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COSMIC SUPERSTRINGS:

OBSERVABLE REMNANTS OF BRANE INFLATION

Mark Charles Wyman, Ph.D.

Cornell University

Brane inflation provides a natural dynamical model for the physics which underlie

the inflationary paradigm. Besides their inflationary predictions, brane models

imply another observable consequence: cosmic strings. In this dissertation I out-

line the background of how cosmic strings arise in brane inflationary models and

how the properties of the strings and the models are mutually tied (Chapter 2). I

then use cosmological observations to put limits on the properties of any actually-

existing cosmic string network (Chapter 3). Next, I study the question of how

cosmic superstrings, as the cosmic strings arising from string theory are known,

could be distinct from classical gauge-theory cosmic strings. In particular, I pro-

pose an analytical model for the cosmological evolution of a network of binding

cosmic strings (Chapter 4); I also describe the distinctive gravitational lensing

phenomena that are caused by binding strings (Chapter 5). Finally, I lay out the

background for the numerical study of a gauge theory model for the dynamics of

cosmic superstring binding (Chapter 6).
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CHAPTER 1

INTRODUCTION

Through a remarkable series of observational successes the adiabatic, cold dark

matter-cosmological constant model of the cosmos has come to be accepted as a

cosmological “standard model” [1, 2, 3, 4, 5]. In this model, the hot big bang was

preceded by an epoch of drastic, accelerated expansion known as inflation. This

period of expansion homogenized and flattened the universe. It also caused a nearly

length-scale-invariant primeval spectrum of quantum mechanical field fluctuations

to be expanded to cosmologically sized density perturbations, thus providing the

initial, tiny inhomogeneities in density that eventually grew into the clumpiness, or

structure – clusters, galaxies, stars, and planets – that we observe today. What we

call the big bang was, in this view, a rapid reheating of the universe that occurred

as the inflationary epoch ended. Despite its remarkable observational success, this

paradigm is still essentially an ad hoc product. No currently-established physics

can fully account for the existence of an inflationary epoch. Nor can we explain

the sudden reheating of a cold, post-inflationary universe into a hot big bang. We

have guessed the necessary ingredients for successfully modeling the early universe;

we do not know where they come from or how they fit together.

In light of these demands, the current best hope for making compelling, compre-

hensive models of the early universe comes from string theory, within a recently-

proposed heuristic structure known as the “brane world.” In the “brane world”

picture, our observable universe is confined to a multi-dimensional Dirichlet-brane,

or D-brane (a kind of membrane or domain wall) with three large spatial dimen-

sions that is embedded in a higher dimensional world. The matter fields and forces

with which we are familiar are, in this picture, seen as string-theory excitations

1
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living on this membrane. Though there are more than three spatial dimensions

present, they are invisible to us because the extra dimensions are too tiny to be

noticed: we say they are compactified. In this model, the ingredients necessary for

the inflationary paradigm are provided by the interaction of branes, thought of as

truly fundamental objects, in the early universe: inflation is caused by the mutual

attraction and falling together of two or more primordial branes; the reheating of

the universe or hot big bang is brought about by the violently energetic collision

of the branes when they meet [6, 7, 8]. In a recent theoretical advance, one fully

realized, observationally viable model of “brane inflation” has been proposed [9],

addressing concerns that such brane models were contrived or incomplete. Now

that they can be considered to be complete models, the next question is whether

these so-called “brane inflation” models can make any testable predictions beyond

meeting the requirements of the inflationary paradigm.

Soon after brane inflation was proposed, such a tell-tale prediction was discov-

ered: brane inflationary models nearly always predict the production of a network

of cosmic strings at the end of the inflationary epoch [10]. Cosmic strings are

linear topological defects of cosmological size. They are thought to arise follow-

ing primordial phase transitions. In 1980, Zeldovich suggested that cosmic strings

could be a natural source of primordial anisotropy for the seeding of large scale

structure [13], and throughout the 1980s they were considered a competitor to in-

flation for explaining the origin of structure formation. They were first studied in

the context of the Grand Unified Theory (GUT) phase transition in the very early

universe. Estimates of the GUT phase transition scale predicted cosmic strings

with a dimensionless tension of Gµ ∼ 10−6. Strings at this tension predicted CMB

fluctuations [11, 12] at the same scale as those observed by the COBE experiment
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[14], making it plausible to identify strings as the source of the primordial density

fluctuations. However, observations of galactic clustering power spectra were in-

consistent with the power spectra predicted by cosmic string networks that were

normalized to the COBE-scale anisotropies in realistic cosmologies [15]. Finally,

as observations of the CMB improved, the observed anisotropy spectra were found

to disagree with the spectra predicted by string networks, definitively ruling out

strings as the primary source for the primordial perturbations, though they were

not ruled out as a subdominant contributor to the primordial perturbation spectra

[16]. These observations chilled interest in strings for some time. The recent dis-

covery that many brane inflationary models produce cosmic strings with tensions

in the range [10]

10−6 > Gµ > 10−11

– that is, below the observational bound – has led to a renaissance in the study of

cosmic strings [17]. Theorists, eager to find distinctive signatures for string theory

models of the early universe, have come to view cosmic strings as a desirable

phenomenological aspect of these models since even a subdominant network of

cosmic strings may be independently observable.

If they are characterized by energy and density of sufficient magnitude, cosmic

strings possess a wide array of distinctive observable signatures, from gravitational

lensing and gravitational radiation to large scale cosmological effects like vector-

mode polarization of the cosmic microwave background (CMB) radiation (see ref.

[18] for a review). It is furthermore quite natural in brane inflationary models

for the properties of cosmic strings to be intimately related to the particular in-

flationary parameters realized within those models. Chapter 2 of this thesis and

references therein describe how cosmic string and brane inflationary properties are
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tied together in several simple cases. This sort of interdependence makes such

brane inflation models more readily testable: one can imagine comparing various

cosmological and cosmic string observations to see which particular models can pro-

vide a consistent account for them all. Indeed, even the continued non-detection of

cosmic strings can be useful in discriminating among such theories by eliminating

those theories that necessarily predict prominent cosmic string signatures.

After this background is established in Chapter 2, we explore what limits on

cosmic string properties are already in place. We do this to determine whether

cosmic strings are still viable as observable phenomena. Cosmic strings are active

sources of density perturbations and can exist to the present day. The cosmological

density and energy scale of any extant cosmic string network are thus limited by the

remarkable agreement between the predictions of adiabatic inflationary models and

current, high-precision cosmological observations. An investigation into the limits

already imposed by current cosmological observations is the subject of Chapter 3.

The results of this analysis are encouraging: cosmic string properties are indeed

restricted by modern observations, but not to the point that they are already ruled

out for observation through other avenues.

The remainder of this thesis examines how cosmic strings produced in brane

inflation could be phenomenologically distinct from old style cosmic strings. If

cosmic strings are eventually observed, we will need distinctive predictions to dis-

criminate among different models for their formation. Chapter 4 describes an

analytical model for the cosmological evolution of networks of such strings, taking

their distinctive qualities into account. In this chapter we also use the findings of

our model to make a series of predictions for distinctive observational signatures

of these new-style cosmic strings. Chapter 5 fleshes out one of these predictions,
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concerning the distinctive gravitational lensing phenomena associated with these

cosmic strings. Finally, in Chapter 6 we discuss ongoing work aimed at improving

our understanding of the cosmic string dynamics that govern network evolution.

The determination of current observational bounds on cosmic string network

properties that appears in Chapter 3 is a continuation and updating of the work of

a variety of groups [16, 19, 20, 21]. Our approach, in brief, is to assume that cosmic

string-sourced perturbations exist alongside the observationally-favored adiabatic

perturbations from inflation, but at a subdominant level. We then take the rel-

ative amplitude of the cosmic string-sourced perturbation spectrum as an extra

cosmological parameter and use a standard Markov Chain Monte Carlo method

to explore the multi-dimensional cosmological parameter space – that is to say,

we determine how much of a cosmic string network contribution can be added to

the adiabatic / inflationary CMB Cℓs and Large Scale Structure / Galaxy redshift

power spectrum without damaging the good fit of the composite spectrum to the

observational data. Doing this in a statistically rigorous way, we find that any

cosmic string network is limited to producing less than 7 (14)% of the primordial

density perturbations at 68 (95)% confidence.

In our analysis of the CMB and galaxy power spectra, we made the assumption

that the network of cosmic strings we were studying was characterized by a single

tension scale, the kind of network that would be produced by a primordial phase

transition in a single field – in other words, a single species of cosmic strings. This

assumption follows the cosmic string work done in the past. New results from

string theory, however, suggest that the cosmic string networks arising from brane

inflation could be much richer. The principal novel property of cosmic “super-

strings” – as cosmic strings from string theory are sometimes called, to distinguish
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them from old-style cosmic strings – is that they can come in a variety of species

[22, 23]. The simplest scenario involves two basic kinds of strings: fundamental F-

strings (with tension µF ) and one-dimensional Dirichlet branes, or D-strings (with

tension µD = µF/gs, where gs, possibly ∼ αGUT ∼ 0.05, is the string coupling con-

stant). These two fundamental species can also appear as bound states, dubbed

“(p, q)” strings, which are formed by combining p F-strings with q D-strings; these

bound states have tension

µ(p,q) = µF

√

(p− Cq)2 + q2/g2
s ,

where C is a dimensionless number, the expectation value of the RR scalar [23].

The new richness in cosmic superstring phenomenology arises from this variety of

possible states: in place of a single-tension network it is now possible to imagine

interacting networks with a widely ranging spectrum of tensions. The nature of

each observational phenomenon associated with strings is determined by the string

tension. Thus, multi-tension networks are able to exhibit far more variety in their

phenomenology than networks characterized by only a single tension ever could.

When a pair of superstrings, α = (p, q) and β = (p′, q′), meet, a variety of

interactions are possible. The simplest, which occurs when α = β, is reconnection,

also known as intercommutation – the vortices interact and “trade partners.” This

was the only kind of interaction possible for old style cosmic strings. Even this

simplest interaction is changed by string theory dynamics, however. Whereas gauge

strings interact virtually every time they cross [18], the higher-dimensional nature

of superstrings may cause their effective interaction probability, p, to be quite small.

This is because superstrings sometimes “miss” each other in the higher dimensions

[23, 24] and thus fail to interact at all. This lowered reconnection probability, by

itself, changes the way that cosmic strings networks evolve. The interdependence of
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reconnection rate and network evolution is quite subtle, however, and is still being

studied [25]. New interaction physics come into play when α 6= β. In this case,

depending on the angle of intersection in their collision, the interaction between α

and β can produce two different kinds of bound-state links: γ± = (p± p′, q ± q′).

Because the link is a bound state (i.e. µγ ≤ µα + µβ) it will grow – presumably

near the speed of light – so that two strings, α and β, combine to form a single

γ string. A network can thus evolve by forming bound states even if the α = β

reconnection probability is negligible. See Chapter 4 or refs. [23] for much more

detail on the physics of these interactions.

In Chapter 4 [26], we propose an analytical model for the cosmological evolution

of these binding-and-intercommuting, multi-species networks. To achieve this we

were forced to make a simplifying assumption. This assumption is that all strings in

a network, regardless of their tension, can be characterized by a single length scale,

L (this assumption holds if the time for the binding reaction that creates higher

tension states to spread to sizes of order L is short compared with cosmological

time scales). The central finding of our network model is that the lowest lying three

tension states – the (1, 0), (0, 1), and (1, 1) states – dominate the cosmic string

energy density. We also find that these “reactive” networks of multiple tension

strings do reach a scaling solution – that is, they neither come to dominate the

energy density of the universe nor effectively vanish from the cosmos at any epoch,

but instead contribute a nearly fixed, low fraction of the universe’s energy density

during each epoch.

Having a model for the evolution of a multi-tension string network is just a

beginning. To exploit the possible phenomenology of cosmic “superstrings” we

must also deepen our understanding of what makes these “superstrings” unique.
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As a start, we identify an array of possible, unique observational properties of

such string networks in §4.5 (see also ref. [27] for a review). In Chapter 5 [28],

we work out one such possibility in greater detail: the distinctive gravitational

lensing property of networks of (p, q)-strings, particularly their ability to produce

nearly-identical triple images in the vicinity of binding junctions.

Finally, in Chapter 6 we lay out the background for some ongoing research.

We hope to test the assumption that underlies the analytic multi-tension string

network described above. Our assumption that strings immediately “zip up,”

or bind following inter-string collision events may not accurately characterize the

physics of string binding. To investigate this assumption, we are modifying a lattice

gauge theory computer code [29] to manifest one, or several, gauge theory models

for binding vortices [30, 31]. In doing this, we hope to mimic the success of Shellard

and Matzner, who in the 1980s definitively characterized the intercommutation of

gauge strings [32]. Their results could then be assumed in subsequent models.

We hope to provide the same kind of definitive result for cosmic string binding

dynamics.



CHAPTER 2

FROM BRANE INFLATION TO COSMIC STRINGS:

THEORETICAL BACKGROUND

First appeared as Observational Constraints on Cosmic String Production During

Brane Inflation in Phys Rev D68 (2003) 023506.

2.1 Introduction

Observations of the cosmic microwave background (CMB) [14, 33] support the idea

that the standard big bang phase of the expansion of the universe was preceded

by inflation [34]. Recent results from the Wilkinson Microwave Anisotropy Probe

(WMAP) [1, 2, 3, 35, 36] constrain the properties of proposed inflationary models

tightly, but although some models are now excluded, numerous possibilities remain.

A further challenge to observational cosmology is to try to hone in on a small class

of viable models, even if identifying a single, correct theory of inflation may prove

impracticable.

All of the data collected up until now are consistent with a relatively pristine

Universe in which the perturbations observed today result from the amplification

and distortion of a relatively featureless, Gaussian spectrum of fluctuations pro-

duced by quantum effects during inflation. However, it is likely that inflation itself

could have left behind other remnants – such as cosmic strings – which could ac-

tively perturb both the CMB and dark matter of the Universe up to the present

day.

It is well-known that cosmic strings cannot be wholly responsible for either the

CMB temperature fluctuations or the observed clustering of galaxies [16]; roughly

9
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speaking, the implied limits on the cosmic string tension µ allowed by observa-

tions is Gµ . 10−6. However, now that cosmology has entered an era in which the

properties of the Universe are being revealed to unprecedented precision, a natural

question is to what extent the observations can allow previously unwanted ingre-

dients, such as cosmic strings (e.g. [19]). Indeed, as the precision of cosmological

observations increases, we might hope to be able to distinguish among numerous

presently viable models for inflation by the properties of the cosmic strings they

predict.

Although the idea that inflationary cosmology might lead to cosmic string

formation is not new [37, 38], it has received new impetus from the brane world

scenario suggested by superstring theory. In brane world cosmology, standard

model particles and interactions correspond to open string (brane) modes, while

the graviton, the dilaton and the radions are closed string (bulk) modes. Thus, our

3D Universe can be thought of as residing on a brane or stack of branes with three

dimensions of cosmological size. These branes in turn reside in extra dimensions

that are compactified. In such a model, inflation can result during the collisions

of branes coalescing to form, ultimately, the brane on which we live [6].

In these brane inflation models, the separations between branes in the compact-

ified dimensions are scalar fields (open string modes) that can act as inflatons, with

the interaction potential between spatially separated branes providing the inflaton

potential. Details of the brane inflation scenario depend on both qualitative and

quantitative features, such as whether collisions involve a brane-antibrane pair [39]

or two branes coalescing at an angle [40], as well as parameters such as the sizes

of the compactified dimensions [10, 39, 41]. Qualitatively, though, it appears easy

to find models that predict adiabatic temperature and dark matter fluctuations
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capable of reproducing all currently available observations. A seemingly unavoid-

able outcome of brane inflation, though, is the production of a network of cosmic

strings [10], whose effects on cosmological observables ranges from negligible to

substantial, depending on the specific brane inflationary scenario [22].

2.2 Brane Inflation and Cosmic String Properties

Recently, the brane world scenario suggested by superstring theory was proposed,

where the standard model of the strong and electroweak interactions are open

string (brane) modes while the graviton and the radions are closed string (bulk)

modes. The relative brane positions (i.e., brane separation) in the compactified

dimensions are scalar fields that have just the right properties to act as inflatons.

Thus, the brane inflation scenario emerges naturally in the brane world [6]. In

this picture, the inflaton potential is due to the exchange of closed string modes

between branes; this is the dual of the one-loop partition function of the open

string spectrum, a property well-studied in string theory [42]. This interaction is

of gravitational strength, resulting in a very weak (flat) potential, ideally tailored

for inflation.

The potential is essentially dictated by the attractive gravitational (and the

Ramond-Ramond) interaction between branes. As the branes move towards each

other, slow-roll exponential inflation takes place. This yields an almost scale-

invariant power spectrum for density perturbation, except there is a slight red-tilt

(at a few percent level). As they reach a distance around the string scale, the

inflaton potential becomes quite steep so that the slow-roll condition breaks down.

At around the same time, a complex tachyon appears, so inflation ends rapidly

as the tachyon rolls down its potential. In effect, inflation ends when the branes



12

collide, heating the universe to start the standard big bang phase of cosmological

expansion. This brane inflationary scenario may be realized in a number of ways

[10, 39, 41]. The scenario is simplest when the radion and the dilaton (bulk) modes

are assumed to be stabilized by some unknown non-perturbative bulk dynamics

at the onset of inflation. Since the inflaton is a brane mode, and the inflaton

potential is dictated by the brane mode spectrum, it is reasonable to assume that

the inflaton potential is insensitive to the details of the bulk dynamics.

