We 

will always take vcs to be perpendicular to the cosmic string world sheet, since any 

parallel component is unphysical (assuming a pure tension string). Interestingly, 

this velocity is only well defined in combination with a “branch cut”. This is 

related to the fact that a passing cosmic string will induce a relative velocity 

between originally static points in space, so a constant velocity field will not be 

everywhere single valued. More physically, parallel geodesics moving past a cosmic 

string will be bent toward each other, provided they pass the string on opposite 

sides. Specifying a branch cut enables the conical geometry to be mapped to 

Minkowski space (minus a wedge), where things are simpler. The pure rotation 

identification is valid only in the center of mass frame of the cosmic string, so in
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Figure 6.3: The path of a photon coming from the source at the lower left 
and reaching the observer at the right. The straight cosmic string 
is moving with speed vcs to the left. The photon’s initial velocity 
ni makes an angle a  with respect to —vcs. At A the photon 
strikes the leading edge of the deficit wedge (a distance r from 
the position of the cosmic string).

general

s — AVcgR$0 A -Vcil(s — rcs) +  rcs (6-2)

where AVcs is a pure boost such that A -Vcgvcs = (1,0,0,0). We have simply boosted 

into the strings reference frame and then performed the rotation-identification. 

Then we boost back.

Here we investigate the lensing due to nearly straight segments moving at 

arbitrarily relativistic speeds. We consider the interaction of a photon with a 

cosmic string’s deficit angle. In Figure 6.3, a photon is crossing the deficit angle 

at a distance r from the string vertex. The photon is re-directed by an angle 5 

and makes a spacial and temporal jump. This jump (s' — s) is found using the 

coordinate identification in Eq. (2), where s =A is the photon striking the deficit 

angle and s' =B is its emergence from the deficit angle. If we choose the deficit 

angle to be perpendicular to vcs, the spacial jump is parallel to vcs, and is given
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by

A x  =  2r  tan(<5o/2 )7cs At = — 2rtan(<5o/2)7cs'Ucs. (6.3)

where 7^ =  l / \ / l  — u)?s. in Figure 6.3, events A and B are identified, while events 

A and C are simultaneous. If the photon strikes the leading edge of the deficit 

angle, the jump is behind the cosmic string and backward in time. If the photon 

strikes the trailing edge, the jump is in front of the cosmic string and forward in 

time. For ultra relativistic cosmic strings, only photons traveling almost exactly 

parallel to the string’s velocity will strike the trailing edge of the deficit angle.

We will calculate the change in momentum of a particle interacting with the 

cosmic string. In the string rest frame, we know that

k fin a l =  F tio^initial (^ -4 )

so we simply boost the above equation into the frame where the string is moving 

at velocity vcs. Then

k fin a l =  h-vcs A(50 A-Ucs ^in itia l- (6 -5 )

To calculate the directional change in a photon’s velocity, we take the above 

formula with k 2  = —m 2  = 0 and for simplicity we take the photon to travel in a 

plane perpendicular to the cosmic string. Then we find (dropping the cs subscript)

cos(5) =

((A -  B) cos(a) + sin(a:)(usin(5o) — cos(50) sin(a:)/7 ))
\J (sin(<50)(u + cos(a:)) — cos(<5o) sin(a:)/7 ) 2 + (B — A  + sin(a) sin((5o) )2

where

A  = 7 cos(ct)(,i;2 — cos(<$o)) B = 'y(vcos(S0) — 1).

The blue-shift can be calculated as well, yielding

UĴ mal =  'ysin(a) sin(<50) +  7 2(1 +  v cos(a) —vcos(a) cos(5o) — v2  cos(5o)). (6 .6)
^ in itia l
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Straight portions of a cosmic string moving at ultra relativistic speeds produce 

photon deflection of order 7r in conjunction with severe blue-shift. Slower moving 

cosmic strings will obey the Kaiser-Stebbins formula [16] and cause the sky behind 

the moving string to be blue shifted relative to the sky in front of the string.

With the exception of loops, we expect cosmic strings to move moderately 

relativistically, but with 7<50 <<  1 . In this limit, the above formula reduces to

8  — <Vy(l + ucos(a)) —>
r D s c s  8 ttG [ a . A .
8<P =  j f -  x - 7 = = f  x (1 +  n- v ) .

±Js,o v l  — v 2

The first factor DSfiS/D Sfo is a plane-geometric coefficient for 87rG/ry, which is the 

relativistic energy of the string. The third term is the result of the finite travel 

time of light, and does not represent the coordinate locations of the images in 

the observer’s frame. Notice that a moving string (except one moving toward the 

observer) has a stronger lensing effect. This result disagrees with that given in 

Ref. [79], which has the 7  factor in the denominator. To see this difference more 

clearly, we give in Appendix A the simple derivation of Ref. [79] and point out 

where the error occurs. Recall that the typical speed of the cosmic strings in the 

network is rather large, v ~  2/3 [9,10,114]. There will be segments of strings that 

have 7  >> 1 and they have the best chance to be detected via lensing.

The above formula only applies to cosmic strings perpendicular to the line of 

sight. For the most general lensing due to straight cosmic strings, see section 5.2.1.
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6.2.1 Alternate Derivation of Lensing by a Moving Cosmic 

String

The approximate results of the above section for the lensing due to a moving cosmic 

string is derivable using an elegant argument due to Vilenkin [79]. Here we begin 

with the cosmic string tension being very small, and we point out where the error 

in Ref. [79] is. Vilenkin argues that the angular deflection of light by a cosmic

string may be calculated by appealing to Lorentz invariance. For a string at rest,

the angular separation is given by

<V = o, (6.7)

where for simplicity we have assumed the string lies orthogonal to the line of sight. 

We may consider two light waves, one from each image, k and k1. Their scalar 

product is given by

= u>u'(l — cos(5<p)) ~  {5(f) 2 . (6.8)

We may assume that the two light waves have the same frequency: u  = u/. (This 

can be true in all reference frames since we are expanding to first order in V ) We 

can then relate the angular separation in any two reference frames by the frequency 

of the light waves:

UoSipo = u5ip (6.9)

i.e., the higher the observed frequency, the lower the observed angular separation. 

The frequency in a reference frame where the string moves at velocity v relative 

to the observer is given by

uj =  ■ ^ --------  ( 6 . 10)
7 (1  + n  • v)
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where n is the direction from the observer to the source (and thus string), and 

hence

6<p =  7(1 +  n • v)<fy>0- (6-H)

The roles of u  and ojq are erroneously swapped in Ref. [79], which thus agrees 

with ours only for noc v. Physically, a traveler moving transverse to the light we 

observe should measure a higher frequency than we do (i.e. ui < u>0  for n • v =  0). 

It should also be pointed out that a string moving across the sky will blueshift the 

CMB behind it by an amount

L°back-  =  l +  |v x nlq^o, (6.12)
^  fron t

that is, the sky becomes hotter after a cosmic string passes.

6.3 The Evolution of a Simple String Loop

Naively, ultra-relativistic straight strings are rather unlikely, and two parallel ultra- 

relativistic straight strings passing each other with such a large kinetic energy den­

sity must take some arrangement. It is along this line of reasoning that CFGO [106] 

argues against the formation of Gott spacetime in 2+1 dimensions. In 3+1 dimen­

sions, the situation is much more relaxed. String loops provide ultra relativistic 

speeds that long cosmic strings rarely obtain. This is favorable for the possibility 

of closed time-like curve formation. Here we demonstrate how a cosmic string

loop can evolve to long, nearly parallel segments moving ultra-relativistically to­

ward each other at arbitrarily small impact parameter but without touching. In 

accordance with the hoop conjecture, the loop avoids collapsing to a black hole, 

seemingly allowing the formation of a Gott spacetime with CTCs. Such a space­

time contains closed null geodesics. We will argue that, unlike in 2 +  1 dimensions
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the gravitational radiation present is enough to preclude the formation of CTCs. 

In agreement with Tipler and Hawking, the loop must slow down.

The classical string equation of motion is

r(cr, r) — r"(a, r) =  0 (6.13)

with the constraint equations r-r' =  0 and r 2 +r ' 2  =  Rq. We’ll see that 2tx RQji is the 

total energy of the loop. A dot symbolizes differentiation with respect to r  = t /R 0, 

and a prime denotes differentiation with respect to a. The general solution r(cr, r) 

can be written as a linear combination of periodic left- and right-moving waves,

r(a, r) =  ^  [a(cr -  r) +  b (<7 +  r)] (6.14)

where (a! ) 2  =  (b1) 2 = 1. Consider a set of initial data

r(cr, 0) = ro(0), r(cr, 0) =  v 0 {9)RQ (6.15)

where the unit circle bijection 9(a) is used to parametrize the initial data and 

v0 • r0 =  0. The gauge conditions imply

1 [° K W  (6,6)
J o  R o  J o  -y /l  — Vq (9 ' )

We require a(2r) = 2ir. The inverse 9(a) may then be found, as well as the general

solution
p a - \ r T

r0(9(a + r ) )  + r0(9(a -  t ) )  + R0 / v0(9(a')da'J ( J — T

a + T

(6.17)

We can apply this formula to the Gott initial data, namely two parallel segments 

of length l0  = ttHox/1 — Vq = ttRq/'Jo passing arbitrarily close, each with speed Vo 

in opposite directions:

ro(0) =  — (0, A(0),ecos(0))
7o _____

VO(0) =  - ^ 7 g — ( ^ , 0 , 0 )
7o
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Figure 6.4: The triangle function A(0) and its derivative A '(6 ).

with e <<  1 (head on collision of the two string segments is avoided with a non-zero 

e.) Illustrated below are A (8 ) and A '(6 ).

Using Eq.(6.16) we find a{6 ) =  0 + 0(e2), and

r(<bO = | | [  (yJi$^l )[&(<r  +  T) -  A(ff-r)],

A(cr +  r) +  A ( u - r ) ,

ecos(cr +  r) +  ecos(a — r) ].

A multi-image snapshot is pictured below.

The first possible obstacle to CTC formation that we consider is Thorne’s hoop 

conjecture. This states that an event horizon will form (and shroud any CTCs) 

when and only when a region of a given circumference C contains more rest energy 

than the critical energy C/AttG. We need the loop to collapse to an object with 

length greater than a critical length it =  S0 Ro- We immediately see that no 

event horizon forms for the above solution with 7o<$o < 7r. This allows for the Gott 

case 7<5o > 2.

One can estimate the lifetime of a cosmic string loop to be of order 100/?o where 

Ro is the maximum size of the loop (2ttRq = Energy/tension) [99]. Gravitational
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V
Figure 6.5: The Gott-loop has maximum minor and major axes given by lo 

and ZoUoTo,respectively. The speed of the vertical and horizontal 
loop sides is given by v0  and y j\  — Vq, respectively.

radiation carries away the otherwise conserved energy

The time scale of decay is much longer than the time scale of evolution, so one may 

ignore the gravitational radiation. Naively, the inclusion of gravitational radiation 

may only require some minor adjustment of the original string loop. In reality, 

the gravitational radiation plays a role in slowing down the loop sides, preventing 

CTC formation.