Coupling of the tachyon to inflaton and standard model fields can allow effi-

cient heating of the universe if certain conditions on the coupling of the tachyon

to standard model particles are met [43]. As the tachyon rolls down its potential,

besides heating the universe, the vacuum energy also goes to the production of

defects, in particular, cosmic strings. The effect of the resulting cosmic string net-

work may be negligible or rather substantial, depending on the particular brane

inflationary scenario [10, 22]. However, in all cases, we expect the density per-

turbation power spectrum in CMB to be dominated by the adiabatic fluctuations

arising from quantum fluctuations of the inflaton during brane inflation, not by

the nonadiabatic contributions from cosmic strings. However, the contribution to

the density perturbation power spectrum in CMB coming from the cosmic string

network may be large enough to be observable.

We devote this section to a review of the implications of brane inflation. The

review given here is basic and, we hope, suggestive of the field. More up-to-date

calculations along these lines can be found in refs. [44, 45]. For a broad set of

models, we present results for the slow roll evolution, fluctuation spectra, string

mass scale, and associated cosmic string tension. (These results follow directly

from the treatments in refs. [10, 39, 41].) We consider the collision of a Dp
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brane with a Dp brane at an angle θ; collision with a Dp antibrane corresponds

to θ = π. (Here and throughout this section, we follow [10], which contains

more details and discussion). Of the ten spacetime dimensions, one is the time,

three are the large spatial dimensions we live in, and the rest are compactified.

Of the compact dimensions, p − 3 are parallel to the brane, and we take their

compactification lengths to be ℓ‖ = 2πr‖, implying a volume V‖ = ℓp−3
‖ . Of the

remaining d = 9 − p dimensions, we take d − d⊥ to be compactified with a size

2π/Ms, where Ms is the string scale, while the remaining d⊥ are compactified with

a size ℓ⊥ = 2πr⊥ > 2π/Ms. The 10-dimensional gravitational coupling constant is

κ2 = 8πG10 =
g2

s(2π)7

2M8
s

(2.1)

where gs is the expectation value of the dilatonic string coupling, which is related

to the standard model gauge coupling α(r‖) on a scale 1/r‖ by

gs = 2(Msr‖)
p−3α(r‖) ; (2.2)

the 4-dimensional Planck scale MP = (8πG)−1/2 is then

g2
sM

2
P =

M2
s (Msr⊥)d⊥(Msr‖)

p−3

π
. (2.3)

The outcome of brane inflation will therefore depend on several parameters, p, d⊥,

r⊥, r‖ and α(r‖).

We will distinguish between two different potentials for the interaction between

branes, depending on their separations. (See [39, 40, 41].) For some scenarios, a

fixed lattice of branes is considered to be spread throughout the compactified di-

mensions, with a moving brane placed inside one lattice square. At separations

small compared to the lattice size of the compactification topology, the interaction

is “Coulombic”, with a potential of the form V (y) = V0−U/yd⊥−2 for a separation
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y in the large compact dimensions. This potential is suitable for inflation resulting

from the collision of a pair of relatively nearby branes at a small angle [40]. When

the separation is nearly equal to the lattice size, an expansion about zero dis-

placement from the anti-podal point gives V (y) = V0 − U ′yσ, where σ depends on

the compactification topology. This potential is suitable for the brane-anti-brane

scenario (which corresponds to branes at angle π). In the next two subsections,

we summarize the inflation scenario for interbrane potentials of these two general

forms.

2.2.1 Coulombic Inflation

Consider a potential of the form

V (ψ) = V0

(

1 − η

(d⊥ − 2)ψd⊥−2

)

, (2.4)

with ψ ∝ y, the interbrane spacing; for the special case d⊥ = 2 this becomes

a logarithmic potential, but the results we derive below may be applied to this

special case. (We only consider d⊥ − 2 ≥ 0 here to simplify our analysis, since the

results generalize easily to the logarithmic case.) In the slow roll approximation,

the equation of motion for ψ becomes

dψ

dL
= − ηM2

P

ψd⊥−1
, (2.5)

where L = ln a is the logarithm of the scale factor a(t), which we take to be zero

at the start of inflation. The slow roll solution is then

ψ =
[

ψd⊥
i − d⊥ηM

2
PL
]

1
d⊥ =

[

d⊥ηM
2
P (Linf − L)

]
1

d⊥ ≡
(

d⊥ηM
2
PLr

)
1

d⊥ , (2.6)

where the starting value of the field is ψi, the total number of e-folds in inflation,

is

Linf =
ψd⊥

i

d⊥ηM
2
P

, (2.7)
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and Lr = Linf − L is the total number of e-folds remaining in inflation. The

curvature fluctuation spectrum is then

∆2
R(k) =

H4

4π2ψ̇2
=
V0(d⊥Lr)

2
“

1− 1
d⊥

”

12π2η
2

d⊥M
2+ 4

d⊥
P

(2.8)

where Lr is evaluated when k/a = H , or ln(k/k0) = Lr,0 − Lr, where k0 is a refer-

ence scale, which crosses with Lr,0 e-folds remaining in inflation. The fluctuation

spectrum is very flat, with only slowly varying scalar index, ns(k):

ns(k) − 1 =
d ln∆2

R(k)

d ln k
= − 2

Lr(k)

(

1 − 1

d⊥

)

≃ −0.03

[

60

Lr(k)

](

1 − 1

d⊥

)

dns(k)

d ln k
= − 2

L2
r(k)

(

1 − 1

d⊥

)

≃ −6 × 10−4

[

60

Lr(k)

]2(

1 − 1

d⊥

)

, (2.9)

both of which are in the range of uncertainty of the determinations in [2].

The challenge to this, or any other, inflation model is to have sufficient inflation

as well as small curvature fluctuation. Since the precise value of Linf depends on

initial conditions as well as parameters of the model, let us first consider the

constraints on the latter implied by comparing Eq. (2.8) to the WMAP result

∆2
R(k0) = 2.95 × 10−9A(k0) with A(k0) = 0.9 ± 0.1. To do this, let us consider a

particular model with p = 4 and a small collision angle, θ; then we have

ψ = y

√

τ4ℓ‖
2

V0 =
τ4ℓ‖θ

2

4
τ4ℓ‖
2

=
M4

s

32π3α(r‖)

η =
β(d⊥)

16π
θ M6−d⊥

s

(

τ4ℓ‖
2

)

d⊥−4

2

∆2
R(k) =

(θd⊥Lr)
2

“

1− 1
d⊥

”

24 [64β(d⊥)]
2

d⊥ π
2+ 10

d⊥ [α(r‖)]
4

d⊥

(

Ms

MP

)2+ 4
d⊥

, (2.10)
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where

τp =
Mp+1

s

(2π)pgs

(2.11)

β =











1
2πd⊥/2 Γ

(

d⊥−2
2

)

d⊥ > 2

1
π

d⊥ = 2.
(2.12)

Let us consider the specific example d⊥ = 2; for this case we find

∆2
R(k) =

θLr

768π6[α(r‖)]2

(

Ms

MP

)4

[d⊥ = 2] , (2.13)

and therefore the string scale is determined to be

Ms

MP
≃ 2.5 × 10−2[25α(r‖)]

1/2[A(k0)]
1/4

(

10

θLr

)1/4

[d⊥ = 2] (2.14)

that is, on the same order of energy as the GUT scale, 1015 GeV. Larger d⊥ leads

to smaller Ms/MP ; thus if d⊥ = 4 we find

∆2
R(k) =

(θLr)
3/2

12
√

2π7/2α(r‖)

(

Ms

MP

)3

[d⊥ = 4] , (2.15)

which in turn requires

Ms

MP
≃ 1.6 × 10−3[25α(r‖)]

1/3[A(k0)]
1/3

(

10

θLr

)1/2

[d⊥ = 4] . (2.16)

The total number of e-folds in inflation is

Linf =
(Msyi)

d⊥M2
s

64π5β(d⊥)θ[α(r‖)]2M
2
P

=
π

d⊥(d⊥−1)

d⊥+2 (2ζiMsr⊥)d⊥

θ
3d⊥

d⊥+2 (d⊥Lr)
2(d⊥−1)

d⊥+2

[

3∆2
R(k)

8β(d⊥)α2(r‖)

]

d⊥
d⊥+2

≃ 0.025[A(k0)]
1/2

[25α(r‖)](10θ)

(

10

θLr

)1/2

(ζiMsr⊥)2 [d⊥ = 2]

≃ 0.025[A(k0)]
2/3

[25α(r‖)]4/3(10θ)

(

10

θLr

)

(ζiMsr⊥)4 [d⊥ = 4] , (2.17)

where we have let yi = 2πr⊥ζi with ζi . 1. To get Linf & 60, we must require

ζiMsr⊥ & 50 for d⊥ = 2 or ζiMsr⊥ & 10 for d⊥ = 4. Note, though, that for

large θ, it is not possible to have enough expansion during inflation. In this case,

the images of one brane exert non-trivial forces on the other brane, resulting in a

power-law type potential.
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2.2.2 Power Law Inflation

Next, we consider potentials of the form

V (ψ) = V0 (1 − ηψσ) ; (2.18)

such potentials arise for a brane situated near the origin. The value of σ depends

on the compactification topology. For hypercubic compactification, σ = 4, whereas

in other cases, σ = 2. Note that in actuality the potential need not depend just

on interbrane separation in such a picture, and the trajectory of the brane can

be complicated. Here, though, we confine ourselves to simple one dimensional

(diagonal) brane motion.

Following Eq. (2.18), we see that the origin – ψ = 0 – is an unstable equilibrium

point, and any perturbation away from it will result in slow motion of the brane.

For σ > 2, the slow roll solution is

ψ = [ψσ−2
i − σ(σ − 2)ηM2

PL]
1

σ−2 = [σ(σ − 2)ηM2
PLr]

1
σ−2 , (2.19)

and the total number of e-folds in inflation is

Linf =
ψσ−2

i

σ(σ − 2)ηM2
P

, (2.20)

where ψi is the starting value for the inflaton. Quantum fluctuations will imply

ψi = ζiH/2π, where ζ1 ∼ 1. The curvature fluctuation spectrum is

∆2
R(k) =

V0(σ − 2)2[σ(σ − 2)η]
2

σ−2M
2(4−σ)

σ−2

P L
2(σ−1)
σ−2)

r

12π2
. (2.21)

The implied fluctuation spectrum is acceptably flat:

ns(k) − 1 =
d ln∆2

R(k)

d ln k
= − 2(σ − 1)

(σ − 2)Lr(k)
≃ −0.03(σ − 1)

σ − 2

[

60

Lr(k)

]

dns(k)

d ln k
= − 2(σ − 1)

L2
r(k)(σ − 2)

≃ −6 × 10−4

(

σ − 1

σ − 2

)[

60

Lr(k)

]2

.(2.22)



18

For σ = 4, Eqs. (2.21) and (2.20) become

∆2
R(k) =

8ηV0L
3/2
r

3π2

Linf =
ζ2
i V0

96π2M4
P (ηV0)

; (2.23)

the observational constraints on the curvature fluctuation spectrum therefore re-

quire

ηV0 =
3π2∆2

R(k)

8L
3/2
r

≃ 2.5 × 10−11A(k0)

(

60

Lr

)3/2

, (2.24)

i.e. the potential must be extremely flat. This requirement is well-known from

studies of new inflation, which sometimes idealize the potential to Eq. (2.18) with

a small dimensionless parameter λ equivalent to ηV0. In ref. [10], a particular

toroidal compactification is proposed where this small parameter is (F is a geo-

metrical factor related to the compactification geometry)

ηV0 ≃
gsθ

4Fβ

16πα3

(

Ms

MP

)4

, (2.25)

which can be small enough for θ ∼ 0.1 provided that

Ms

MP
≃ 10−3 . (2.26)

In this picture, the flatness of the effective potential is attributed to a relatively

small value of the string scale compared with the Planck mass.

Special treatment is needed for σ = 2, which is expected for any non-hypercubic

compactification topology. For this case, the scale factor grows like a powerlaw in

time during slow roll:

ψ = ψi

(

a

ai

)2ηM2
P

= ψf

(

a

af

)2ηM2
P

, (2.27)

where ψf and af are the values of the field and scale factor at the end of slow

rolling. Since d lnψ/d ln a = 2ηM2
P , we require ηM2

P ≪ 1 for slow rolling. It is
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easy to see that for this potential, ψ̈/3Hψ̇ = 2ηM2
P/3 ≪ 1. Slow roll ends, for

this potential, only when ψ̇2/2V0 = 2η2M2
Pψ

2/3 ≃ 1, or ψf ≃ (ηMP )−1 ≫ MP ,

or when the polynomial approximation to the potential fails, which happens when

the brane moves a substantial fraction of a lattice spacings. The total number of

e-folds in inflation is

Linf =
ln(ψf/ψi)

2ηM2
P

=
ln(yf/yi)

2ηM2
P

. (2.28)

The curvature fluctuation spectrum for this case is

∆2
R(k) =

(H/2πψf)
2e4ηM2

P Lr

4(ηM2
P )2

=
(H/2πψi)

2(ai/a)
4ηM2

P

4(ηM2
P )2

=
(H/2πψi)

2(aiH/k)
4ηM2

P

4(ηM2
P )2

,

(2.29)

where evaluating at horizon crossing implies that k = Ha, which has been used to

get the final form of the spectrum. In this case,

ns − 1 =
d ln∆2

R(k)

d ln k
= −4ηM2

P , (2.30)

which is independent of k. The WMAP analysis implies that ηM2
P . 0.01. From

the first form of Eq. (2.29), and ηM2
P ≃ 0.01, it follows that the observed temper-

ature fluctuations can be accounted for if (V0 = 2τ4ℓ‖)

H

2πψf

∼ (2πMPyf)
−1 ∼ 10−7

(

ηM2
P

0.01

)

, (2.31)

in which case Linf ∼ 103. For yf ≃ 2πr⊥, this relation implies

Ms

MP
∼ 10−6

(

ηM2
P

0.01

)

Msr⊥ , (2.32)

which is generally smaller than our previous estimates unless Msr⊥ ∼ 103.

2.2.3 Cosmic String Properties

Because the inflaton and the ground state open string modes responsible for defect

formation are different, and the ground state open string modes become tachyonic
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and develop vacuum expectation values only towards the end of the inflationary

epoch, various types of defects (lower-dimensional branes) may be formed. A pri-

ori, defect production after inflation may be a serious problem. Fortunately, the

properties of superstring / brane theory tell us defect production is not a prob-

lem in these models. When considered in the context of cosmological evolution,

brane models for inflation can only produce copious numbers of one kind of defect:

cosmic strings [10]. In superstring theory, Dp-branes come with either odd p (in

IIB theory) or even p (in IIA theory). The collision of a Dp-brane with another

Dp-brane at an angle (or with an anti- Dp-brane) yields D(p−2)-solitons (i.e., codi-

mension 2). Topologically, a variety of defects may be produced. Because they

have even codimensions with respect to the branes that collide, they have specific

properties [46]. Cosmologically, since the compactified dimensions tangent to the

brane are smaller than the Hubble size, the Kibble mechanism works only if all the

codimensions are tangent to the uncompactified dimensions. As a consequence,

only cosmic strings may be copiously produced [10].

The observational imprint of cosmic strings is determined primarily by the

product of Newton’s constant and the cosmic string tension, Gµ, assuming the

evolution of the string network can reach the scaling regime. The value of µ implied

by superstring cosmology depends on several parameters, but is most sensitive to

the string scale, Ms. To get an order of magnitude estimate, we may use the small

θ case, which is arguably the most likely inflationary scenario.

The cosmic strings may be D1-branes, but most likely, they are D(p−2)-branes

wrapping around (p− 3)-cycles in the compactified dimensions. If the D1-brane is

the cosmic string (i.e., p = 3), its tension is simply the cosmic string tension:

µ = τ1 =
M2

s

2πgs
. (2.33)
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However, we expect the string coupling generically to be gs >∼ 1. (It is well-known

that radion and dilaton moduli are not stabilized by perturbative dynamics in

string theory. Presumably, any superstrongly coupled string model is dual to a

weakly coupled one, and thus cannot stabilize the moduli either. We therefore

expect a moderately strong string coupling, since only in this case will we find

non-trivial dynamics.) To obtain a theory with a weakly coupled sector in the low

energy effective field theory (i.e., the standard model of strong and electroweak

interactions with weak gauge coupling constant α), it then seems necessary to

have the brane world picture, in which we have the Dp-branes for p > 3, where

the (p− 3) dimensions are compactified to volume V‖. Now the cosmic strings are

D(p− 2)-branes, with the (p− 3) dimensions compactified to the same volume V‖.

Noting that a Dp-brane has tension τp = Mp+1
s /(2π)pgs, the tension of such cosmic

strings is

µ =
Mp−1

s V‖
(2π)p−2gs

=
M2

s v‖
2πgs

=
M2

s

4απ
≃ 2M2

s (2.34)

for α ≃ αGUT ≃ 1/25. For one pair of branes at angle θ, only this type of cosmic

strings is produced topologically. For a large enough stack of branes colliding, the

D1-branes may also be allowed topologically, but they are not produced cosmolog-

ically. Thus, µ ≃ 2M2
s is a reasonably general estimate. We considered estimates

of Ms implied in various scenarios for brane inflation in § 2.2.1 and 2.2.2. These

estimates are broadly consistent with

10−6 & Gµ & 10−11 , (2.35)

although a smaller range is obtained in any specific model or class of setups. For

example, for branes colliding at a small angle, a likely range is

5 × 10−7 & Gµ & 7 × 10−8 . (2.36)
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Thus, brane inflation can lead to cosmic string tensions below, but not far below,

current observational bounds.

2.2.4 Tensor modes

During slow roll, the tensor power is

∆2
h(k) =

128G2V0

3
=

2V0

3π2M4
P

(2.37)

and is smaller than the scalar power by the factor

r(k) = 8M2
P

(

V ′

V

)2

=
8

M2
P

(

dφ

d ln a

)2

. (2.38)

How small r(k) is depends on the specific brane inflation model. For branes inter-

secting at an angle θ we find that

∆2
h(k) =

2V0

3π2M4
P

=
θ2M4

s

96π5α(r‖)M
4
P

= 3.3 × 10−12 (10θ)2 [25α(r‖)]

[

10A(k0)

θLr

]

[d⊥ = 2]

= 5.4 × 10−17(10θ)2[25α(r‖)]
1/3[A(k0)]

4/3

(

10

θLr

)2

[d⊥ = 4] .(2.39)

In this case, the amplitude of the scalar mode is smaller than the amplitude of

the perturbations due to cosmic strings by a small numerical factor times θ2. For

powerlaw brane-antibrane inflation, θ → π, and V0 = M4
s /(2π)3α [39, 10], so for

this case we find

∆2
h(k) =

M4
s

12π5αM4
P

. (2.40)

Nominally, these perturbations can be comparable to those induced by cosmic

strings, although they may be relatively suppressed by the small numerical factor

(12π5α)−1 ≃ 0.007/(25α). However, the spectrum of fluctuations produced by

cosmic strings will still distinguish them from those due to primordial tensor modes.
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Both strings and the primordial tensor modes result in the B-type polarization of

the CMBR. The predicted angular power spectrum, CBB
l , has been calculated for

tensor modes from inflation (see e.g. ref. [47]). It has a generic feature that

most of the power is on larger angular scales, in the region l . 100. This is very

different from the shape of the CBB
l spectrum predicted by cosmic strings. There

the dominant contribution comes from the vector modes and, as will be explained

in Chapter 3 and illustrated in Fig. 3.6, most of the power is on smaller scales:

700 . l . 1000.

As of today, the B-type polarization has not been detected [48] and the exper-

imental constraint on r(k) is rather mild: r(k0 = 0.002Mpc−1) . 0.71 [35].



CHAPTER 3

COSMOLOGICAL CONSTRAINTS ON A NETWORK OF COSMIC

STRINGS

First appeared as Bounds on Cosmic Strings from WMAP and SDSS in Phys.

Rev. D72 (2005) 023513; modified in light of ref. [49].

We find the constraints from WMAP and SDSS data on the fraction of cosmo-

logical fluctuations sourced by local cosmic strings using a Markov Chain Monte

Carlo (MCMC) analysis. In addition to varying the usual 6 cosmological parame-

ters and the string tension (µ), we also varied the amount of small-scale structure

on the strings. Our results indicate that cosmic strings can account for up to 7

(14)% of the total power of the microwave anisotropy at 68 (95)% confidence level.

The corresponding bound on the string mass per unit length, within our string

model, is Gµ < 1.8(2.7) × 10−7 at 68 (95)% c.l. We also calculate the B-type

polarization spectra sourced by cosmic strings and discuss the prospects of their

detection.

3.1 Introduction

While cosmic strings could not have seeded all of the structure in the Universe,

they could have created a subdominant yet non-negligible fraction of the primordial

cosmological fluctuations [37, 38, 50]. This idea has recently received renewed

attention with the realization that cosmic strings are produced in a wide class

of string theory models of the inflationary epoch [10, 22, 45, 51, 52]. In these

models, inflation can arise during the collisions of branes that coalesce to form,

24
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ultimately, the brane on which we live [6, 39, 40, 41]. Brane inflation predicts

adiabatic temperature and dark matter fluctuations capable of reproducing all

currently available observations. In addition, the collision at the conclusion of

brane inflation can produce a network of local cosmic strings [10], whose effects

on cosmological observables range from negligible to substantial, depending on

the specific scenario [22]. It has also been shown that strings could form at an

observationally acceptable level at the end of the D-term inflation in SUSY GUT

models [38]. As the precision of cosmological observations increases, one might

hope to distinguish among the numerous presently-viable models of inflation by

studying and constraining the properties of the cosmic strings they predict.

The aim of this chapter’s analysis is to constrain the properties of cosmic strings

by using the power spectrum data from the WMAP and SDSS experiments. There

are other ways to constrain cosmic strings – some of them promising to produce

much tighter bounds than those that will ever be possible with power spectrum

data. We give a brief review of other methods in the summary section, Sec. 3.4.

The rest of this paper is organized as follows. In Sec. 3.2 we give a detailed

account of the model and the methods used. We show the results in Sec. 3.3 and

conclude with a discussion in Sec. 3.4.

3.2 The Model and Analysis

The fluctuations resulting from brane inflation are expected to be an incoherent

superposition of contributions from adiabatic perturbations initiated by curvature

fluctuations and active perturbations induced by the decaying cosmic string net-

work. The resulting CMB angular spectra can be written as a sum of the adiabatic
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and string contributions:

Cl = Cad
l + Ccs

l . (3.1)

Analogous expressions hold for matter density spectra. We restrict our study to

a flat FRW universe and vary the following cosmological parameters: the Hubble

constant h, the matter density ΩMh
2, the baryon density Ωbh

2, and the reionization

optical depth τ . In addition, we vary the galaxy bias factor Fb, the amplitude As

and the spectral index ns of the primordial scalar power spectrum, as well as the

string mass per unit length, Gµ, and the string wiggliness parameter αr (to be

defined in Sec. 3.2.1).

We used a suite of different codes to produce and analyze the spectra. The

model we employed for the cosmic string-generated perturbations is described in

the subsection below. The string CMB and matter spectra were calculated using a

modification [53] of CMBFAST [54] (see Figs. 3.1 and 3.2 for representative string

induced spectra). We first evaluated and stored the string spectra on a grid of

parameters. During our calculations, the spectra were obtained by interpolation

on the grid. The adiabatic matter spectra were also stored on a grid after having

been evaluated using a publicly available version of CMBFAST. For the adiabatic

CMB spectra, we used the package CMBWarp [55].

To compare the theoretical linear matter power spectrum P L(k) generated by

our code with the SDSS results, we first applied the halo-fitting procedure of

Smith et al. [56] to obtain the non-linear spectra, PNL(k). This procedure is

only valid for the adiabatic contribution to the P (k) spectrum, so using it for the

cosmic string contribution introduces some inaccuracy into our model. However,

as we can see in Fig. 3.2, the string power spectrum is considerably weaker than

the adiabatic power spectrum on all but the smallest length scales even in models
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Figure 3.1: The CMB TT and TE spectra (solid lines) sourced by cosmic strings

with wiggliness parameter αr = 1.9, as well as the adiabatic spectra for the same

cosmological parameters (dashed lines) and WMAP’s first year data. The string

spectra are normalized so that the total TT power is the same for the two lines,

which corresponds to B = 1.
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Figure 3.2: The string-generated matter power spectrum (solid line) for the same

parameters as in Fig. 3.1, i.e., for B = 1. The dashed line represents the linear

spectrum from adiabatic perturbations at z = 0.

where strings account for all the large-scale microwave anisotropy. Thus, since only

a small portion of the relevant values of k are affected by the halo-fitting procedure,

and since the effect is small on the scales we consider, we expect any inaccuracy

introduced by our approximate treatment of nonlinearity to be unimportant. Next,

we assumed that the galaxy bias factor and the correction due to peculiar velocities

on the scales of our interest (k < 0.2 h/Mpc) are approximately redshift- and scale-

independent and can be combined into a single constant factor, Fb, multiplying the

matter spectrum:

P (k) = FbP
NL(k). (3.2)

We then fit P (k) to the SDSS power spectrum data (for k < 0.2 h/Mpc) with Fb

as a free parameter.

The likelihood of the spectra for a given set of parameters was obtained using
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the publicly-available likelihood codes produced by the WMAP [3] and SDSS [57]

teams.

3.2.1 The Cosmic String Model

Unlike the adiabatic inflationary perturbations, which are set as initial conditions

in the equations of motion of linear perturbations, cosmic strings act as a continual

source of fluctuations as the universe evolves. The density and temperature fluc-

tuations created in the immediate locality of a cosmic string are highly non-linear,

e.g. the density contrast δρ/ρ is significantly larger than unity in the wake formed

behind a moving string. However, the effect of strings on cosmological scales is that

of a small perturbation to the evolution of the average cosmic energy-momentum

tensor. Hence, for the purpose of computing the CMB and LSS spectra, the met-

ric and density perturbations caused by strings are described by the system of

linearized Einstein-Boltzmann equations with strings acting as active sources.

Evaluation of the CMB and LSS spectra sourced by strings requires knowing

their energy-momentum tensor (or its unequal time correlation functions [58]) for

the entire dynamical range of the calculation, which is approximately four orders of

magnitude in scale factor. Realistic simulations of cosmic string networks have so

far been limited either in their dynamical range [59] or their resolution [60]. Hence,

until full scale simulations become available, one is forced to resort to approximate

methods to model the string sources.

Numerical simulations [61, 62, 63] show that during the radiation and matter

dominated eras the string network evolves according to a scaling solution, which

on sufficiently large scales can be described by two length scales. The first scale,

ξ(t), is the coherence length of strings, i. e. the distance beyond which directions
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along the string are uncorrelated. The second scale, L(t), is the average inter-

string separation. Scaling implies that both length scales grow in proportion to

the horizon. Simulations indicate that ξ(t) ∼ t, while L(t) = γt, with γ ≈ 0.8

in the matter era [61, 62]. The one-scale model [64, 65], in which the two length

scales are assumed to be equal, has been quite successful in describing the general

properties of cosmic string networks inferred from numerical simulations. These

simulations assume that cosmic strings reconnect on every intersection. It is of

interest to us, however, to also consider the case when the reconnection probability

is less than one. If strings can move and interact in extra dimensions then, while

appearing to intersect in our three dimensions, they may actually miss each other.

Hence, the effective intercommutation rate of these strings will generally be less

than unity. As a consequence, one would expect more strings per horizon in these

theories [22, 23]. Because of the straightening of wiggles on sub-horizon scales due

to the expansion of the universe, one would still expect ξ(t) ∼ t. However, the

string density would increase, therefore reducing the inter-string distance. Hence,

smaller inter-commutation probabilities imply smaller γ.

In addition, numerical simulations show that long strings possess a great deal

of small-scale structure in the form of kinks and wiggles on scales much smaller

than the horizon. To an observer who cannot resolve this structure, the string

will appear to be smooth, but with a larger effective mass per unit length µ̃ and

a smaller effective tension T̃ . An unperturbed string (with µ = T ) exerts no

gravitational force on nearby particles. In contrast, a wiggly string with µ̃ > T̃

attracts particles like a massive rod. The effective equation of state of a wiggly

strings is µ̃T̃ = µ2 [66, 67]. Depending on the brane inflation model, the presence

of extra dimensions could mean that even more small scale structure would be
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present on the strings [22].

To calculate the sources of perturbations we use an updated version of the

cosmic string model first introduced by Albrecht et al. [16] and further devel-

oped in refs. [53, 68], where the wiggly nature of strings was taken into account.

In this model, the string network is represented by a collection of uncorrelated

straight string segments produced at some early epoch, moving with uncorrelated,

random velocities. At every subsequent epoch, a certain fraction of the number

of segments decays in a way that maintains network scaling. The length of each

segment at any time is taken to be equal to the correlation length of the network.

This length and the root-mean-square (r.m.s.) velocity of segments are computed

from the velocity-dependent one-scale model of Martins and Shellard [69]. The

positions of segments are drawn from a uniform distribution in space, and their

orientations are chosen from a uniform distribution on a two-sphere. This model

is a rather crude approximation of a realistic string network. However, there are

good reasons to believe that its predictions for the CMB and LSS spectra are close

to what one would obtain by using full-scale simulations. Its parameters have

been calibrated to produce source correlation functions in agreement with those

in [70], where comparison to a full simulation was possible. Also, the shape of

the spectra obtained using this model are in good agreement with results of other

groups [71, 72, 73], who used different methods that are also approximate. Finally,

on the cosmological scales probed by the CMB measurements, the fine details of

the string evolution do not play a major role. It is the large-scale properties –

such as the scaling distance, the equation of state (wiggliness), the r.m.s. velocity,

and how all these characteristics evolve through the radiation-matter equality –

that determine the shape of the string-induced spectra. All of these effects are
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accounted for in our model and can, in principle, be adjusted to match any specific

cosmic string model. We choose to work with this model because one can easily

calculate the sources for different cosmological parameters and because it allows us

to include the effect of the wiggliness [53], which could be one of the distinguishing

features of strings produced in theories with extra dimensions [22]. Unfortunately,

though, some errors in the implementation of our code [49] that were found after

this analysis had been completed means that the present analysis is unable to say

anything about cosmic string wiggliness. The other main effect of the presence of

extra dimensions, the increased string density, can be approximately factored in

by multiplying the spectra by Ns ∼ γ−2.

For technical details of the model, the reader is referred to [53] and references

therein. In principle, the wiggly nature of strings is accounted for by modifying

the string energy-momentum tensor so that it corresponds to the wiggly string

equation of state:

µ̃ = αµ , T̃ = α−1µ , (3.3)

where α is a parameter describing the wiggliness, µ̃ and T̃ are the mass per unit

length and the string tension of the wiggly string, and µ is the tension (or, equiv-

alently, the mass per unit length) of the smooth string. In addition to modifying

the equation of state, the presence of small-scale structure slows strings down on

large scales. We account for this by dividing the root mean squared string velocity

by the parameter α. The wiggliness of the strings remains approximately constant

during the radiation and matter eras, but changes its value during the transition

between the two. We take the radiation era value, αr, to be a free parameter that

we vary, and set the matter era value to be αm = (1 +αr)/2, with a smooth inter-

polation between the two values (as prescribed in [53]). For conventional strings,
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this roughly agrees with results of numerical simulations [61, 62] which show a

decrease from αr ∼ 1.8 − 1.9 in the radiation era to αm ∼ 1.4 − 1.6 in the matter

era.

The qualitative features of the cosmic string spectra are quite independent

of the details of the model. Hence, the observational constraint that we report

here are based only on the shape of the spectrum (such as the constraint on the

parameter f defined below) can be viewed as less model-dependent than our other

results.

It is well known that properties and possible observational signatures of global

and local strings can be very different. Global strings predict almost no power on

small angular scales for CMB temperature anisotropy [58], while local strings –

as we have argued above – produce a quite significant broad peak at l ∼ 450 in

a spatially flat universe [16, 53, 71, 72, 73, 74]; this can be seen in Fig. 3.1. We

will only concern ourselves with local strings. For the most recent constraints on

global strings the reader is referred to refs. [75] and [76].

Rather than working directly with the string parameter Gµ, we introduce a

parameter B, defined as

B ≡
(

µ

µ0

)2

, (3.4)

where µ0 is the tension that one obtains by setting the total power in string induced

CMB anisotropy to be equal to the total power observed by WMAP. That is, we

set

Ics ≡
∑

l

(2l + 1)

4π
Ccs

l (µ0, α
(0)
r , ~p0) = IWMAP , (3.5)

where we take α
(0)
r = 1.9 and ~p0 is a fixed set of the remaining cosmological

parameters that have taken to correspond to the the best fit ΛCDM model of

Tegmark et al [5]. The value of Gµ0 that we obtain with this prescription is
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1.1 × 10−6. Speaking very loosely, B can be said to measure the fraction of the

anisotropy due to strings. Note, however, that this meaning is modified if, for

instance, the strings have a different amount of small-scale structure (αr 6= 1.9)

or if they have reduced intercommutation probabilities. B is only really useful

as an intermediate parameter. Our main results are the constraints on Gµ that

we obtain from B and the fraction f of the total CMB anisotropy due to strings

(Eq. (3.6)).

3.2.2 Markov Chain Monte Carlo

Because of the large size of our parameter space (nine parameters in total), we have

used the Markov Chain Monte Carlo (MCMC) method for exploring the likelihood

surface and for generating marginalized posterior distribution functions for the

model parameters. We employed the MCMC algorithm described in the Appendix

of [5].

We ran eight separate chains initialized at randomly generated initial positions

within our prior range. The priors, given in Table 3.1, were chosen with the expec-

tation of the string contribution being subdominant and the best fit parameters

being close to their WMAP best fit values [2]1. Since we expected values of B near

zero to be preferred, we also allowed B to range slightly below zero so as not to

restrict artificially the ability of the chain’s random steps to explore near B = 0;

values below zero were discarded when the data were analyzed. One advantage

to our use of multiple chains rather than a single, long chain was that we were

able to verify directly that there was adequate mixing in each chain, since each

1The restriction on wiggliness, αr < 4, was to save computing time. In the end
we only integrate over this parameter anyway, due to errors in our code [49].



35

Table 3.1: Prior constraints on the parameters

0 ≤ B

1 ≤ αr ≤ 4

0 ≤ As

0.92 ≤ ns ≤ 1.07

0.019 ≤ ΩBh
2 ≤ 0.028

0.1 ≤ ΩMh
2 ≤ 0.2

0.5 ≤ h ≤ 0.8

0 ≤ τ ≤ 0.23

0 ≤ Fb

successfully forgot its starting location and located the same maximum likelihood

region of the parameter space.