Implicit in this discussion is the assumption that a small region containing par­

allel segments of cosmic string loops will have the geometry of infinite strings mov­

ing similarly. This is a reasonable assumption for the following reason. Einstein’s 

equations are local and cannot depend on distant sources (or the lack thereof). 

Even if CTCs were to form, they do so in a bounded region of spacetime (unlike 

the 2+1 case), and thus can be considered a local feature which does not reflect 

upon distant (spatially or temporally) regions. One could imagine adding a small 

cosmological constant to the 2+1 dimensional Gott spacetime to match up with an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(6.18)



109

asymptoticly flat universe far from the strings. Such a geometry would be sensible 

for a string loop in our universe: Gott spacetime near the loop, yet asymptotically 

flat. One would expect that any process of embedding Gott spacetime in a bounded 

region would necessarily introduce closed null geodesics. In Gott spacetime, null 

geodesics only close asymptotically as one moves toward space-like infinity.

Recent brane inflation models have proposed having the inflationary branes 

located in the tip of a Klebanov-Strassler throat of a Calabi-Yau 3-fold [23]. In 

some scenarios, the standard model branes are in a different throat. One feature 

of this construction is that cosmic strings produced after inflation are meta stable, 

and will not be able to decay via open string interaction with the standard model 

branes [59]. It should be pointed out that extra dimensions have no effect on Gott’s 

construction of CTCs, provided that the radii of the extra dimensions are small 

compared to the radius of the CTC. This can be seen as follows. A cosmic string 

in our universe is an object extended in one non-compact direction, and zero or 

more compact directions. The four dimensional effective theory will always have 

a conical singularity on the location of the string, and any corrections to this will 

be due to massive axion and (KK) modes of the metric- particles whose range is 

limited to sizes of order the radii of the extra dimensions. Thus as long as we 

don’t probe distances so near the string that these corrections are significant, the 

conical geometry is valid and Gott’s construction is meaningful. In fact, the CTCs 

in Gott’s construction exist at large radii from the cosmic strings, and so one never 

needs to probe the near-string geometry.

Lensing due to entire cosmic string loops has been analyzed in Ref. [83].
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6.4 G ott’s Construction of CTCs

Here we give a brief review of Gott’s original construction. The key feature is the 

conical deficit angle (<50 =  87tG/j)  around a cosmic string. This results in a ” cosmic 

shortcut,” since two geodesics passing on opposite sides of the string will differ 

in length. This shortcut, like a wormhole, leads to apparent superluminal travel. 

Under boost, “superluminal” travel becomes “instantaneous” travel. Gott realized 

that this “instantaneous” travel could be performed in one direction, and then back 

again when two cosmic strings approach each other at very high speed. The actual 

trajectory is time-like, i.e. performed by a massive body, and resembles an orbit 

around the center of mass of the cosmic string system (in a direction with opposite 

angular momentum as the cosmic strings). Below we illustrate the geometry with 

two strings at rest.

In Figure 6.6, there are three (geodesic) paths from A to B. The central path 

is not necessarily the shortest, in fact it can be seen that

Thus although A —> B  is traversed by a particle on a time-like trajectory above 

or below the cosmic strings, the departure and arrival events may have space-like 

separation in the y = 0 hyperplane which extends between the two strings. In this 

hyperplane, the average velocity of this particle can be calculated as

(In our analysis, we focus on light-like motion since time-like motion is, in a sense 

bounded by this case.) For large enough x, this velocity is greater than that of 

light and so we may boost to a frame where the departure and arrival events are

(6.19)

1
(6 .20)

cos(50 /2) +  £ sin( £0/2) ’
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simultaneous. This is true for any d. In the above picture, we will sever the 

spacetime at the (y = 0)-hyperplane and boost such that the top string is moving 

to the left at speed vcs > cos(<5o/2) and the bottom string is moving to the right 

at the same speed. This means that we can take A —» B  on the upper path and 

B  —» A on the lower path, and in both directions the elapsed time is zero. This is 

possible when

2 < 27 s in (V 2 ) ~  7 <V (6 .21)

It is sufficient that the y =  0 hyperplane has vanishing intrinsic and extrinsic 

curvature for us to consistently sew the two halves together. Notice that the 

limiting case of 7 <50 = 2 corresponds to closed light-like curves. (We will assume 

that |  —» 0 for simplicity.)

The (two-fold) boosted version of the above setup is pictured below. The 

events are numbered in “proper” chronological order (that is, the order in which 

they occur on the particle worldline), but the center of mass coordinate frame 

chronological order needs to be explained. Event 1 is the light ray initially travel­

ing up to meet the rapidly moving deficit angle, which happens at event 2. This 

meeting is identified (under Eq.2) with event 3, although in center-of-mass coor­

dinates event 3 happens before the previous events occur. Events 1, 4, and 7 are 

cm-simultaneous at t = 0 while events 2 and 5 occur at tcrn = +1, and events 3 

and 6 at ton =  —1. Notice that <5 = 7r.