3.3 Results

3.3.1 The fraction in strings and Gµ

To test our MCMC code we first ran a chain with the string contribution set to

zero (B = 0). The results are shown in Table 3.2. Our results are consistent with

those found in a similar analysis of the same data by members of the SDSS team

[5].

Each of our eight chains allowed variation in all nine parameters. The results

are summarized in Fig. 3.3 and Table 3.2. In Fig. 3.3 we plot the marginalized

1-D posterior distribution functions for eight of the nine parameters we allowed to
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Figure 3.3: The one-dimensional projected PDFs for the 8 parameters varied by

our Markov Chain Monte Carlo code; note that ωB = ΩBh
2, ωM = ΩMh

2. The

solid line represents the PDFs for models where cosmic strings are included; the

dashed line represents the PDFs for models with B = 0, i.e. without cosmic strings.

Each curve has been rescaled such that its area is unity. For each PDF the lightly

shaded regions are excluded at the 68% confidence region; the dark regions are

excluded at the 95% confidence region.
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Table 3.2: The best fit results

Parameter B = 0 B > 0

f — < 0.068 (68%), < 0.14 (95%)

B — < 0.029 (68%), < 0.062 (95%)

As 0.87+0.08
−0.16 0.85+0.09

−0.13

ns 1.0+0.02
−0.04 1.0 ± 0.026

ΩBh
2 0.024 ± 0.001 0.025+0.0012

−0.0016

ΩMh
2 0.15 ± 0.01 0.15+0.013

−0.01

h 0.69 ± 0.03 0.71 ± 0.034

τ 0.155 ± 0.057 0.143 ± 0.054

Fb 1.46+0.24
−0.22 1.47+0.2

−0.18

vary in our analysis; the cosmic string wiggliness is simply integrated over, since

errors in our code washed out our ability to disentangle the contribution from

wiggliness. The solid lines represent the PDFs for these parameters with cosmic

strings included; the dashed lines show the results without cosmic strings (B = 0).

We have shaded the regions excluded at 68% (light) and 95 % (dark) confidence.

The peaks of each of these PDFs and the one-sigma error bars are given in Table

3.2; for the parameter τ , where the results lack a clear peak, we have taken the

midpoint of the 68 % confidence region as our “peak” value.

The resulting cosmology with cosmic strings included is very close to the cos-

mology without cosmic strings. This verifies our hypothesis: a subdominant ad-

mixture of cosmic strings into the cosmological perturbation spectra gives a minor

modification to the resulting cosmological parameters as determined in such a
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Figure 3.4: The PDF for the cosmic string weighting parameter, B ≡ (Gµ/1.1 ×

10−6)2.

model. The only noticeable shift caused by including cosmic strings comes in the

peak likelihood in the PDF for ΩBh
2, and even this shift is small. The only po-

tentially worrisome aspect of these PDFs is the fact that the PDF for τ appears

to be running into the upper value of our prior range.

Let us examine the PDF for the cosmic string weighting parameter, B, given

in Fig. 3.4. The light and dark shaded regions again represent the 68 and 95%

confidence intervals.

To quantify the total string contribution to the CMB anisotropy for a given set

of parameters ~s we define the fraction f as

f(~s) =
Ics

Ics + Iad
(3.6)

where

Ics =
∑

l

(2l + 1)

4π
Ccs

l (~s) ,
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and

Iad =
∑

l

(2l + 1)

4π
Cad

l (~s) ,

where Cad,cs
l are the temperature (TT) correlation spectra. We then compute the

PDF for this new parameter, which we show in Fig. 3.5 along with the 68 and 95%

probability regions. We find that about 7%(14%) of the CMB power can be sourced

by strings at 68%(95%) confidence. Note that the dashed line, corresponding to

the three parameter analysis of [21], shows a smaller allowed string contribution.

Figs. 3.4 and 3.5 are the principal results of this paper. Limits on B alone give

limits on the string tension itself. Using the results in Fig. 3.4, we find a cosmic

string weight of B . 0.029(0.06) allowed at the 68 (95)% confidence level. This

corresponds to Gµ . 1.8(2.7)×10−7. The peak of the PDF for B lies at B = 0.01,

or Gµ ∼ 1.1 × 10−7. These limits are relevant to searches for direct detections of

cosmic strings, as the magnitudes of gravity wave and lensing events caused by

cosmic strings depend directly on their tension.

The above bounds on Gµ are model-dependent. In order to match the total

observed CMB power, our string model requires Gµ0 ∼ 1.1 × 10−6. Our Gµ0 is

somewhat lower than the COBE normalized values in [77] (Gµ ≈ 1.7 × 10−6), in

[12] (Gµ = (1.5 ± 0.5) × 10−6), in [78] (Gµ = (1.7 ± 0.7) × 10−6), and in [79]

(Gµ ≈ 2 × 10−6). It is also lower than [16] (for similar model parameters). It is

possible that these papers share a factor of
√

2 error in overall spectrum amplitude

with the original version of these results. An estimate of Gµ0 more in line with our

value was found in [72], where the COBE normalized value of Gµ was ∼ 1.0×10−6

(for their parameter wX = 1/3), and similarly in [73]. The latest estimates of

Landriau and Shellard [60] using realistic simulations of cosmic strings (reliable

up to ℓ ∼ 20) give the COBE normalized value of Gµ = (0.74 ± 0.2) × 10−6 for
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a ΛCDM cosmology, which is consistent with results of a similar study in [80]

where the value obtained was Gµ = (1.05 ± 0.3) × 10−6. Note that most of the

results obtained prior to 1999 assumed a CDM dominated cosmology – switching

to ΛCDM leads to a ∼ 10% increase in COBE normalized value of Gµ [60].

Our bound on Gµ would also be altered if the strings intercommute at a rate

less than unity, as is expected in many string theory models of cosmic strings. The

effect of reduced intercommutation would be to reduce the upper limit on Gµ.

Our bound on the fraction of CMB power in strings, f , depends only on the

shapes of the string-sourced CMB and LSS spectra. These shapes, as discussed in

§3.2.1, are largely independent of the details of the string model. The bound on f

can be used to derive an approximate bound onGµ, given one’s favorite value of µ0.

Indeed, the results reported here, given as they are in light of a corrected string

spectrum [49], have been determined through use of this less-model-dependent

shape-amplitude parameter.

It is also worth recognizing that f can serve as a measure of the goodness-of-fit

of the paradigmatic inflationary scenario in comparison with a physically motivated

model; isocurvature is another example of a model used in such a manner (e.g.

[81]). Our results from cosmic strings, serving from this viewpoint merely as a

self-consistent foil to the standard model, show that as much as 14 % of the CMB

TT-correlation power could be sourced by a radically different spectrum without

destroying the close agreement of the resulting spectrum with the anisotropy data.

Loosely speaking, we can conclude from this bound that there is a cumulative

ambiguity in the uniqueness of the adiabatic Cℓ spectrum shape, as determined

from the WMAP data, of around 10%. As more CMB data become available in the

future, repetition of this analysis might be worthwhile, if only to discover whether
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Figure 3.5: The PDF for the combination parameter f , which quantifies the frac-

tional contribution of cosmic strings to the total CTT
l spectrum. The solid line

shows f from our full analysis, with the 68 % (light) and 95 % (dark) confidence

regions shaded. The dotted line is the result for f from our previous three param-

eter analysis.

the intrinsic shape of the adiabatic spectrum is more uniquely picked out by the

more-exact future data sets.

3.3.2 The B-polarization spectrum

In Fig. 3.6 we plot the B-mode polarization spectra in the case of smooth strings

(αr = 1) and wiggly strings αr = 1.9 predicted by our string model for the case

when the total contribution of strings to the CMB anisotropy is 10%. That is,

for each of the curves, the value of Gµ was adjusted separately to correspond to

f = 0.1. For comparison, we also plot the B-mode spectra from a purely adiabatic

cosmology. The light dotted line represents the B-mode polarization arising from
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gravitational lensing of E-mode polarization. The light dash-dotted line represents

the B-mode arising from gravitational waves. This prediction is exciting because it

shows that a cosmologically-viable network of cosmic strings can produce a CMB

BB-mode polarization at an amplitude even higher than that expected for E to

B-mode lensing. With gravity-wave generated B-modes peaking at a much lower

ℓ, any excess power in observed B-mode spectra at ℓ ∼ 1000 could thus be a telling

sign of cosmic string activity. Two planned experiments, QUIET and QUaD [82],

expect to be able to measure such high-ℓ polarization with great precision. It is also

worth noting that the amplitude of gravity-wave generated B-mode polarization

is intimately tied to the as-yet undetermined scalar-to-tensor ratio, r. We have

used r = 0.1 in Fig. 3.6, which is usually regarded as an optimistically high value.

Inflationary models frequently produce orders-of-magnitude lower estimates for

r (in [45], for instance, investigations predict 10−8 . r . 10−3 for KKLMMT-

motivated brane inflation). For r ≪ 0.1, cosmic strings could be the dominant

source of B-mode polarization for low values of ℓ (10 < ℓ < 1000), but with a

spectrum that is recognizably distinct from the polarization generated by gravity

waves. The proposed CLOVER experiment [83] and its space-based successors

plan to focus their measurements on this region of ℓ-space.

3.4 Summary

We found two types of constraints on cosmic string networks through our analysis

of the WMAP and SDSS data. One is on the value of Gµ, which is sensitive to our

normalization convention and to the string intercommutation rate, which we take

to be unity in setting our bound. The other is on the fraction of total CMB power

due to cosmic strings, f . The constraint on f depends chiefly on the general shape
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Figure 3.6: The B-type polarization spectra for αr = 1.9 (dashed lined) and αr = 1

(solid line) both corresponding f = 0.1. The light dotted line is the B-mode

expected from gravitational lensing of adiabatic E-mode polarization; the light

dash-dotted line is the B-mode expected from gravity wave-sourced polarization,

for tensor-to-scalar ratio r = 0.1.
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of the string induced spectrum. The shape of the spectrum is quite generic – a

plateau on large scales due to superposition of the Kaiser-Stebbins effect of many

strings (from a scaling network), followed by a broad peak on small scales. The

peak is caused by the Doppler and Sachs-Wolfe effects produced by velocity and

density perturbations caused by strings during the epoch of recombination. The

rough position of the peak is set by the size of a typical wake at last scattering,

while the wake size is set by the coherence (or curvature) length ξ(t) at that time.

We can call these features generic because they are agreed upon by all groups that

have studied string-induced CMB spectra. The fine details of the shape, e.g. the

sharpness of the peak, depend on many factors.

In addition to quantifying the allowed fraction of the cosmic string contribu-

tion, our parameter f can also be interpreted as a measure of the goodness-of-fit

of the fiducial adiabatic CMB spectrum model. The fact that the data permit

approximately 10% of the TT-correlation power to arise from a very different com-

petitor model gives a useful measure of how uniquely the data pick out the shape

of the adiabatic spectrum.

Other recent constraints on local strings that also used WMAP data include ref.

[84], where the narrowness of the first peak was used to constraint the size of the

incoherent string contribution, and refs. [85, 86], where the constraint was based

on the expected non-Gaussian signatures induced by strings. Ref. [84] suggests

an interesting way to obtain a rough bound the string contribution to the CMB

spectrum at ℓ ∼ 220 from constraints on the width of the main peak. Our method

has the advantage of including the information on all scales (not just the main

peak) and the ability to account for changes in in cosmological parameters and the

shape of the string spectra (by varying the wiggliness).
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Our limit on the string tension, Gµ < 2.7× 10−7, does not contradict a variety

of recent claims of observational evidence for the existence of cosmic strings. The

most prominent have been possible examples of cosmic string lensing. One possible

cosmic string lensing observation [87] is the appearance of short time-scale varia-

tions in the brightness of the well-known gravitational lens system, Q0957 + 561,

which could be explained by a passing cosmic string loop with a tension in the

range 10−8 ≤ Gµ ≤ 6 × 10−7. The inferred time scale of these variations is so

short, ∼ 100 days, that very small scale string structure would be required, mak-

ing the claim somewhat problematic (for more on these events, see [88]). In the

arena of gravitational wave observation, current pulsar timing bounds are quite

consistent with Gµ ∼ 10−7 [89], while analysis of gravitational wave bursts from

string loops suggests that Gµ ∼ 10−7 cosmic strings will be readily observable by

both LIGO and LISA [90].

It is often thought that a key observational test for cosmic strings would be

whether non-Gaussianity is found in the primordial perturbations seen by such

experiments as WMAP. This is a natural assumption, since each string acting

alone would perturb the CMB in a highly non-Gaussian manner. However, the

central limit theorem tells us that the superposition of perturbations produced by

many strings must be Gaussian. Therefore, one expects to see string-related non-

Gaussian features only on scales that are sufficiently small not to have been crossed

by more than a few strings during the entire period of time during which strings

have produced their effects. It is not difficult to get a conservative estimate of this

scale. The dominant contribution to the anisotropy on small (sub-degree) scales

comes from the Doppler and Sachs-Wolfe effects produced at the last scattering

[91]. A natural length scale to start with is the angular size of the horizon at



46

recombination, which corresponds to ℓ ∼ 220/
√

3. Numerical simulations [61,

62] show that the typical distance between strings during matter domination is

L ∼ 0.8t. It is somewhat smaller in the radiation era, and can be much smaller

if the intercommutation probability was less than unity, as may be the case in

string theory models. A conservative estimate of the number of strings per horizon

at any time in the matter era is ∼ (4πt3/3)/L3 ∼ 10. When projected onto

the last scattering surface, about half of this number of strings would contribute.

Hence, the CMB anisotropy in a patch corresponding to ℓ ∼ 220/
√

3 would be

a superposition of the effects of about 5 strings, and to isolate the effect of one

string, one would have to go to scales of order: ℓ ∼ 220 × 5/
√

3 ∼ 600. In doing

this rough estimate we have ignored the density perturbations created by wakes

between the radiation-matter equality and last scattering, which contribute a non-

negligible fraction of the power near the main peak [91]. This contribution would

tend to make the scale at which non-Gaussianity appears even smaller, since the

wakes started to from from the onset of matter domination. Thus one will likely

need a resolution of at least ℓ ∼ 1000 to have any hope of seeing non-Gaussianity

from strings. Furthermore, in the above argument we did not account for the

fact that strings can produce only 10% of the total anisotropy. This makes the

detection of their non-Gaussian signatures even more difficult. The possibility of

low string intercommutation rates (high string density), in addition to making

strings more Gaussian (via the central limit theorem), also strengthens the bound

on their tension, hence further complicating the detection of their non-Gaussian

properties. The analysis in refs. [85, 86] assumed ℓ ∼ 200 as the scale for the

onset of non-Gaussianity in the CMB caused by strings. A more realistic scale,

as we have argued above, is likely to be an order of magnitude smaller, so the
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detection of string sourced non-Gaussianity appears to be beyond the reach of

WMAP, and quite possibly even Planck. The existing constraints on string-sourced

CMB non-Gaussianity, such as those obtained in refs. [85, 86], appear to reflect

the limitation that, given the variance of a CMB map on a certain scale, σℓ, one

naturally has difficulty resolving any detailed features on those scales that have

amplitudes comparable to σℓ. In light of this, it is not surprising that the upper

bound on Gµ obtained in [85, 86] (Gµ . 10−5) roughly corresponds to the variance

of the WMAP CMB map on sub-degree scales.

We find that cosmic strings with tensions of Gµ = 2.7 × 10−7 are still allowed

by the data from the WMAP and SDSS experiments, and that strings can account

for as much as 14% of the the temperature fluctuations in a cosmic microwave

background radiation dominated by adiabatic fluctuations without any significant

changes in the underlying cosmology. Strings with allowed tensions are produced

in brane inflation models, implying that such models are still viable and that the

strings produced by them may be observable, giving us hope of an observational

window on string theory. One promising signature of cosmic strings with these

tensions in the early universe would be their creation of observable B-mode po-

larization in the CMB with spectra distinct both from those created by E-mode

lensing and by gravity waves from primordial tensor modes. As we have seen,

a cosmologically-viable cosmic string network could produce the most prominent

B-mode polarization signal, with an amplitude even greater than the expected E-

to-B lensing signal. Successful observation of such B-modes would in turn be our

first direct observational probe into the physics of string theory, while continued

non-detection of this B-mode could even more strictly bound the parameters of

any cosmic string network.



CHAPTER 4

NETWORKS OF COSMIC SUPERSTRINGS

First appeared as Scaling of Multi-Tension Cosmic Superstring Networks in Phys.

Rev. D71 (2005) 103508; Erratum-ibid. D71 (2005) 129906.

The cosmic superstrings produced in a D3-brane-antibrane inflationary scenario

have a spectrum: (p, q) bound states of p fundamental (F) strings and q D-strings,

where p and q are coprime. By extending the velocity-dependent one-scale network

evolution equations for abelian Higgs cosmic strings to allow a spectrum of string

tensions, we construct a coupled (infinite) set of equations for strings that interact

through binding and self-interactions. We apply this model to a network of (p, q)

superstrings. Our numerical solutions show that (p, q) networks rapidly approach

a stable scaling solution. We also extract the relative densities of each string type

from our solutions. Typically, only a small number of the lowest tension states

are populated substantially once scaling is reached. The model we study also

has an interesting new feature: the energy released in (p, q) string binding is by

itself adequate to allow the network to reach scaling. This result suggests that

the scaling solution is robust. To demonstrate that this result is not trivial, we

show that choosing a different form for string interactions can lead to network

frustration.