We would like to apply our understanding of ultra relativistic cosmic strings to 

Gott spacetime. We can use the jumps in location, time and direction (At, Ax, 

and 5) to construct all photon paths around a cosmic string system and determine 

the complete lensing behavior. Below is a graph of 8  for several values of 760, as 

given by Eq.(6 .6).
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IDENTIFY

IDENTIFY

Figure 6.6: The Gott spacetime, before the strings are moving. This space­
time will be severed at the y = 0 hyperplane (line AB), boosted, 
and then smoothly glued together again. A and B are separated 
by a distance of 2 x, while the cosmic strings are separated by a 
distance of 2 d.
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©

©
A

Figure 6.7: This is the critical case where 7<5o = 2. The deflection angleis 
calculated using Eq.(6.6) and the discontinuity in the world line 
using Eq.(6.3). We have drawn d > 0 for clarity. The particle 
travels along the path labeled 1 to 7 and back to 1, arriving at 
the same point in space and time, i.e., a closed time-like curve. 
In this case, the particle is neither blue- nor red-shifted.
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Figure 6 .8 : This plot derives entirely from Eq.(6 .6 ). Here, <5(a) is the de­
flection angle of the photon as a function of the angle a between 
the photon direction and (minus) the cosmic string velocity (see 
Figure 6.3). 7 <50 = 2 is the critical case, when the peak of 6 (a) 
touches the value ir (the solid horizontal line).A y50 > 2 curve 
crosses 5(a) = n at 2 points. Notable is where 5(a) crosses 7r 
(see e.g. the 7 6 0  = 3 curve) with positive slope at a s. A positive 
slope crossing implies a stable fixed point. Photons with differ­
ent initial a not far from will follow closed time-like paths 
and approach a = as. Photons are blue-shifted at all positive 
slope crossings. The amount of blue-shift each time is given by 
Eq.(6 .6 ).
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Of importance is where the graphs take the value 7r. Because the two cosmic 

string velocities differ in direction by 7r, 5 =  7r is a fixed point of photon direction. 

As Cutler showed, a crossing with positive slope is stable and blue-shifted, while 

the one with negative slope is unstable and red-shifted. The stable blue-shifted 

fixed point will always exist for j 8q > 2 (super-critical case) and thus represents a 

catastrophic divergence. This is because a particle in the presence of this geometry 

will fall into a stable orbit with exponentially diverging energy. The above graph is 

accurate for massless particles, but massive particles (equivalently: particles with 

nonzero momentum along the strings) will behave similarly once they become 

blue-shifted. In total, we find

• particle trajectories in the vicinity of a 7^0 > 2 pair of cosmic strings will be 

attracted to the stable orientation 5(a) = n, 5'(a) > 0 (see Fig. 8). This is 

because the two cosmic strings velocities are equal and opposite, that is, when 

a particle incident at angle an is deflected by an angle 5n, an+1 = an+7t — 8n. 

Thus not only is a = ir a ’fixed point’ of incidence angle, but it is a stable 

one if 5'(a) > 0, since then a slight increase in a will cause a slight increase 

in 5. A slight increase in 5 will then decrease the next a, and return the 

system to equilibrium. (This assumes 8'(a) < 1, which is always the case.) 

Figure 6.9 illustrates the attractor in action.

• photon momentum in the plane perpendicular to the strings will be blue- 

shifted as given by Eq.(6 .6). This formula applies to any relativistic particle. 

The blue shift occurs twice for each revolution, once from each string;

• since momenta along the string lengths are not blue-shifted, non-relativistic 

particles and particles with velocities along the length of the cosmic strings
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Figure 6.9: The supercritical case: Cosmic string #1 (csl) is moving to the 
left and cosmic string #2  is moving to the right. The particle en­
ters from the bottom right and reaches csl’s deficit angle at 1. Its 
world line appears to jump to the right to 2, now directed down 
and slightly to the right. This process continues indefinitely, 3, 
4, ...oo, the world line spiraling clockwise outward as it falls into 
a stable orbit (the two long, outermost parallel segments). The 
coordinate discontinuity seen here does not reflect any actual dis­
continuity. The numbers on the world line satisfy 2n+ l = 2n+2 
where the equivalence is identification via Eq.(2). The coordinate 
discontinuities plotted here are calculated with Eq.(6.3), and the 
trajectory angle is determined by Eq.(6.6). The initial conditions 
of the above trajectory are not tuned, but rather generic. Ap­
proximately half of all initial particle trajectories will end up in 
a CTC.
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will be attracted to relativistic trajectories perpendicular to the string length;

• In the limit of small d the average distance to the core of the CTC will not 

vary. This means that the orbits will close, rather than shrink;

• the energy of each particle in the CTC will diverge exponentially as a function 

of number of cycles taken; since it takes no time to travel any number of 

cycles, infinite blue shift takes place;

• therefore, j50 > 2 implies a catastrophic divergence in the presence of even 

a single particle.

It should be noted that the exponential divergence in energy is kinematic, and 

has nothing to do with particle number. Below is pictured the trajectory of a 

photon in a supercritical Gott space. The photon enters from the lower right, and 

then spirals clockwise outward into a stable, blue-shifted orbit. The upper and 

lower deficit angle wedges are moving to the left and right, respectively.

We thus may conclude that although closed light-like curves may exist (760 = 

2 ), a purely classical divergence destroys the Gott solution of closed time-like curves 

(7<5o > 2) in the presence of a dynamical field (e.g. gravitons or photons). Cosmic 

string loops cannot produce closed time-like curves. This is in agreement with 

Li and Gott [111] which finds Misner space (and by implication Grant space and 

Gott space) to suffer from a classical instability similar to the one found here. It 

should be noted that the hoop conjecture is not involved in this breakdown. Even 

the 2 + 1  dimensional Gott space, where the hoop conjecture is not applicable, is 

unstable in the presence of dynamical fields.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



118

6.5 Comments

6.5.1 General Discussions

Semi-classical gravity raises an objection to the existence of CTCs, or at least to 

spacetimes that contain both regions with CTCs and regions out of causal con­

tact with them. The boundary between such regions is called the ’’chronology 

horizon,” and in known examples this horizon coincides with a divergence of the 

renormalized energy-momentum tensor. This led Hawking to pose the ” chronology 

protection conjecture,” in which he proposes that any classical examples of space­

times containing CTCs will be excluded by a quantum theory of gravity. Thorne 

and Kim disagreed [115] on the grounds that the divergence of < >ren is so 

weak that a full quantum gravity will remedy the semi-classical pathology. Grant 

found that the divergence on a set of polarized hypersurfaces is much larger than 

that on the chronology horizon. String theory can directly address the conjectures 

made using semi-classical arguments. Recent papers have evoked an Enhangon- 

like mechanism as a stringy method to forbid the formation of CTCs in some 

spacetimes [116]. On the other hand, a recent paper by Svendsen and Johnson 

demonstrated the existence of a fully string theoretic background (exact to all 

orders in a') containing CTCs and a chronology horizon, namely the Taub-NUT 

spacetime. It is not clear if gs corrections destroy this result once matter is in­

troduced, but the empty background is an exact result. This seems to provide a 

counterexample to the Chronology Protection conjecture.

It is easy to see that a cosmic string with only the lowest mode will start as a 

circle and collapse to a point. Before it reaches that limit, a black hole is formed. 

An elliptic or rectangular loop can be made to collapse to parallel, relativistic
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segments without forming a black hole. Although we argue that potential CTCs 

will be disrupted by the presence of photons (or any other mode), it is also possible 

that the huge blue-shift will cause the formation of a black hole, resulting in a black 

hole with cosmic string loops protruding. In this case, the presence of CTCs inside 

the black hole is acceptable, since they are not observable. More analysis is needed 

to fully address this issue.

6.5.2 Specific Discussions on 2 +  1 Dimensions

A simpler scenario with CTCs was found by van Stockum [117] and Deser, Jackiw 

an d ’t Hooft (DJtH) [108] whereby a single stationary cosmic string is given angular 

momentum about its axis. The resulting background is given by

ds2 = — (dt +  Jdd)2 + dz2 + dr2 + (1 — 4 GfJ,)2r2d82. (6.22)

It seems unlikely for such a cosmic string to exist in string theory (at least as 

fundamental objects [118]), since the cosmic strings in superstring theory lack the 

internal degree of freedom ’’spin”. DJtH noticed an unusual feature of the Gott 

spacetime. They classified the energy momentum of Gott’s solution in terms of 

the Lorentz transformations encountered under parallel transport (PT) around the 

strings (holonomy). It is well known that the PT transformations around a single 

cosmic string is rotation-like, i.e. can be expressed as

E = AfiRsoA -0 (6.23)

where Ap is a pure boost with rapidity (3 and R$0 is a pure rotation about the 

angle So- One may calculate the holonomy of a Gott pair via

E = ApRp0A-pA-pRs0Ap, (6-24)
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and it is found that E is boost-like, i.e. E = DJtH regarded the energy

momentum of a Gott pair to be unphysical on the grounds that its holonomy 

matches that of a tachyon (boost-like). It is an unusual feature of spacetimes that 

are not asymptotically flat that T iiv can be space-like (tachyonic) despite the fact 

that it is made up of terms that are time-like.

Headrick and Gott [119] refuted this criticism by showing that the Gott pair 

geometry was quite unlike the tachyon geometry both because a tachyon does not 

yield CTCs and because the holonomy definition of T >w was incomplete. Later, 

Carroll, Farhi, Guth and Olum (CFGO) [106] a n d ’t Hooft [109] gave more con­

vincing arguments against CTCs. CFGO and Gott and Headrick found that the 

PT transformation of a spinor distinguished between tachyon and Gott pair ge­

ometries. A more complete description of geometry would include not just the 

PT transformation, but the homotopy class of the PT transformation as well. 

Equivalently, one should extend 50(2,1) to its universal covering group.

One may interpret the “boost-like” holonomy as boost identification, as was 

done by Grant [120]. This makes the Gott spacetime akin to a generalized Misner 

space. Grant was able to show that the Gott/Misner spacetime suffers from large 

quantum mechanical divergences on an infinite family of polarized light-like hy­

persurfaces. This divergence is stronger than that at the chronology horizon [120].

Regardless of whether the Gott spacetime is physical or not, it can be shown 

that the Gott spacetime in 2+1 dimensions cannot evolve from cosmic strings 

initially at rest [106]. This is quite different from the 3+1 dimensional case.
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6.5.3 The Instability in 3 +  1 Dimensions

Recent realization of the inflationary scenario in superstring theory strongly sug­

gests that cosmic superstrings were indeed produced toward the end of the infla­

tionary epoch. With this possibility, the issue has renewed urgency. In the above 

discussions, we argue that the reasoning against the Gott spacetime in 2+1 dimen­

sions does not apply to the 3+1 dimensional case. In short, the Gott spacetime is 

entirely possible in an ideal classical situation. However, we argue that instability 

set in if there is a quanta/particle nearby. The particle will be attracted to the 

closed time-like curve and is infinitely blue-shifted instantly. Of course, back reac­

tion takes place before this happens. This back reaction must disrupt the closed 

time-like curve, otherwise the infinite blue-shift will not be prevented. In an ideal 

situation where there is no quanta nearby, one still expects particles like (very soft) 

gravitons/photons can emerge due to quantum fluctuation. In fact, quantum fluc­

tuation of the cosmic strings themselves as they move rapidly toward each other 

will produce graviton radiations. One graviton, no matter how soft, is sufficient to 

cause the instability. So we believe that the Gott spacetime is unstable under tiny 

perturbations and so cannot be formed in any realistic situation.