4.1 Introduction

Consider a generic brane world scenario that closely describes our universe today

(i.e., a KKLT-like vacuum [8]). If we take an extra brane-anti-brane pair in the

early universe their brane tensions provide the cosmological constant that drives

48
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inflation. There is an attractive force between a brane and an anti-brane so they

tend to move towards each other while inflation is taking place. Thus, brane in-

flation is a natural feature of the brane world [6, 9, 39, 41]; in brane inflation, the

inflaton is an open string mode identified with the interbrane separation. Inflation

ends when the D3-D3-brane pair collides and annihilates, releasing energy that

starts the hot big bang. Note that the inflaton field no longer exists after the an-

nihilation of the D3-D3-brane pair. Towards the end of inflation, the D3-D3-brane

collision produces D1-branes – or cosmic superstrings – but neither monopoles nor

domain walls [10].

We can estimate the cosmic string tension µ using the density perturbation

magnitude in the CMBR data from COBE [14]. In the simplest realistic scenario,

namely, the KKLMMT D3-D3-brane inflationary scenario [9], one finds that [45]

5 × 10−7 ≥ Gµ ≥ 4 × 10−10

where G is the Newton’s constant. The upper bound comes from WMAP data and

other data [20, 21, 60, 84], while the lower values require some fine-tuning in the

model. These predictions are not sensitive to different warping schemes because

the normalization to COBE is always performed after the warp effect is taken

into account. In this scenario, the density perturbation responsible for structure

formation is dominated by the inflaton, with cosmic strings playing a secondary

role.

The evolution of networks of cosmic strings is a well studied problem [18, 62,

92]. After the initial production of cosmic strings, the strings interact among

themselves. When two cosmic strings intersect, they reconnect or intercommute.

When a cosmic string intersects itself, a closed string loop is broken off. Such

a loop will oscillate quasi-periodically and gradually lose energy via gravitational
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radiation. Its eventual decay transfers the cosmic string energy to gravitational

waves. A higher (lower) string density leads to a higher (lower) interaction rate

so, not surprisingly, cosmic string networks evolve towards scaling solutions. A

consequence of scaling is that the physics of simple, abelian Higgs networks is

essentially dictated by a single parameter, the dimensionless string tension Gµ.

This scaling feature can be seen by considering the evolution of the number density

in a one-scale model, where the scaling solution emerges as an attractive fixed point.

There are many different hybrid inflationary models in which one can construct

a variety of cosmic string-producing scenarios. What is different in brane inflation

is that the string network that is produced has a large spectrum of possible string

tensions [10, 22, 23]. For the D3-D3-brane inflationary scenario, one expects a

spectrum of (p, q) string bound states [22, 23], where the tension of a particular

bound state (p, q) is given by

Gµ(p,q) = Gµ
√

p2g2
s + q2. (4.1)

where gs is the superstring coupling. For the string to be stable, p and q must

be coprime, i.e., p and q have no common factors greater than 1. Written this

way, (1, 0) corresponds to the fundamental F-string while (0, 1) corresponds to

the D1-brane, or D-string, so µ is the tension of the (0, 1) superstring. We can

see the emergence of such a spectrum in several ways. Consider the following

simple picture: the gauge group at the end of inflation just before brane-antibrane

annihilation is

U(1)D × U(1)D̄ = U(1)+ × U(1)−,

where the open string (complex) tachyon field stretching between the branes cou-

ples only to U(1)−. The usual operation of the Higgs mechanism generates abelian
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vortices following the spontaneous symmetry breaking of U(1)−. These are the

D-strings. Since no free U(1) gauge symmetry remains after the annihilation, it

is believed that the U(1)+ symmetry becomes confining, yielding confining fluxes

that may be identified as fundamental closed strings, or F-strings [93]. The pro-

duction of D-strings may be estimated via the Kibble mechanism. Most of the

decay products are expected to be very massive non-relativistic closed strings,

which are expected to decay to gravitons, standard model particles and other light

modes. We expect some of the massive closed strings to be extended. These are

the F-strings. In a cosmological setting, their production is likely, again, to be

dictated by the Kibble mechanism. The production of D- and F-strings are not

independent, so we expect some initial spectrum of (p, q) strings to be produced.

Since the interactions between (p, q) strings is not simple [23], one expects that

(p, q) network evolution might be quite involved. It is not obvious,a priori, that

the network can even approach scaling. For example, it could oscillate (i.e., the

density of any specific (p, q)-type could oscillate indefinitely), approach scaling only

asymptotically, or simply frustrate. One way to address this problem would be to

do a full numerical simulation of a (p, q) string network. However, this is a highly

non-trivial problem. String network evolution is a complex physical process; ac-

curately modeling the build-up of small-scale string structure is computationally

demanding, even in the context of abelian Higgs models, which have only one type

of vortex. A radically simpler alternative would be simply to generalize the one-

scale string network model due to Kibble [94] to the case of (p, q) string evolution.

Recall that the scaling of the cosmic string network appears as a stable fixed point

in this one-scale model. However, previous researchers have found it useful to in-

clude more of the network physics than the original one-scale model allowed. In
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particular, the velocity-dependent one-scale (VOS) model developed by Martins

and Shellard for the abelian Higgs case [69] provides a very convenient and reliable

method for calculating the large-scale quantitative properties of string networks

in many contexts, including a cosmological setting. This model performs excep-

tionally well when tested against high resolution numerical simulations of string

networks [62, 92]. It allows one to see analytically how scaling emerges, and to

calculate reliably a small number of macroscopic quantities useful for cosmological

applications. We take this model as the starting point for our own model building.

We recognize that there are a number of other analytic approaches to the string

evolution [95]. Some may characterize the details of small-scale stringy structures

more accurately, but they also require more phenomenological input parameters

which can only be obtained from simulations. Since there is, as yet, no simulation

of a cosmic superstring network, and since we are chiefly interested in the overall

properties of such a string network, we choose the simplest possible “analytic”

model that highlights the most important physical effects.

In this paper we adapt the velocity-dependent one-scale model to describe a

multi-tension cosmic string network that includes both string self-intersection and

string-string binding interactions. For a multi-tension network, the string density

evolution equation generalizes to a set of (infinitely many) coupled equations. We

then specify the string interaction terms in our particular multi-tension, (p, q)

string model and solve this set of equations numerically. Fortunately, we find that

the (p, q) string network, with stringy interactions turned on, rapidly approaches

scaling. This fast convergence and rapid decrease of string densities with increasing

tension allows us to truncate the set of equations at low, computationally tractable

values of (p, q). To show that this scaling result is not somehow built into the model
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we have constructed, we demonstrate that the same set of evolution equations with

a different interaction term can lead to a frustrated network.

Because of the various approximations we use, our results are limited to overall

macroscopic network features, which are nonetheless those features that are needed

for cosmological applications. For instance, we find for the (p, q) superstring net-

work :

• The (p, q) string network approaches a scaling network rapidly. The final

scaling solution is independent of the initial densities of the various types of

strings. The fractional density in strings, for F 6= 0, is given by

Ωcs = 8πGµ(0,1)Γ Γ ≃











20/(0.55P + F ) gs = 1.0

15/(0.53P + F ) gs = 0.5
(4.2)

where P measures the probability of self-interaction and F measures the

overall probability of interaction among different types of strings. For the

(p, q) cosmic superstring network, we do not know the value of F , though

we expect P . F . 1. It is interesting to note that scaling is achieved even

if we turn off the string self-interaction, i.e., when P = 0. For the abelian

Higgs model we have ΓU(1) ≃ 20 and P ≃ 0.28. Using this value for P and

taking F = P , we find that, for gs = 1, Γ ≃ 46; for F = 1, P = 0.28, we

have Γ ≃ 17. Thus, the total density of the (p, q) cosmic superstring network

is comparable to standard cosmic strings. Differentiating between the two

kinds of networks based on their string densities will require more detailed

modeling.

• The relative number density of each type of string is roughly given by

N(p,q) ∼ µ−n
(p,q) 6 < n . 10. (4.3)
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The fall-off is power-like, not exponential. The rapid convergence of the

coupled set of equations is brought about by this rapid fall-off. The power

law is most accurate for high values of p and q; the spectrum tends to be

somewhat flatter for the first few string types. Indeed, we find that when

scaling is reached, the relative numbers of (0, 1), (1, 0), and (1,±1) strings

are comparable and far larger than the population of the remaining (p, q)

states with p, |q| > 1. In the case of F = P = 0.28, gs = 1.0, we find

N(p,q) ∝ µ−7.5
(p,q).

• The adapted multi-tension velocity-dependent one-scale model (MTVOS)

that we describe in §4.2 can be used for many different kinds of multi-tension

networks by a simple change of the inter-string interactions term.

Clearly, this analysis can be improved in a variety of ways. We shall comment

on some of them. However, we are confident that the rapid approach to scaling and

the fast power drop-off in the densities are generic features of cosmic superstring

networks.

In the past, the evolution of cosmic strings in models more complicated than

the abelian Higgs model have been considered. For example, Pen and Spergel

studied the evolution of SN strings by simulating a network of S3 and S8 strings

[96]. The SN symmetry enforces identical tension and number densities among the

N string types. In terms of the model we construct, the set of N coupled evolution

equations collapses to a single equation. McGraw also modeled non-abelian S3

strings with two different tensions [97]. The evolution of networks of ZN strings

connected to monopoles, which have some qualitative similarities to the networks

we consider, has been studied in ref. [98]. We believe that a network of (p, q)

strings is the first network type that truly requires a set of coupled equations. The
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formalism may be adapted for other non-trivial string network.

In Section 4.2, we adapt the velocity-dependent one-scale model to a model for

the evolution of comic strings that have a spectrum of tensions. In Section 4.3,

we specialize the model to the (p, q) superstring network by defining our string

interaction term. In Section 4.4 we present our numerical results and in Section

4.5 we briefly discuss some observational implications of these networks.

4.2 A Multi-Tension Velocity-Dependent One Scale Model

Consider a set of different types of cosmic strings {α} with tensions {µα}. Let

the number of cosmic strings of type α per unit area be nα. Suppose that all

of the cosmic strings may be characterized by a single length scale L and a single

average velocity v, and that cosmic strings of type α can evolve either by interaction

mediated loop formation or by binding to cosmic strings of other types β 6= α. The

following model is motivated by the model of Martins and Shellard [69], but has

been altered somewhat to accommodate the new string physics we introduce.

We assume that the length scale evolves via the equation

L̇ = HL+ c1v , (4.4)

where the loop parameter c1 ≤ 1 is a dimensionless factor and H is the Hubble

parameter. We take the equation of motion for the velocity to have the Martins-

Shellard form

v̇ = (1 − v2)
(

−2Hv +
c2
L

)

; (4.5)

where the “momentum parameter” c2 is a second constant. This term is the

acceleration due to the curvature of the strings. In the absence of expansion,

these two equations imply γ = (1 − v2)−1/2 = (L/L0)
c2/c1 , and with c1 = c2 = 0,
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but with expansion retained, they imply γva2 = constant, L/a = constant, and

so, γvL2 = constant. Thus, the “self-acceleration” due to string curvature and

expansion have opposite effects: self-acceleration increases string velocity, whereas

expansion dilutes it. This suggests that the two effects can cancel one another.

We can see how this comes about by rewriting Eq. (4.4) as

d(HL)

dt
= H (HL+ c1v) +

Ḣ

H
HL = H(HL)

[

c1v

HL
−
(

1 + 3w

2

)]

(4.6)

and combining it with the velocity equation; we then find that there is a quasi-

steady solution

v = HL

(

1 + 3w

2c1

)

=
c2

2HL
, (4.7)

which implies

HL =

√

c2c1
1 + 3w

, v =
1

2

√

c2(1 + 3w)

c1
. (4.8)

In this solution, both HL and v are constants that differ in the radiation (w = 1/3)

and matter (w = 0) eras. Clearly, there is no quasi-steady solution for w ≤ −1/3;

thus, quasi-steady solutions only exist in the radiation and matter eras. We require

that in both eras, v ≤ 1, a condition that is more restrictive in the radiation era,

where it demands that c2/2c1 ≤ 1. In practice, we choose c1 and c2 such that the

scaling values of HL and v match the values given in [69], where similar constants

c̃ and k are chosen to line up with full network simulations. The translation

between our constants and theirs is simple: The translation between our constants

and theirs is simple: in the radiation era, our c2 = k, while our c1 = (k + c̃)/2); in

the matter era, c2 = (3/4)k and c1 = (3/8)(k+c̃). For example, in the radiation era

they find HL = 0.1375 and v = 0.655, which for us fixes c1 = 0.21 and c2 = 0.18.

Next, add to these equations an equation of energy conservation, at first in the

absence of interactions between strings of different types. Let the cosmic string
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energy density be

ρ =
nµ√
1 − v2

(4.9)

where µ is the mass per unit length of a string, and n is the mean string number

density. In the absence of interactions, assume that

ρ̇ = −2Hρ(1 + v2) (4.10)

Differentiating the expression, Eq. (4.9) for the string energy density and using

Eq. (4.10) and Eq. (4.5), the equation for v̇, implies

ṅ = −
(

2H +
c2v

L

)

n . (4.11)

where we see that the first term comes from cosmological expansion. The second

term can be interpreted in two different ways. For straight strings, it would reflect

a net expansion in the velocity field orthogonal to the strings. For kinky strings, we

should interpret n as the characteristic number of intersections per unit area on

average for a two dimensional surface intersecting the network. As the strings

straighten out (the source term in v̇) the number of intersections will fall, at

a rate that is ∼ nv/L characteristically. We may interpret this to mean that

as string kinks straighten out, the number of intersections of strings with any

two dimensional cut through three dimensional space will decrease; it is also the

straightening of kinks that raises v. Note that when the string velocity approaches

its asymptotic value v = c2/2HL, the energy equation becomes

ρ̇ = −
(

2H +
c2v

L

)

ρ = −H
[

2 +
c2(1 + 3w)

2c1

]

ρ , (4.12)

i.e. it assumes exactly the same form as the equation for the number density

of strings. This is sensible because the energy per unit length per string µγ →

constant asymptotically.
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Next, let us consider what happens when we allow interactions between strings.

Recall that we assume a single characteristic length scale, L, for all types of strings;

however, unlike the single-µ case, this length need not be related directly to string

density. We further assume that the different types of cosmic strings interact by

binding, first at a point and then zipping up to form a new cosmic string with

the same length as the original two, which enforces equal lengths for all different

kinds of strings. The zipping up takes a time L, but let us suppose that L is

small enough compared to the Hubble length that we can regard the zipping up

as instantaneous; HL ∼ 0.1 is good enough for our purposes. Let the equation for

nα be

ṅα + 2Hnα = −c2nαv

L
− Pn2

αvL+ FvL

[

1

2

∑

β,γ

Pαβγnβnγ(1 + δβγ)−

∑

β,γ

Pβγαnγnα(1 + δγα)

]

, (4.13)

where the first term on the RHS arises from the breaking off of loops from individual

undulating strings of type α, the second term arises from breaking off of loops after

the collision of two strings of type α, and the third term arises from the zipping

up of two strings of different types that collide and bind.

As an aside, we note that the term proportional to P could equally well be

written as a term under the summation, proportional to P0αα. We have pulled this

term out of the sum to make the contrast between self interaction and interaction

between strings of different types clear. But a few comments on this term are in

order:

• The term proportional to P or P0αα is the usual term that drives networks

without multiple string types to scaling.
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• By writing P instead of P0αα, we are assuming that the self-interaction rate

does not depend upon α.

• If we take Pαβγ = 0 for β 6= γ, then a self-interaction term of this form

drives all string species which have a sufficient initial density to the same

final scaling number density.

• After we have taken P out of the sum, we either restrict the sum to β 6= γ

or assume P0αα = 0.

We assume that our constants c2, P , and F are identical for cosmic strings of

all types. We define F as a measure of the overall probability that two strings of

different types interact at all. We have assumed that the interaction of strings of

two different types can only result in zipping up, if anything – there are no recon-

nections and no breaking off of loops directly associated with such interactions.

In the third term, Pαβγ is the probability of forming a string of type α when

strings of types β and γ collide, whenever the strings interact at all. The factor

1

2
(1 + δβγ)

is introduced so that we do not double count the production of strings of type α

when strings of different types β and γ collide; i.e. since we do not restrict the sum,

symmetry on β ↔ γ implies we have two identical source terms from β + γ → α;

the factor

1 + δγα

in the loss rate arises because in each α− α collision we lose two long strings. By
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defining Nα = a2nα, we can rewrite Eq. (4.13) as

Ṅα = −c2Nαv

L
− PN2

αvL

a2
+
FvL

a2

[

1

2

∑

β,γ

PαβγNβNγ(1 + δβγ)−

∑

β,γ

PβγαNγNα(1 + δγα)

]

, (4.14)

and if we define conformal time by dη = vdt/a and introduce the comoving string

length, L = aℓ, then we find

N ′
α = −c2Nα

ℓ
− PN2

αℓ+ Fℓ

[

1

2

∑

β,γ

PαβγNβNγ(1 + δβγ)−

∑

β,γ

PβγαNγNα(1 + δγα)

]

, (4.15)

with a prime denoting differentiation with respect to conformal time. In terms of

Nα, we find that ρα = µαNα/a
2
√

1 − v2.

The remaining two equations are those for ℓ and v. Substituting L = ℓa into

Eq. (4.4) gives

ℓ̇ =
c1v

a
⇒ ℓ = ℓ(0) + c1η . (4.16)

When we change the independent variable from t→ η, Eq. (4.5) becomes

v′ =
(1 − v2)

v

(

−2Hav +
c2
ℓ

)

. (4.17)

To complete the set of equations, we need to find a(η); we use

H =
d(ln a)

dt
=
d(ln a)

dη

dη

dt
=
v

a

d(ln a)

dη
(4.18)

to get

da

dη
=
Ha2

v
. (4.19)

In the radiation dominated era, which is of greatest interest to us practically, Ha2

is approximately constant. Thus, in the quasi-steady state, the scale factor grows

linearly with η.
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Eq. (4.13) may yield a steady state solution of the form Nα = fα/ℓ
2 =

fα/[ℓ(0) + c1η]
2 provided that

−2c1fα = −(c2fα + Pf 2
α) + F

[

1

2

∑

β,γ

Pαβγfβfγ (1 + δβγ)−

∑

β,γ

Pβγαfγfα (1 + δγα)

]

(4.20)

has a nontrivial solution.

It is instructive to consider what we get when F = 0. In that case, Eq. (4.20)

has two solutions, fα = 0, which is not relevant, and

fα =
2c1 − c2

P
, (4.21)

which is physically realizable only if 2c1 > c2. Let us assume that this is so. At

sufficiently late times, we will therefore find that

ρα =
µα(2c1 − c2)

Pc21(aη)
2
√

1 − v2
, (4.22)

where we have assumed that c1η ≫ ℓ(0), and that v relaxes to its asymptotic

value. In this limit, we find that a ≈ Ha2η/v in the radiation era, and therefore

η ≈ va/Ha2 = v/Ha; use this in Eq. (4.22) to find

ρα ≈ µαH
2(2c1 − c2)

Pc21v
2
√

1 − v2
⇒ Ωα =

8πGρα

3H2
≈ 8πGµα(2c1 − c2)

3Pc21v
2
√

1 − v2
. (4.23)

Because this version of the network equations assumes common L and v for all

string types, when F = 0 we expect to find Ωα/µα independent of α, assuming

nonzero initial populations. (Remember that Ωα ∝ fα = 0 is also a solution.)

Notice that Eq. (4.23) implies Ωα ∝ (2c1 − c2)/P , and for small self-interaction

probability, this is the expected P−1 scaling. Moreover, nonzero P is essential for

time-independent Ωα to arise in networks with only interactions among strings of
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the same type. Also, since this is the limit in which our model reduces to the abelian

Higgs case, we can use prior simulation results to fix the value of our parameter

P . Numerical studies of the radiation dominated era have Γ = Ωcs/(8πGµ) ≈ 20,

which for us implies P = 0.28, taking c1 = 0.21, c2 = 0.18, and v = 0.655. Because

of this we take P = 0.28 as the fiducial value for P in our numerical solutions.

It is also instructive to consider what happens if P = F = 0. In this case, Eq.

(4.13) has an exact solution

Nα =
Nα(0)ℓ(0)c2/c1

[ℓ(0) + c1η]c2/c1
→ Nα(0)

[

ℓ(0)

c1η

]c2/c1

(4.24)

(Eq. (4.24) is a special case of the general solution

1

Nα
=

[

1

Nα(0)
− Pℓ2(0)

2c1 − c2

] [

ℓ

ℓ(0)

]c2/c1

+
Pℓ2

2c1 − c2

that can be found for F = 0, and the results of this and the previous paragraph

follow from appropriate limiting cases of this solution.). From this result, we find

that

Ωα ≈ 8πGµαNα(0)[ℓ(0)]c2/c1

3(Ha)2−c2/c1vc2/c1
√

1 − v2
. (4.25)

In the radiation dominated era, when Ha ∝ a−1, we find that Ωα ∝ a2−c2/c1 , which

either rises or falls depending on the sign of 2 − c2/c1.

Note that the network equation, Eq. (4.13), may also be used to describe

entanglement. In that case, instead of setting α = (pα, qα), as we shall do to

describe (p, q) networks, we simply let α = pα. Moreover, we set Pαβγ = δα−(β+γ);

taking c2 = P = 0, the network equations are

N ′
α = Fℓ

[

1

2

∑

β,γ

δα−(β+γ)NβNγ(1 + δβγ) −Nα

∑

γ

Nγ(1 + δγα)

]

. (4.26)

These equations cannot lead to a scaling solution because there is a conservation

law, basically conservation of energy, that restricts the evolution of the system.
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Multiply Eq. (4.26) by α and sum over α; the result is
(

∑

α

αNα

)′

= Fℓ
[1

2

∑

α,β 6=γ

αδα−(β+γ)NβNγ −
∑

α6=γ

αNαNγ

+
∑

α,β

αδα−2βN
2
β − 2

∑

α

αN2
α

]

= Fℓ

[

1

2

∑

β 6=γ

(β + γ)NβNγ −
∑

α6=γ

αNαNγ + 2
∑

β

βN2
β − 2

∑

α

αN2
α

]

= Fℓ

[

∑

β 6=γ

βNβNγ −
∑

α6=γ

αNαNγ + 2
∑

β

βN2
β − 2

∑

α

αN2
α

]

= 0 , (4.27)

where the next to last line was obtained by relabelling γ → β in one of the two

sums over β 6= γ. Thus, here we have an example where scaling is not achieved.

The network evolves toward ever larger values of µ, but its overall comoving energy

density does not decline.

Thus, neither the existence nor the nature of a scaling solution for a particular

multi-tension network is obvious. If each type of string evolves independent of all

other types, scaling will be achieved eventually for all types present originally ,

with Ωα ∝ µα/P . Turning on the interactions between string types will populate

the different tensions, and, once produced, their self-interactions and energy-losing

binding interactions will propel them toward scaling solutions. The final spectrum

of string tensions may be broad or narrow, depending on the efficiency with which

the reaction terms operate. The reaction terms themselves may promote scaling

even if there are no self-interactions, but the fact that entanglement can be de-

scribed by a reaction network with particular choices of interaction probabilities

shows that there are certainly circumstances in which scaling cannot arise solely

from the reactions among strings of different types. Note, finally, that we have as-

sumed very little about the nature of the multi-tension network that is described
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by these equations beyond the assumption that string interactions lead either to

loop formation or the formation of other kinds of strings through some sort of bind-

ing. Thus these equations may easily be adapted for any particular multi-tension

string network model simply by determining the form of Pαβγ for that model; the

particular (p, q) network that we consider below is only one example of the sort of

network these equations can describe.

4.3 F- and D-String Network

To specialize the preceding network to the (p, q) strings of [23], we define Pαβγ

– taking α = (p, q), β = (k, l), and γ = (m,n) – and motivate the overall in-

teraction probability, F . For this investigation, we make a first and very crude

approximation: we assume that the probability of two strings of different types

interacting is a single, universal constant, rather than a function of of α, β, γ or

the relative velocity of the strings. By discarding all these complexities, we retain

only a kinematically determined branching ratio (see both Fig. 4.1 and the dis-

cussion in the text below); in future work, we may attempt to retain more of the

physics contained in F to obtain more realistic results. Before we can write down

this branching ratio, we shall state the relevant properties of (p, q) strings, since

these determine the form of Pαβγ :

• Strings with positive and negative values of p and q are generically allowed;

the sign of p or q indicates the direction of the string’s charge. Because of a

reflection symmetry, we can always choose the orientation of the string such

that p ≥ 0. For p = 0, q > 0; for p > 0, q ∈ Z.

• Strings with q = 0 are only stable for p = 1. It is probable that (0, q)



65

strings are marginally bound; operationally, we assume that the non-zero

momentum transfers in the string collisions that accompany binding unbind

these states. An interaction that formally would create an (N, 0) or (0, N)

string thus, in fact, creates N (1, 0) or (0, 1) strings.

• We assume that two strings of different types interact with probability F . If

two strings of different types do interact, there are two possible products, or

bound states, that they can form: a (p, q) string interacting with a (p′, q′)

string can form either a (p+p′, q+ q′) string or a (p−p′, q− q′) string, where

we always take p > p′. As stated above, if either of these product bound

states has a resulting p′′ and q′′ that are not coprime, then what is actually

formed is a set of strings with stable, lower p, q values.

• In agreement with our comments above, we assume P0αα = 0 or, equivalently,

restrict our summations to β 6= γ.

• For bound states of strings to be stable, p and q must be coprime. If a bound

state of a string is formed with p and q not coprime, then the new state is,

in reality, a collection of lower-tension p and q strings that are coprime: i.e.,

a string which nominally has p = Nk, q = Nl is actually a set of N (k, l)

strings. We may view this as the “decay” of a (Nk,Nl) string:

– comes about because the N (k, l) strings that compose this “state” are

BPS with respect to each other; that is to say, they have no mutual

binding interactions. Any possible marginal binding may be ignored

since the strings are moving with relativistic speeds.

– has no energy cost – the resulting collection of strings always has lower

energy than the strings that bound to form them; there is no actual
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(Nk,Nl) bound state – a collection of stable (k, l) strings is formed

immediately following the interaction.

– can untie itself through reconnection events if the collection of (k, l)

strings that are created in the interaction are tangled or tied up imme-

diately after their creation.

Figure 4.1: A schematic view of a string intersection. The intersection angle, θ,

determines whether the additive – (p+ p′, q + q′) – or subtractive – (p− p′, q − q′)

– binding occurs.

Whether the interaction of two strings forms a (p+ p′, q+ q′) bound state or a

(p−p′, q−q′) bound state is determined by a simple consideration of force balance: if

the angle between the interacting strings is small enough, then the heavier, additive

bound state is formed because the two interacting strings’ tensions can balance the

tension of the heavier bound state; if the angle is greater than some critical angle

of force balance, then the lighter, subtractive bound state is formed. The critical

angle which determines which binding occurs is given by [23]

cos θcrit
klmn =

ekl · emn

|ekl||emn|
emn = ([m− Cn]gs, n)



67

where C is the RR scalar. If we assume a stochastic distribution of string orien-

tations, then the strings’ interaction angle should have a flat distribution in cos θ,

that is, that each value of the cosine between -1 and 1 should be equally likely. If

we assume this, and remember that the directionality of the F and D charge must

be taken into account – i.e., θ = π/4 is not equivalent to θ = 3π/4 – then the prob-

ability of forming the additive bound state is simply the fraction of cosine-space

with θ less than the angle of force balance; the subtractive bound state is formed

otherwise. We can write this as:

P±
αβγ =

1

2

(

1 ∓
(

(k + Cl)(m+ Cn)g2
s + ln

[(k + Cl)2g2
s + l2]1/2[(m+ Cn)2g2

s + n2]1/2

))

, (4.28)

where P+ indicates α = (p, q) = (k + m, l + n) and P− indicates α = (p, q) =

(k − m, l − n). This form captures the kinematic branching ratio, but as stated

leaves out an important process: the creation of non-coprime (p, q) strings, which

are in reality collections of two or more coprime strings. To take this into account,

we must slightly modify the way in which we insert Pαβγ into our equations: we

take

P(Nk,Nl)(p,q)(p′,q′) = NP(k,l)(p,q)(p′,q′).

The inclusion of this process is extremely important. This break-up of non-coprime

strings is a nonreversible process that is fundamentally dissipative – it helps to keep

the average tension of the network low both by limiting the pathways by which

high-tension bound states can be reached and by providing a mechanism through

which a single interaction can destroy a high-tension bound state and replace it

with a collection of low-tension strings. Thus, in summary,

• Two strings of different types α and β interact with probability F .

• When these strings interact, either a subtractive or additive bound state
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is formed, with probabilities P− and P+ given by Eq. (4.28). The two

interacting strings are annihilated in the production of the new bound string

state.

• When the bound state γ is stable, one such string is produced.

• When the nominal bound state γ is unstable, it immediately forms N lower-

tension stable strings, which helps keep the tension dependance of string

density spectrum steep.

In all our numerical runs we have assumed C = 0.

Some possible physical effects that our model neglects include:

• Velocity dependence of the interaction probabilities due to variation in the

binding energy of the resulting bound states: the increase binding energy

that holds very high tension states together is small – the energy gained

by binding decreases greatly for high-µ states. Thus we expect that the

momentum transferred in even moderate-velocity interactions that involve

these lightly-bound states may lead them to unbind spontaneously.

• This velocity dependence may lead to an effective cut-off in µ, irrespective

of the interaction dynamics.

• We might not expect strings of widely varying tensions all to have the same

velocities and characteristic length scale in reality, contrary to what our

model assumes.

• We have decoupled the evolution of the r.m.s. velocity and length scale of

our network from the network’s P and F dependent interactions, though one
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would generally expect these interactions to be relevant to determining the

network parameters.

4.4 Network Results

The equations given in §4.2 require numerical solution. For all numerical results, we

work in the radiation-dominated era, assume (for convenience) that the RR scalar,

C = 0, and fix our constants c1 = 0.21 and c2 = 0.18 to match [69] (these choices

are made so that, at scaling, we have HL = 0.1375 and v = 0.655). Furthermore

we have done each run twice, with two different values of the superstring coupling,

gs = 0.5 and 1.0. We were less certain about how to initialize the cosmic string

network; cosmic string creation immediately after brane inflation is not understood

completely. Fortunately, scaling has proven to be quite robust to a wide variety

initial conditions; for an illustration of this, see Fig. 4.2. On energetic grounds, we

believe that, in general, networks will be formed with primarily the lowest-lying

states populated; thus, for our calculations we chose initially to populate only the

(1, 0) and (0, 1) states, and those with equal number densities. Final scaling results

are always insensitive to these choices; at worst, very different initial conditions can

alter the rate at which the network approaches the scaling regime. We similarly

find that any initial choices for network velocity, v, and length scale, L, quickly

approach their analytically-predicted scaling values. To integrate our equations

numerically, another choice we had to make was how many (p, q) states to allow.

After testing networks of many different sizes, we found that our results showed

a steep, power law dependence of number density on tension in all cases. The

relative densities of the low-lying tension states, furthermore, were not changed

when more high-tension states were included. Thus we were able to obtain accurate
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results from a relatively small network: for the runs we show here, we have taken

p ∈ [0, 5], q ∈ [−5, 5], though the way in which we solve the equations allows

nominally higher-valued, temporary (p, q) states to “form” if the values of p and q

are non-coprime, but only if the decay products of the unstable (p, q) state are a

collection of stable (k, l) strings with k, |l| ≤ 5. Finally, we take the scale factor of

the universe a = 1 at network initialization.

An interesting new result from this network model is that string networks with

no loop creation – those with P = P0αα = 0 – still exhibit cosmologically acceptable

scaling; enough energy is lost through string binding and binding-mediated anni-

hilation to keep the comoving network number densities Nαη
2 constant, regardless

of initial conditions, after an initial relaxation period following network formation.

Because of this, these networks are very robust: though there are regions of param-

eter space where the network never truly reaches scaling, in all reasonable cases

(where we keep F 6= 0, P . F ) we never find cosmologically-disastrous solutions

where cosmic strings come to dominate the energy density of the Universe.

There are three regimes of interest for these solutions:

1. For F ≫ P : The network will be dominated by F , D, and (1,±1) strings.

Higher tension states are present, but maximally suppressed (these networks

have the steepest spectra).

2. For F → 0: All string tensions that are present initially eventually reach the

same scaling density. If there are a great many string states, this can cause

a catastrophe, since the formation of loops tends to drive all types of strings

to the same value of Ωcs/µα.

3. For P ∼ F : The interactions terms will populate the higher (p, q)’s, and
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the P terms will flatten the spectrum somewhat because of its tendency to

equally populate all levels. The larger P is, the more quickly this happens.

In Figs. 4.3, 4.4, 4.5, & 4.6 a variety of combinations are shown. For larger

values of P , the “final” scaling state is not an exact scaling solution, but one

that continues to evolve slowly to late times. Some features that appear to

generic in this regime include

• Ωcs/((8/3)πGµ(0,1)) = 60/(F + 0.55P ) for gs = 1.0, 46/(F + 0.53P ) for

gs = 0.5. This formula is only valid for F 6= 0.

• ascaling ∼ 1000, so scaling is achieved at Tscaling ∼ 10−3Treheat, where

Treheat is the temperature to which the universe reheats at the end of

inflation. Since Treheat ∼ Ms, the string scale, Tscaling ∼ 10−3Ms ≫

TeV, so scaling is reached long before the electroweak phase transition.

• Scaling results are insensitive to initial conditions unless F = 0

• Steep final spectra: Nfinal
α ∝ µ−n

α , 6 < n . 10

There are several aspects of these results that require further discussion.

4.4.1 Scaling

• The overall properties of the networks are fairly insensitive both to initial

conditions [51] and to particular parameter choices; i.e., Ωcs never grows fast

enough ever to come to dominate the universe.

• However, the final state of the string network depends upon the relation-

ship between F and P . When P ∼ F , the network does not quickly reach

a true scaling solution. Instead, it continues to evolve to late times (see
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Figs. 4.3 and 4.5). Because of the efficient energy loss from both binding

and loop formation, the network’s overall density grows very slowly – e.g.,

(d log Ω/d log a) ∼ 0.07 for a ∼ 104; ∼ 0.01 for a ∼ 105, for the case of

P = F = 0.28; note that (d log Ω/d log a) = 0 defines entry into the scaling

regime. This late growth comes about because of the continuing competition

between loop formation, which wants equally to populate all string states,

and binding interactions, which tend to destroy high-tension bound states.

This late evolution is not dangerous cosmologically.