6.6 Conclusion

Recent implementation of the inflationary scenario into superstring theory led 

to the possibility that cosmic strings were produced toward the end of brane 

inflation in the brane world. This possibility leads us to re-examine the Gott 

spacetime, where closed time-like curves appear as two cosmic strings move ultra- 

relativistically pass each other. In an ideal situation, the Gott spacetime is an exact
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solution to Einstein equation, with a well-defined chronology horizon. It does not 

collapse into a black hole and can be readily reached. So it seems perfectly sensible 

that such a spacetime can be present in a universe that contains cosmic strings. 

In this chapter, we find that nearby photons and gravitons will be attracted to the 

closed time-like curves, resulting in an instantaneous infinite blue-shift. This really 

implies that the back-reaction must be large enough to disrupt the formation of 

such closed time-like curves. We interpret this as a realization of the chronology 

protection conjecture in the case of the 3 +  1 dimensional Gott spacetime.
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APPENDIX A 

THE GEOMETRIC DELTA FUNCTION

A .l Definition

On a D dimensional oriented manifold M °  with MP C M D an oriented sub­

manifold of dimension p we define the ’’Dirac delta (D — p)-form” 5D_P(M P) as 

follows:

[  Cp A5D- p(M p):= [  Cp (A.l)
J m d J m d c m p

where the pullback is implicit on the RHS. The subscripts denote the order (for dif­

ferential forms), and superscripts denote the dimension (for manifolds, immersions, 

and chains). Stokes’ theorem then implies

[  Cp. ! A ^ p) = f  dCp- 1 /\6D- p(M p) + ( - l ) p- 1Cp- 1Ad8D- p{M p) 
J d M D J  M D

= f  + ( - l r 1/  Cp-iAdSo-piM*)
J d ( M DnMP) J M D

and so

dSD. p(M p) = (-1  )p5D. p+1(dM p), (A.2)

where we have used the fact that d(M.p fl M q) =  {dMP fl A4q) U (—1)D~P(A4P D 

d M q). Here U is essentially the group sum of r-chains in M ° .  This definition of 

U is equivalent to

SD- p(M p U M p>) = 5D. p(M p) + 5D_p(M p'). (A.3)

Also, following the definition we find

f  Cp+q-0  A 5d-p(-MP) A 5o-q{Mq) = f  Cp+q-D A 5o-p{MP)
J m d J M Dn M i

■ L
@P+q—D 

I M ° n M i n M p
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which leads to the relation

Sd- p(Mp) A 5D- q{Mq) =  62D_p_q{M q n M p) (A.4)

This identity illuminates some generic features of submanifolds.

• The intersection of a p and a q dimensional submanifold in D dimensions 

will generally be of dimension p + q — D.

• When the previous statement does not hold, integration on the intersection 

must vanish. This is because the intersection is not stable under infinitesimal 

perturbation (and not transversal). Consider the case where MP fl M q is 

tuned to be of dimension p + q — D +  n. If n > 0, then an infinitesimal 

perturbation of either manifold will break up the intersection into an 71- 

dimensional array of p + q — D  dimensional manifolds, but with alternating 

orientations. The alternating orientations cause the integral to vanish. If 

n < 0 then the infinitesimal perturbation blows the intersection up into 

a manifold of the proper dimension, but one of measure zero (from Sard’s 

theorem).

• For example, consider two 2-planes in three dimensions which are tuned to 

be tangent over some (two dimensional) region. After infinitesimal perturba­

tion, the intersection would look like a map of a coastline with many ” lakes” 

and ’’islands” and lakes on the islands etc. But each shore has opposite orien­

tation with respect to that of its neighbors, and so the oriented, intersection 

vanishes.

• Now consider two cosmic strings tuned to be completely coincident in four 

dimensional spacetime. Under perturbation this becomes a two-dimensional
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array of points (events). The orientation (sign) of each point is determined 

by the relative velocity and angle between the strings at the points of inter­

section: the sign of (§1 x s2) • (vi — v2) determines the sign of the intersection 

event. This will alternate like a checkerboard, and so again the (oriented) in­

tersection is actually empty. (Here, s is tangent to the string in the direction 

of its orientation, and v is the string’s transverse velocity.)

• When two submanifolds each have odd co-dimension, the orientation of their 

intersection flips when the order of the manifolds is reversed. This is consis­

tent with the Leibniz rule for the boundary operator given below Eqn.(A.2). 

As an example of this, consider two 2-planes in three dimensions, whose in­

tersection is a line. The orientation of each plane is characterized by a normal 

vector, and the anti-symmetric cross product of these is used to determine 

the orientation of the line of intersection.

• We will think of fl as being the sort of oriented intersection operation from 

intersection homology which makes the above properties automatic (i.e. it is 

stable under infinitesimal perturbation of either submanifold).

A .2 Coordinate Representation

The coordinate representation of So-P{M p) is straightforward in coordinates where

the submanifold is defined by the D — p scalar constraint equations

q e  M p ==> A1(.x1[g], ...,a;£,[g]) =  0 i = l . . .D - p  (A.5)

via

6 d - p( M p) = dX:A .... AdXD~p (A.6)
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where 5̂ D~P̂ is the usual D — p dimensional Dirac delta function. The well known 

transformation properties of the Dirac delta function make this object automati­

cally a differential form. (Thus the only meaningful zeros of the X1 are transversal 

zeros, i.e. those where A1 changes sign in any neighborhood of the zero.) If a sub­

manifold is D-dimensional, then the corresponding Dirac delta 0-form is simply 

the characteristic function: S0(M D/) — XMo, with

=  0 q i  M d'.