• In agreement with our understanding of the late evolution of P ∼ F net-

works, such networks tend to develop somewhat flatter final spectra, as their

high-tension bound states tend to be more populated than those in F ≫ P

networks. Their spectra still exhibit very steep power law behavior, however

(see Figs. 4.4 and 4.6).

• The scale factor at which the network enters the scaling regime is some-

what dependent upon initial conditions: networks with more states initially

populated tend to take slightly longer to reach scaling, though the greater

frequency of interactions caused by such initial conditions means that these

networks tend to be less dense throughout their evolution than networks

that are formed with only low-lying string states (see Fig. 4.2); networks

that begin with much smaller initial L, on the other hand, can take a good

bit longer to reach scaling. Recall also that the binding interactions of high-

tension states will very often lead to non-coprime combinations, which leads

such networks quickly to develop the same kinds of steep spectra that are

seen when less democratic initial conditions are used.
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4.4.2 Low-F Catastrophe

• An aspect of superstring networks that has been as-yet unappreciated is that

their ability to populate arbitrarily high tensions through the formation of

bound states can lead to a cosmological catastrophe if such states cannot be

made to decay. In traditional network evolution, which is what our equa-

tions reduce to when F → 0, even very small initial populations of each

possible string state will each eventually reach the same final scaling density.

When this happens, Ωcs =
∑

α Ωcs
α ∝

∑

αNαµα can become huge, and thus

disastrous, even if the energy density in each individual state is small.

4.4.3 Final Spectra

• The fact that our numerical solutions have found a very strong dependence

of string number density on tension – with Nα ∝ µ−n
α , and 6 < n . 10 –

is another important aspect of these networks. If the spectrum were flat, or

nearly so, a scenario very much like the low-F catastrophe outlined above

would ensue: since the effect of many string states is additive, and since

there are many more possible states at higher tensions, such a flat-spectrum

network would be ruled out immediately by cosmological considerations.

• Computationally, the steepness of the spectra greatly eases our task. Nu-

merical tests showed that the addition of many high-tension states with low

number densities scarcely affected any of the results. We were thus able to

limit ourselves to small networks, with pmax = |qmax| = 5.

• Careful study of Figs. 4.4 and 4.6 shows that the spectra plotted there are

not strict power laws. The spectra are, in fact, somewhat flatter for very



74

low tensions, where the number of possible states is small. Thus, in all

cases there are proportionally more F , D, and (1, 1) strings than anything

else; particularly when F ≫ P , these states will dominate the cosmic string

network. The relative populations of these low-lying states are tabulated in

Tab. 4.1.

• The effect of varying the superstring coupling, gs, is to vary the tension of

the F strings relative to the D strings, with this variation propagating up the

ladder of bound states. Here, we have taken only two representative values

of gs: 0.5 and 1.0. Reducing gs affected the network as our N ∝ µ results

suggest: those states which were previously degenerate (equally populated)–

(1, 0) or [(2, 1)+(2,−1)] relative to (0, 1) or [(1, 2)+(1,−2)], for instance – had

their degeneracy lifted, with the lighter state’s number density increasing.

The precise amount of increase was dependent upon the values of F and P .

Again, see Tab. 4.1.

• We note in passing that (unphysical) networks with P = 0 and with the loop

term ∝ c2 removed from Eq. (4.13) also go to scaling.

• In all our networks, the lowest tension states dominate the network energy

density. We expect this to be a feature of any multi-tension networks that

interact via binding, even if the spectrum of possible bound states is much

more complicated than the one we have considered.

4.5 Observational Consequences

Several aspects of (p, q) networks are potentially observationally distinct from reg-

ular cosmic string networks. The most obvious difference is that these networks



75

Table 4.1: The relative populations of the three lowest-lying tension states, which

in all cases dominate the networks’ energy density.

gs = 1.0 gs = 0.5

µ(1,0)

µ(0,1)
= 1

µ(1,±1)

µ(0,1)
=

√
2

µ(1,0)

µ(0,1)
= 1

2

µ(1,±1)

µ(0,1)
= 1.12

F P N(1,0)/N(0,1) N(1,±1)/N(0,1) N(1,0)/N(0,1) N(1,±1)/N(0,1)

1 0 1 0.769 3.24 1.21

1 0.14 1 0.803 2.50 1.19

1 0.28 1 0.836 2.19 1.19

0.56 0.14 1 0.829 2.24 1.19

0.56 0.28 1 0.887 1.96 1.21

feature a spectrum of string tensions. We suggest a few possible observational

signatures that could allow one to distinguish a (p, q) network from a standard,

abelian Higgs network:

• Previous studies of cosmic string lensing probability [99] have been based

on results from standard, abelian Higgs network models. In such networks,

Γ = Ωcs/(8πGµ) ≈ 20. In principle, our model allows values for Γ both less

than and greater than the abelian Higgs value. However, we expect the extra-

dimensional nature of superstrings to reduce their interaction rates, which

leads to higher values of Γ and Ωcs. If future lensing surveys find a rate of

cosmic string lensing substantially higher than that predicted by a abelian

Higgs network, that rate could both be a signature of a cosmic superstring

network as well as an observational constraint on the parameters of such a

network.
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• If the overall densities in cosmic superstring networks are generally higher

than those in abelian Higgs models, then observational bounds on cosmic

string tension (e.g. [21]) that depend on overall network properties will need

to be reinterpreted. We expect that the net effect will be to tighten such

bounds, though how much the bounds will change is difficult to predict since

observational bounds depend on many aspects of string networks (e.g., string

substructure, or “wiggliness”), while the detailed properties of multi-tension

networks have not yet been fully fleshed out.

• The Y -shaped junction of two strings in the act of binding is a good signa-

ture of the non-trivial properties of cosmic superstrings. Such a junction,

if present, could be detected by cosmic string lensing, or by observation of

the Kaiser-Stebbins effect, where a temperature difference is seen in the cos-

mic microwave background radiation due to a string-induced Doppler shift

[100]. In the latter case, we would expect to see a different temperature in

each of the 3 patches of sky. The relativistic motion of the binding strings

could also be an indicator of a binding event: the cosmic string lensing angle

is enhanced by a factor of γ for moving strings [101] (depending on string

orientation), which is moderate for usual network motions (∼ 1.3, in the

radiation-dominated era). The strings motions near a binding site, however,

are very relativistic, though over a very small spatial region, and thus would

exhibit exaggerated lensing near the binding site. Random variation among

string velocities within the network should also lead to the existence of some

individual fast-moving strings whose lensing will also be enhanced.

• A recent analysis [86] of the direct detectability of cosmic string-generated
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temperature anisotropies in the data from the upcoming Planck satellite

suggests that relatively high tension or fast moving strings within cosmic

superstring networks would be marginally within the Planck range of de-

tectability (they estimate that strings with Gµ ≈ 6× 10−6, v = 1/
√

2 would

be directly detectable by Planck; for a multi-tension network with a fiducial

tension Gµ ∼ 3 × 10−7, only strings with a combined βγ and high-(p, q)

tension enhancement of ∼ 10 would be seen).

• Direct observation of more than one cosmic string tension from observational

techniques, such as gravity wave bursts [90] or gravitational lensing, that are

sensitive to a particular string’s tension would be a definite prediction of this

kind of network. In the case of lensing, however, the velocity, orientation,

and string substructure dependences of the lensing angle may overwhelm this

effect for the most probable lensing strings (since over 90% of the strings in

our network are F , D, and (1,±1) strings, whose tensions are all of the same

approximate magnitude). For random string orientations, the string lensing

angle can vary by as much as a factor of six because of velocity dependent

effects, though we expect typical velocity dependent variation of only a factor

of two or so (these variations arise because the string lensing angle is propor-

tional both to the sine of the orientation angle of the cosmic string relative to

the line of sight as well as γ(1+ n̂ ·v), where v is the string velocity and n̂ is a

unit vector in the direction between the observer and the string [101]). Thus,

there are two ways that lensing measurements could indicate the existence

of a multi-tension network. The most dramatic would be a single very large

(& 10) variation between two observed lensing angles. Just as compelling,

however, would be if a large number of lensing measurements were made with
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a typical variation among events that is greater than one would expect to

arise, statistically, from random string orientations and string velocity direc-

tions. In any event, accurate follow-up observations of the Kaiser-Stebbins

effect, where the string’s relative velocity enters the equations differently (in

a cross product rather than a dot product) could perhaps allow us to dis-

entangle to some degree the string’s velocity and intrinsic tension. Another

possible avenue for discriminating between variation due to string orienta-

tion and velocity and intrinsic string tension would be if a series of lensing

events were observed along a single long string within a small patch of the

sky. Since we expect strings to be curved, it could be possible to observe the

same cosmic string at several different orientations. This could allow us to

extract the string’s actual tension through a statistical analysis of the events’

lensing angles.

• Another signature would be a mismatch between a particular string tension

measured directly – from lensing, perhaps – and a Gµ measurement com-

ing from a technique like CMB fluctuations or pulsar timing analysis that

is only sensitive to the averaged network as a whole; however, the effects

of string substructure (i.e., string wiggliness), which alter string-generated

CMB spectra, could mask more subtle expressions of this effect. If limits on

string substructure (see [21]) improve, then a direct detection via lensing of a

string with a tension that is several times larger than what CMB limits would

lead us to expect for a single-tension network would be a strong indication

of the existence of a multi-tension network.

By combining different observations and gathering sufficient data, one should

be able to measure a set of properties of the cosmic strings and so distinguish
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between different scenarios. This goal will be easier to reach if the true cosmic

string tension is closer to today’s observational bound.
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Figure 4.2: Comparison among three different sets of network initial condi-

tions, all taking F = 1, P = 0. The higher three lines represent the evo-

lution of the overall density in cosmic strings (summed over all string states),

Ω̃cs ≡ Ωcs/((8/3)πGµ(0,1)), with scale factor, a. The lower three lines represent

the evolution of the density in (0, 1), or D-, strings, Ω̃
(0,1)
cs ≡ Ω

(0,1)
cs /((8/3)πGµ(0,1)),

with a. Our standard initial conditions, equal initial populations of (1, 0) and

(0, 1) strings and HL = 1, are shown by the dashed lines. The solid line repre-

sents the results from a network run with a short initial length scale (10−2 of our

usual choice) and with over half of the initial string (p, q) states in our network

equally populated. Finally, the dotted line shows the results for a very large initial

population of strings – Ω̃cs ∼ 1000 – equally spread over half of the tension states

included in our network, with our usual choice for the initial network length scale.

For all the runs shown here we have set the superstring coupling, gs = 1.0.
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Figure 4.3: The bottom panel shows the evolution of Ω̃cs = Ωcs/((8/3)πGµ(0,1))

for various parameter values, taking the string coupling gs = 1.0. The top panel

shows the rate of change in the comoving number density Nη2; in the scaling

regime, d logNη2/d log η = 0.
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Figure 4.4: The final scaling-era spectra for a variety of parameter combinations,

taking the string coupling gs = 1.0, with N(0,1) normalized to unity and the other

number densities altered accordingly.
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Figure 4.5: The bottom panel shows the evolution of Ω̃cs = Ωcs/((8/3)πGµ(0,1))

for various parameter values, taking the string coupling gs = 0.5. The top panel

shows the rate of change in the comoving number density Nη2; in the scaling

regime, d logNη2/d log η = 0.



84

1 2 3 4 5

0.0001

0.001

0.01

0.1

1

Figure 4.6: The final scaling-era spectra for a variety of parameter combinations,

taking the string coupling gs = 0.5, with N(0,1) normalized to unity and the other

number densities altered accordingly.



CHAPTER 5

COSMIC SUPERSTRING LENSING

First appeared as Cosmic Superstring Gravitational Lensing Phenomena: Predic-

tions for Networks of (p,q) Strings in Phys. Rev. D72 (2005) 123504.

The unique, conical spacetime created by cosmic strings brings about distinctive

gravitational lensing phenomena. The variety of these distinctive phenomena is

increased when the strings have non-trivial mutual interactions. In particular,

when strings bind and create junctions, rather than intercommute, the resulting

configurations can lead to novel gravitational lensing patterns. In this brief note, we

use exact solutions to characterize these phenomena, the detection of which would

be strong evidence for the existence of complex cosmic string networks of the kind

predicted by string theory-motivated cosmic string models. We also correct some

common errors in the lensing phenomenology of straight cosmic strings.

5.1 Introduction

Some time after the existence of cosmic strings was proposed [102], several re-

searchers recognized that the conical spacetime generated by cosmic strings leads

to a unique gravitational lensing signature: undistorted double images [103]; the

discovery of even a single such gravitational lensing event would be seen as ir-

refutable evidence for the existence of cosmic strings. Previous detailed studies of

string lensing phenomena have focused on infinite strings and string loops, whether

straight or wiggly [104]. For standard, abelian Higgs strings, these are the only

lensing effects that one would expect to find.
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As we have discussed, there has been a renaissance of interest in cosmic strings.

This renewal was begun by the recognition that cosmic strings are copiously pro-

duced in the aftermath of the brane collision that generates reheating in brane-

world models of inflation in string theory [10]. In addition to reviving interest

in cosmic strings, these new studies have enriched cosmic string phenomenology

by proposing the existence of two basic cosmic string types: Fundamental, or F-

strings, and one-dimensional Dirichlet-brane strings, or D-strings. These two kinds

of strings are able mutually to interact to form bound states. These bound states

are known as (p, q) strings, as they are composed of p F-strings and q D-strings

[23]. String binding allows for a variety of new observational phenomena, yet does

not cause any cosmological catastrophes [26]. In particular, the existence of string

binding interactions generically implies that there will be Y -shaped junctions of

three strings that form each time there is a string binding event. These Y -shaped

junctions, though possibly quite rare, give rise to lensing phenomena that are

qualitatively distinct from anything standard abelian Higgs models can produce.

Since cosmic strings are perhaps the only directly observable remnant of brane

inflation, it is vital that we identify any distinctive effects that are peculiar to

the cosmic “superstrings” that are produced in brane-collision reheating. Cosmic

superstrings may be our best hope for directly observing some aspects of string

theory. The observation of even a single distinctive lensing event – one that could

not be explained in an abelian Higgs model – would be a “smoking gun” for the

existence of a non-trivial cosmic string network that is the hallmark of cosmic

superstring models. We note, however, that similar junctions are found in non-

abelian string networks as well (e.g., the S3 networks studied in ref. [96, 97]).

In this brief note, we describe the principal novel phenomena arising from the
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binding junctions that characterize non-trivial networks of cosmic superstrings. In

§5.2, we review lensing by a straight cosmic string, writing down some general for-

mulae that have not previously appeared in the literature. In Fig.5.1 we illustrate

the quintessential signature of a (p, q) network junction. This is an imaginative

construction of what the galaxy NGC 2997 1 might look like if it were lensed by a

Y -shaped string junction. In §5.3, we derive the simple procedure used to generate

this image. ( 1 , 0 ) ( 0 , 1 )
( 1 , 1 )

Figure 5.1: Illustration of lensing of a single galaxy by a (p, q) network junction.

Note that each image is partially obscured, which is a generic feature of cosmic

string lensing events [105]. This image is an imaginative construction, not an

actual observation.

5.2 Review of straight string lensing

The lensing due to a straight string is surprisingly simple; this comes about be-

cause the surrounding space-time is locally flat. Many details of this lensing can

nevertheless be quite subtle, and so here we correct two errors found in the liter-

1Anglo-Australian Observatory/David Malin Images
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ature, namely the angular separation formula and the orthogonality of the image

pairs with respect to the observed cosmic string. A string oriented in a direction

ŝ produces two images on opposite sides of the string separated by an “angular

separation vector” ~δϕ of magnitude

| ~δϕ| = 8πGµ
√

γ2(1 + n̂ · v)2 − cos2 θ
Ds,cs

Ds,o

. (5.1)

In our notation, bold face variables represent 3-vectors, bold hatted variables

are unit 3-vectors, and over-arrows signify 2-vectors which live in the plane or-

thogonal to the direction of sight. Here Gµ is the dimensionless string tension,

γ = 1/
√

1 − v2, v is the string velocity, n̂ is the unit vector directed along the

line of sight, θ is the angle between the cosmic string and n̂ (i.e., it is defined

by n̂ · ŝ = cos θ), Ds,cs is the distance from the source to the cosmic string, and

Ds,o is the distance from the source to the observer. Because cosmic strings are

boost invariant along their axis, we will always work in the gauge where v satis-

fies v · ŝ = 0. Vilenkin [103] pointed out that a straight cosmic string in motion

will appear curved, like a large hyperbola in the sky; we note that, as expected,

the apparent vanishing point of the hyperbola corresponds to the point where the

magnitude of the angular separation vector goes to zero ( ~δϕ → 0). The reason

for the apparent curvature is because what we see is the cosmic string world sheet

intersected with our past light cone, which we mentally project onto the t = 0

hyper-plane. The cosmic string equations of motion are solved by

x(σ, t) = ŝσ/γ + vt+ b (5.2)

with impact parameter b (with respect to the origin/observer) orthogonal to both

ŝ and v. The observed cosmic string is described by the illusory embedding

y(σ, t) = x(σ, t− |y(σ, t)|) (5.3)
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and so solving for y yields

y(σ, t) = ŝσ/γ + v(γ2t−
√

b2γ2 + σ2 + v2γ4t2) + b. (5.4)

The apparent string then has orientation given by ŝapparent = y′(σ, t)/|y′|, which

is in general not equal to ŝ. These string orientation vectors may be pulled back

onto the sky via

~s = ŝ− (n̂ · ŝ)n̂ (5.5)

~sapparent = ŝapparent − (n̂ · ŝapparent)n̂. (5.6)

The difference between apparent and actual string orientation can then be charac-

terized by the angle between these two 2-vectors:

cosβ =
~s · ~sapparent

|~s||~sapparent|
=

cos θv · (n̂ × ŝ)γ

sin θ
√

γ2(1 + n̂ · v)2 − cos2 θ
. (5.7)

Interestingly, the relative angle between ~δϕ and ~s can be shown to be π/2+β which

implies that the angular separation vector is always orthogonal to the apparent

cosmic string as in Fig. 5.2.

~δϕ · ~sapparent = 0 (5.8)

One might wonder how it is possible for a cosmic string that appears to be

bent in the shape of a hyperbola to produce an undistorted image. In fact, the

two images are not completely identical: They are moving at slightly different

velocities, which gives rise to both the Kaiser-Stebbins (blue-shift) effect [100], as

well as a relative “hyperbolic distortion” due to the finite travel time of light. So

the distortion induced by an extremely relativistic string is none other than the

distortion that all moving bodies appear to have; c.f. Eqn. (5.3).
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δ ϕ
Figure 5.2: A schematic view of the lensing due to a single string in the most

general case; when the string’s velocity is non-zero, the angular separation vector

is perpendicular to the apparent string, rather than to the actual string.

5.3 Lensing by Y -Junctions

A feature of superstring networks is that they are composed of at least two distinct

string species: so-called fundamental or F-strings as well as D1-branes, or D-

strings. These different types of strings can mutually interact via binding, creating

(p, q) bound states composed of p F-strings and q D-strings [23]. The tension of

such strings is given by

µp,q =
√

p2µ2
F + q2µ2

D (5.9)

Networks of such strings are cosmologically safe, as they are expected readily

to go to scaling [26]. However, uncertainties about the dynamics of such networks

means that the number of visible Y -junctions is hard to estimate and could be

quite small.

It is in the region near the Y -shaped junctions formed after collisions that
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Figure 5.3: The imaging pattern of a three-way junction. The dark lines repre-

sent the force-balanced string junction; in reality, strings themselves are invisible.

The dotted and dot-dashed lines represent, schematically, the angular separation

vectors associated with the strings. We suppress the heads of the vectors, since

their orientation is arbitrary. For string tensions in the upper range allowed by

observations – that is, Gµ ∼ 10−7 [21] – the size of the angular separation vectors

would be of order 1 arc-second. The stars represent the lensed images, with the

angular separation vectors drawn in for illustrative purposes.

the new string lensing effects are seen. In Fig. 5.1, we showed an image as it

might actually appear, with the invisible strings and angular separation vectors

suppressed. In Fig. 5.3, we show a mock-up of the triple image formed in the

vicinity of a Y -junction together with the strings that produce the image. In brief,

each leg of the Y -junction lenses exactly like an infinite straight string.

To motivate the above result, let us begin by considering a source simultane-

ously imaged by two long strings.

For two overlapping strings, it is straightforward to construct a set of rules
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Figure 5.4: The imaging pattern for two overlapping cosmic strings. The dotted

and dot-dashed lines represent, schematically, the angular separation vector asso-

ciated with the strings. Notice that only the object and two of the three images

are visible.

for the multiple imaging of a single source. Each straight cosmic string has an

associated two dimensional “angular separation vector” the length of which is

given by Eqn. (1). For string tensions in the upper range allowed by observations

[21], the magnitudes of these angular separation vectors are of order 1 arc-second.

The orientation of the angular separation vector is perpendicular to the associated

cosmic string.

1. Begin with an original image (i.e. the object); the choice of which image to

begin with is arbitrary.

2. Construct a parallelogram originating at the object and generated by the

angular separation vectors associated with each cosmic string; each corner

represents a new image.
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(a) Each image (except the object) will be associated with the set of cosmic

strings whose angular separation vectors were used to create it.

(b) If exactly those strings that are associated with an image – and no

others – lie between the object and that image, then that image will be

visible; otherwise, that image will be invisible.

3. Thus, given the existence of one visible image (the object), the location and

status – visible or invisible – of the other three images is known. An example

of this is shown in Fig. 5.4.

4. This procedure is consistent with the fact that a visible image is made invis-

ible when and only when any cosmic string moves across it, and an invisible

image is made visible only when a cosmic string moves across it.

For three overlapping strings, we follow the same procedure as before, with the

same rules. The only difference is that rather than forming a parallelogram, three

angular separation vectors lead to a parallelepiped. We show an example of this

sort of diagram in Fig. 5.5.

Finally, let us stipulate that the three strings are coplanar and intersect at one

point. If they are to be in force balance, then their orientation unit vectors must

obey
3
∑

i=1

µiγiŝ = 0. (5.10)

The γ-factors correct for the Lorentz contraction caused by boosting in a di-

rection not perpendicular to all three strings.

If the three infinite strings satisfy Eqn. (5.10) then one may “cut-and-paste”

them into two Y -junctions without changing the energy-momentum tensor. One of
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Figure 5.5: The imaging pattern for three overlapping cosmic strings. Only the

object and two of the seven images are visible.

the Y -junctions can then be pulled away to reveal a single junction and its lensed

images.

When cosmic strings intersect at a three-way junction, the background metric

is solvable if and only if [106] the strings obey the force balance equation. Dynami-

cally, however, the force balance equation is always satisfied since the neighborhood

of the junction point can be taken to have an arbitrarily small mass, thus allowing

it to respond instantaneously to any net force. This would not be the case if the

vertex had a large mass (e.g., if it were a monopole). Thus there is a consistency

check that must be performed for lensing by Y -junctions: each string lenses the

two images surrounding it, and so the picture is over determined. In other words,

each object has two images which must also satisfy the lensing equation of the
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string separating them. This means we must check that the angular separation

vector triangle closes:
3
∑

i=1

~δϕi = 0. (5.11)

In fact, we find that the force balance Eqn. (5.10) is a sufficient condition for Eqn.

(5.11) to be satisfied. This could be inferred from the first claim of this paragraph,

but is also easy to verify directly using the equations found in §5.2.

5.4 Conclusion

We have presented an exact solution for both the lensing of three-string junctions

and for multiple overlapping strings. We do not yet know how prevalent such junc-

tions would be in realistic networks of (p,q) strings. There are many uncertainties

about the dynamics of (p,q) string networks. These uncertainties mean that the

density of Y -junctions is hard to predict. A great predominance of one string

species over all others – many more (1,0) than (0,1) strings, say – could result in

junctions being unobservably rare. In more general networks, dynamics that lead

to generally low string number densities should also lead to a rarity of junctions.

Thus, observable string junctions may be extremely uncommon, and so our chief

hope for locating such a junction would be, first, to locate an actively lensing

cosmic string. As yet, no astronomical observations have yielded unambiguous ev-

idence for such a lensing event. Should such an event be found, we might hope to

track it across the sky by interpolation between further lensing events or through

the Kaiser-Stebbins effect [85, 86, 100] until a junction could be located along its

length. Within any such search, the discovery of even one triple imaging event

as described in this paper would be an unmistakable indicator of the existence of

a cosmic string network with non-trivial interactions, the very kind predicted in



96

brane inflationary models. Finding this sort of smoking gun – so rare as to be

invisible to serendipitous discovery – might be possible in such a scenario, giving

us hope for an experimental examination of string theory unthinkable even a few

years ago.

5.5 Appendix: Fly’s Eye Effect

A surprising secondary effect can be obtained if a large number of Y -junctions

are arranged near one another: a single source can be identically imaged many,

many times. We include this effect, though it is unlikely to arise in nature – where

the junctions tend to speed apart relativistically – as an example of the extreme

limit of the Y -lensing phenomenon. We further note that, while unlikely in present

models, it has frequently been mentioned in the past [23, 96, 97] that networks of

strings that become frozen could have a fly’s eye-style structure. We illustrate, on

a small scale, what such a configuration could look like in Fig. 5.6; on a cosmic

scale, the number of links and associated images could, of course, be multiplied

almost indefinitely.

Figure 5.6: This set-up of strings and associated images is unlikely ever to occur

in nature. It is included for illustrative purposes.



CHAPTER 6

A MODEL FOR COSMIC SUPERSTRING BINDING

6.1 Introduction

The success of the multi-tension one-scale model that was proposed in ref. [26]

(see also Chapter 4) is based upon a radical simplification of the physics of cosmic

superstring binding. The simplifying assumption is that when two cosmic super-

strings interact through binding, we take their binding to be so fast compared

with cosmological time scales as to be indistinguishable from instantaneous bind-

ing, which we call the “quick zip” approximation. Two lines of thought support

this assumption. The first is the recognition that these binding interactions are

energy-losing [23]; thus, we assume that the strings will quickly conform themselves

to the energetically-favorable bound state. Secondly, we note the parallel between

this problem and earlier computational work on non-intercommuting, low-velocity

Abelian strings, where such zipping-up dynamics were observed [107].

Taking inspiration from ref. [107], we decided to tackle this problem numeri-

cally. To this end, we have adapted a lattice gauge theory code [29] for modeling

cosmic string binding so that it can realize a U(1)×U(1) gauge theory of the kind

proposed in refs. [30, 31]. This gauge theory was first proposed in the context of

superconducting string models, albeit in another parameter regime than we will

utilize [108]. In this model, each of the Higgs fields separately acquires a vacuum

expectation value, giving rise two two distinct gauge vortices. We hope to identify

them with the F- and D-strings. To model string binding, an interaction term

is added to the potential. We also hope to experiment with velocity-dependent
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couplings that could also lead to binding. The Lagrangian for this theory is [30]:

L = −Dµφ̄D
µφ−Dµψ̄Dµψ − 1

4
FµνF

µν − 1

4
FµνFµν − V (|φ|, |ψ|), (6.1)

where we have the following gauge-covariant derivatives, field strengths and po-

tential,

Dµ = ∂µ − ieAµ, Dµ = ∂µ − igBµ,

Fµν = ∂µAν − ∂νAµ, Fµν = ∂µBν − ∂νBµ,

V (|φ|, |ψ|) =
λ1

4

(

φ̄φ− η2
)2

+
λ2

4

(

ψ̄ψ − ν2
)2 − κ

(

φ̄φ− η2
) (

ψ̄ψ − ν2
)

.

There are, for general values of the coupling constants, four critical points for this

theory. For each of the U(1) symmetries to be broken, we will need to make

(φ̄φ, ψ̄ψ)0 = (η2, ν2) (6.2)

a minimum. Saffin [30] finds that, given this minimum, the parameter range for

which binding occurs is

0 < κ <
1

2

√

λ1λ2. (6.3)

To discretize this theory for computational solution, we generalize the methods

described in ref. [29]. There, the techniques of lattice gauge theory have been used

to set up a constrained Hamiltonian formalism. The advantage of this technique

is that it is explicitly constructed to preserve the local gauge symmetries at the

lattice points. The lattice gauge theory approach is reviewed in refs. [109]. In

this approach, space is discretized to a cubic lattice with lattice spacing a. The

field values φ(x) (ψ(x)) are represented by the variables φ
x

(ψ
x
), which live on

the lattice sites x. The gauge fields Aµ(x) and Bµ(x) are replaced by phase space

rotation variables:

θµ
x

= aeAµ(x) Θµ
x

= agBµ(x) (6.4)



99

where e and g are the coupling constants for the two gauge fields. These variables

θµ
x

and Θµ
x

live on links between lattice sites. Their purpose becomes clearer when

we define the covariant derivative in this language:

∇A
µφ(x) ≡ 1

a
[exp{−iθµ

x
}φ

x+aµ̂ − φ
x
], (6.5)

where µ̂ is a unit vector in the µ direction. We write ∇B
µ to denote the covariant

derivative for the other gauge field. Using this scheme, we can immediately write

down a Hamiltonian for the discretized system, taking adπ†
x

(adΠ†
x
) and a(d−1)Eµ

x

(a(d−1)Eµ
x
) as the momenta conjugate to the fields φ

x
(ψ

x
) and θµ

x
(Θµ

x
). Since

we will eventually want to work in the temporal gauge, we separate out the time

component of the gauge field, writing A0
x

for A0(x) and B0
x

for B0(x). This Hamil-

tonian should not be thought of as a discretized version of a Hamiltonian that is

really given in continuous space. Instead, it should be thought of as an ansatz, lat-

tice Hamiltonian describing a theory on a grid that can be shown to be equivalent

to the continuum theory in the limit where the lattice spacing a→ 0.

H =
∑

x

ad

{

π
x
(
1

2
π†

x
− ieA0

x
φ†

x
) + π†

x
(
1

2
π

x
+ ieA0

x
φ†

x
) + Π

x
(
1

2
Π†

x
− igB0

x
ψ†

x
)+

Π†
x
(
1

2
Π

x
+ igB0

x
ψ†

x
) +

∑

i

[

1

2
(Ei

x
)2 +

1

2
(E i

x
)2 + (∇A

i φx
)†(∇A

i φx
)+

(∇B
i ψx

)†(∇B
i ψx

) +
1

a
Ei

x
(A0

x+i −A0
x
) +

1

a
E j
x
(B0

x+i − B0
x
)

]

+

1

2a4

∑

i6=j

[(

1 − cos(θi
x

+ θj
x+i − θi

x+j − θj
x
)
)

+

(

1 − cos(Θi
x

+ Θj
x+i − Θi

x+j − Θj
x
)
)]

+
λ1

4

(

φ†
x
φ

x
− η2

)2

+
λ2

4

(

ψ†
x
ψ

x
− ν2

)2 − κ
(

φ†
x
φ

x
− η2

) (

ψ†
x
ψ

x
− ν2

)

}

(6.6)

This Hamiltonian has been constructed to be invariant under the following trans-

formations:

φ
x
→ exp{iχ

x
}φ

x
, ψ

x
→ exp{iχ

x
}ψ

x
,
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π
x
→ exp{iχ

x
}π

x
, Π

x
→ exp{iχ

x
}Π

x
,

θµ
x
→ θµ

x
+ χ

x+aµ̂ − χ
x
, Θµ

x
→ Θµ

x
+ χ

x+aµ̂ − χ
x
,

where χ
x

is an arbitrary function of position.

The initial data for our simulations is generated numerically, following a relax-

ation method similar to that of ref. [30] and described in greater detail by ref.

[29]. Essentially, this method consists of taking vortex ansatze for the scalar and

gauge fields – i.e., that they are cylindrically symmetric – then writing down equa-

tions for those functions. We then solve them on a numeric grid using a successive

over-relaxation technique. This one-dimensional configuration is then placed onto

a three-dimensional computational grid. Finally, the resulting three-dimensional

vortex configuration is rotated and Lorentz-boosted to its final, desired initial con-

figuration.

Our code is able to realize two types of boundary conditions – periodic and free

boundaries. Since we are dealing with a gauge theory, making periodic boundaries

that, for instance, preserve winding number requires some care. Following ref.

[29], we handle this by making a time-independent gauge transformation between

periodically-identified lattice sites. This is done through the use of “patching”

functions:

φ(xT ) = exp{iχ(xF )}φ(xF ), π(xT ) = exp{iχ(xF )}π(xF ),

θi(xT ) = θi(xF ) + ∆θi(xF ), Ei(xT ) = Ei(xF ),

where the data from the sites xF are carried to the xT sites. A similar set of

transformations applies to the second set of U(1) fields. The value of the gauge

transformation parameter is determined by the phase of the Higgs field in the
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initial configuration:

χ(xF ) = arg φ(xT ) − arg φ(xF ), ∆θi(xF ) = χ(xF + î) − χ(xF ).

These functions are computed once when the code is initialized then stored for

subsequent use.

What we call “free” boundary conditions are conditions where the fields are

gradient-free across the boundary – the fields retain their values, but are copied

over to the boundary sites from the nearest-neighbor site to make the value of the

derivative zero. The field values along the boundary evolve as if they were alone

in space: they continue forward at their initial velocity without interacting with

the field within the box proper.

For both boundary conditions, the vortex collisions are arranged to occur at

the exact center of the box. We then stop the simulations before disturbances

arising from these collisions reaches the box walls.

6.2 Current Status

We began our study by testing our code in the case where κ = 0; that is, where the

U(1) fields are not permitted mutually to interact. Under this set-up we are able to

reproduce past results for two-dimensional vortex scattering [110] and to observe

intercommutation between two vortices of the same type. Energy is conserved in

these tests to within a few percent as long as simulations are not allowed to run

so long that the boundary effects become important.

Computational study of full Hamiltonian, with κ 6= 0, is ongoing. We do not

yet have reliable results to report. However, we can explain some of the questions

we are hoping to answer. The first is, simply, does vortex binding continue indefi-
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nitely? Although there seems to be a naive energy argument in favor of binding,

this is not universally accepted [111]. We also hope to determine whether, and

how accurately, the solution to the Nambu-Goto equations for a contant-velocity

growing “zipper” configuration given in ref. [112] is reproduced by the binding up

of these gauge theory vortices. In this solution, the zipper growth velocity v is

related to the ratio of the energy density in the two strings being bound to the

energy density in the bound state:

v =
ξ − 1

ǫ

ǫ− ξ
, (6.7)

where ǫ = (µα + µβ)/µγ – for an α and β string forming a γ bound state – and ξ

is a constant related to the velocity and angle of the strings when they collide.

Phenomenologically, the first way in which we hope to use our results is more

accurately to calibrate the parameter F defined in our multi-tension network model

in Chapter 4.
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