One may describe submanifolds with boundary by multiplication with an appro­

priate Dirac delta 0-form c.f. Eqn.(A.4). As an example, if M l is the positive 

x-axis in R3, then

S ^ M 1) = 5(y)5(z)Q(x)dy Adz (A.7)

where the characteristic function X (xp) is the Heaviside function 0(a;). Notice that 

the orientation of this submanifold has been chosen to be along the +x direction, 

consistent with Eqn.(A.2) and the fact that its boundary is minus the point at the 

origin.

The A1 do not need to be well-defined on the entire manifold, and in fact they 

only need to be defined at all in a neighborhood of A4P. Thus despite its appearance 

in Eqn.(A.6), 8D- P(M P) is not necessarily a total derivative.

If all of the Az are well defined everywhere, then M p is an algebraic variety. 

By Eqn.(A.2) and Eqn.(A.6) it can be seen that all algebraic varieties can be 

written globally as boundaries. It may be that the X1 are well defined only in 

a neighborhood of M p, in which case M p is a submanifold. Near points not on 

d M p we may think of MP locally as a boundary, just as we may think of a closed
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differential form as locally exact. Non-orientable submanifolds will correspond 

to constraints that may be double valued, that is X1 may return to minus itself 

upon translation around the submanifold. We consider such cases in section A.5. 

Another important case occurs when M p is only an immersion, i.e. it intersects 

itself. The X1 are path dependent here, as well. Consider the immersion S 1 C R2 

defined by the constraint A =  2 arcsin(y) — arcsin(x) =  0. This looks like a figure- 

eight centered on the origin of the plane. Clearly A is multi-valued, and to get a 

complete figure eight requires summing over two branches of A. We suppress the 

sum in Eqn.(A.6). Notice that the figure eight immersion satisfies

61{S1) a 81(S1) = 62( 0 ) -  52(0) = 0.

The self intersection of this immersion is twice the point at the origin, but since 

the orientation (sign) of the intersection is negative for exactly one of the two 

points of intersection, the total self intersection vanishes. For even co-dimemsion 

immersions, the sum over branches allows for non-zero self intersection from cross 

terms. By the antisymmetry of the wedge product, one may show that the self­

intersection of an immersion of odd co-dimension will always vanish, assuming M D 

is orientable. One may also compute the nth self intersection of an immersion via

«„(D-„)(n nM ”) =  / \ 6 D-p(Mr)-
n

A .3 Geometry

If we introduce a metric on our manifold, we can measure the volume of our sub­

manifolds with the volume element \/\g\p from the pull-back metric. Looking at 

the coordinate definition of 5d- p(M p) given in Eqn.(A.5), we see that each of the 

A' is constant along the submanifold, and so dXl is orthogonal to the submanifold.
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Thus, a good candidate for a volume element on M p is *(dXi A... A d \D p). To re­

move the rescaling redundancy in the A*s we may divide by y  *(Ai d \{ A * /y  d\i)). 

Equivalently, we may formally write

*&p - p ( M p )

\\5D - p ( A

where the pull-back is implicit on the RHS and

\ \ 5 d - p ( M p ) \ \  = \J * ( 5 d - p ( M p ) A * 5 d - p ( M p ) ) .

Despite its appearance, \\Sp~''(Mp)\\ *s a P^ovm living in all D-dimensions, although 

its only well defined on M p. This is because in Eqn.(A.S) the Dirac delta function 

coefficients cancel, leaving dependence only on the smooth A2s. Because of this, we 

may define d* n^~F[^pjj[ using the full D-dimensional exterior derivative. Surpris­

ingly, this is well defined on M p, and it is not hard to show that (when restricting 

to points on the submanifold)

d * =  0 M p is extremal. (A.9)
\\tip-P(MP)\\

From Eqn.(A.8) it is evident that ||5j9_p(.Mp)|| = *p * Sd-p(M p), where the 

Hodge star on M p from the pullback metric is denoted by *p. More generally, the 

action by this Hodge star can be rewritten as

p  _  Fg A S p - P{ M p) . .

where Fq is a g-form living on M p and the pullback is implicit on the left hand 

side.

A .4 Topology

One feature of the delta form is that Poincare duality becomes manifest. Here we 

assume M °  is orientable and compact with no boundary. Then Eqn.(A.2) tells
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us that Sd- p(-Mp) is closed if and only if MP is a cycle, and 8d-p{M p) is exact if 

MP is a boundary. To complete this correspondence between the p-th Homology 

and the D — pth de Rham Cohomology of M D we need to show that

SD- p(M p) = dfD- p-! = »  M p = d M p+1. (A.11)

But this is not true when torsion is present. Consider the manifold RP3 = 

50(3) which has a single nontrivial one-cycle C\ i.e. # i(R P 3; IP) =  Z2. Since the 

group sum of two of these cycles is trivial, they must form a boundary: C1 +  C1 ~ 

d M 2 and so 2<52((1) = dS1(M 2) which means

«2(C‘) =  (A.12)

Only by using real coefficients can we make the statement that

M p ~  M p' *=> [5D-p{M p)\ ~  [5d- p(M p')] (A. 13)

De Rham’s theorem gives us the isomorphism between homology and cohomology

Hp(M °]R ) = Hp{M D',R),

and Poincare duality asserts that

HP(M D]R) = HD-P(M D-,R).

The delta form provides the isomorphism

Hp{M d ; R) =  H D~P(M D; R) (A. 14)

In fact, if the cohomology basis is chosen such that

D—p r
U)
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then

[ W - % ) 1  = [4?-J (A.15)

where M p̂  is the Poincare dual of M ^ p, and together they satisfy

i.e. their (net) intersection is a single (positive) point if * =  j , and is empty 

otherwise.

A .5 Non-Orientable Submanifolds

If MP is non-orientable then an odd number of the functions f l will be double

valued and so 8p-p(M p) will not be well defined. More precisely, Sp-P(M P) is

double valued for one-sided submanifolds. We could try to work with the unique 

orientable double cover MP and the well defined 8o-p(M p)- But since 5p-p(M p) 

returns to minus itself upon one non-trivial circut, the form seems to vanish:

8p-P(Mp) =  8d_p{Mp) -  5D-p{MP) = 0. (A.16)

We can nevertheless construct non-vanishing integrals over M v by using twisted 

p-forms such as the volume form on MP. \f\g f is easily seen to be double valued 

on M p, and so its wedge product with 8p-P(M p) is well defined:

( A - 1 7 )

The anti-periodicity of 5D_p(M p) is irrelevant in the above equation since it ap­

pears twice. Thus the standard formula Eqn.(A.17) applies to any immersion, not 

just oriented submanifolds.
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By considering the homology with Z2 coefficients, we may extend Poincare du­

ality to non-orientable cycles using a sort of Z2 cohomology. Consider the manifold 

50(3) ~  1RP3. The zeroth homology is Z2, which is dual to the 3rd cohomology, 

the volume form normalized to give unit volume modulo Z2. The first homology is 

also Z2, generated by the nontrivial cycle well known to represent ’’one rotation” 

of a three dimensional solid. The second cohomology is generated by the twisted 

2—form which represents the volume form of an R P2 C RP3 with unit surface 

area. Thus Poincare duality is again manifest, and intersection number provides a 

natural non-degenerate mapping between a class and its Poincare dual.

On RP2, the single one-cycle satisfies C1 0 C1 = T that is the cycle intersects 

itself at a single point modulo Z2. This implies that

f  «i(C1)Aii(C‘) = l (A.18)
J]RP2

which seems odd since the anti-symmetry should make the wedge product vanish.

The resolution is that the Poincare dual of a one-cocycle is a twisted one-cocycle.

The antisymmetry of the wedge product is cancelled by the antisymmetry of chang­

ing which of the two 1-forms is twisted in Eqn.(A.lS).

A .6 Complex Notation

If a (complex) codimension m  submanifold of C71 is defined by the zeros of m  

holomorphic functions Ai(z) then
771 -

= / \  — <?!<«(*'(*)). (A. 19)
j = 1 m

For purposes of computing pullback metrics, we may simply write this as propor­

tional to
m

im / \ d \ j A dX . (A.20)
j=i
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The transformation properties of the Dirac delta function make its extension to 

differential forms very natural. The computational usefulness of these Dirac delta 

forms is that they allow a purely target space phrasing of integration, and thus 

allow one to write bulk equations of motion for branes and other localized degrees 

of freedom. One may compute integrals over submanifolds without invoking a 

pullback. From a homological point of view, So-P(M p) is the Poincare dual of 

M p.
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APPENDIX B 

LIST OF ABBREVIATIONS AND ACRONYM S

BPS - Bogolmo’nyi, Prasad, Sommerfeld; usually referring to BPS soli-

tons in supersymmetric theories, which exhibit no force between 

them

CFT - Conformal Field Theory

CMB - Comsic Microwave Background

DBI - Dirac, Born, Infeld, specifically the DBI action of nonlinear elec­

trodynamics 

DD - Brane anti-brane

F- & D- - Fundamental and Dirichlet strings (Dl-branes)

FKW - Friedmann-Robertson-Walker

GP - Gimon, Polchinski [46]

GR - General Relativity

GSO - Gliozzi, Scherk, Olive [121], as in the GSO projection which

projects worldsheet supersymmetric theories into modular invari­

ant theories with N  = (2,0), J\f = (1,1), or Af  = (1,0) spacetime 

supersymmetry

Gfj, - The dimensionless ratio of cosmic string tension to Planck mass

squared relevant in 4D cosmic string physics 

GUT - Grand Unified Theory

KKLMMT - Kachru, Kallosh, Linde, Maldacena, McAllister, Trivedi [23] 

KKLT - Kachru, Kallosh, Linde, Trivedi [22]

KS - Klebanov, Strassler [25]
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LIGO - Laser Interferometer Gravitational Wave Observatory

LISA - Laser Interferometer Space Antenna (launch date: 2015)

LHC - Large Hadron Collider

NS-NS - Closed string modes arising from holomorphic and antiholomor- 

phic Neveu-Schwarz worldsheet fermions 

Planck - A high resolution CMB anisotropy experiment (launch date: 2007) 

QFT - Quantum Field Theory

QUIET - Q/U Image ExperimenT for measureing B-mode polarization of 

the CMB

R-R - Closed string modes arising from holomorphic and antiholomor- 

phic Ramond worldsheet fermions 

RS - Randall, Sundrum [122,123]

SM - The Standard Model of particle physics

SUSY - Supersymmetry

VSF - Vector superfield

WMAP - Wilkinson Microwave Anisotropy Probe
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