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The International Linear Collider (ILC) is a proposed facility for studying col-

lisions of electrons and positrons at 500 GeV (center of mass). The quality of

the ILC’s results will depend on its ability to reach the specified luminosity of

2×1032 cm−2/s. Damping rings provide the required low-emittance beams, but

the specifications for the ILC damping rings are ambitious by current standards.

Important questions regarding dynamic instabilities need to be answered before

the ILC design is finalized.

The CESR Test Accelerator (CesrTA) plan would convert the Cornell Electron

Storage Ring into a low-emittance damping ring with parameters comparable

to the ILC damping ring. However, achieving those parameters requires under-

standing and compensation for the magnet misalignments that increase vertical

emittance.

We present calculations and simulations that characterize misalignments

based on currently available survey data, and show that the two are consistent.

We describe an algorithm for compensating for the misalignments, and opti-

mize the parameters of that algorithm for various levels of misalignment and

beam detector resolution. The corrected vertical emittance is less than the 10 pm

target of the CesrTA proposal.



We optimize the same correction algorithm for the ILC damping ring, and

show that, for CESR-level misalignments and detector performance, we also

achieve the desired vertical emittance of 2 pm.

Finally, we describe a new way of measuring dispersion at CESR (and po-

tentially at the ILC) using RF phase-modulation and multi-turn orbit measure-

ments. This technique is faster than the current technique used at CESR, and

our measurements show that the dispersion measured with the two techniques

are in agreement with one another.
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Chapter 1
Introduction

The CESR Test Accelerator (CesrTA) is a conversion of the Cornell Electron Stor-

age Ring (CESR) from a high-luminosity collider to a low-emittance damping

ring. Studies at CesrTA will help answer important questions about the design

and operation of damping rings in the International Linear Collider (ILC).

This dissertation focuses on low-emittance tuning, i.e., compensating for

those imperfections in a physical machine that increase the emittance. We are

primarily concerned with CesrTA, but the techniques developed here are also

directly applicable to the ILC.

1.1 Outline

In this introduction, we provide an overview of the ILC. We then describe

CesrTA and how it will address damping ring issues.

In Chapter 2, we derive basic expressions for emittance and show analyti-

cally how emittance is impacted by machine imperfections.

In Chapter 3, we describe the expected level of magnet misalignment in

CesrTA, and simulate the emittance.

In Chapter 4, we describe an algorithm for low-emittance tuning, and op-

timize the parameters in that algorithm to minimize the vertical emittance in

CesrTA.

In Chapter 5, we apply the low-emittance tuning algorithm to the ILC, and

describe it in the context of other possible ILC strategies.
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In Chapter 6, we describe a new, faster method of measuring dispersion for

CESR, and potentially, for the ILC. We present experimental results and com-

pare them with those of the current measurement technique.

1.2 The International Linear Collider

1.2.1 Physics Goals

In 2008, the Large Hadron Collider (LHC) will begin operation, eventually

reaching a collision energy of 14 TeV. The LHC will extend our view into the

so-called Terascale with the expectation of profound discoveries, most notably,

the long-anticipated observation of the Higgs boson [1, 2].

The ILC is a successor to the LHC. Although the ILC has discovery potential,

it is usually thought of as a complimentary facility to the LHC, taking the LHC’s

discoveries and quantifying them with greater precision.

For example, although a light Higgs may be observed at the LHC, e+e− col-

lisions allow the measurement of many different decay modes and branching

ratios. Also, while the LHC may discover the existence of supersymmetric par-

ticles, measurements at the ILC environment are better suited for identifying

the parameters of the underlying theory [3].

More general examples of LHC/ILC complementarity are shown in Ta-

ble 1.1.

1.2.2 ILC Design

The ILC uses two superconducting linear accelerators to accelerate and collide

electrons and positrons. Figure 1.1 shows the overall layout of the ILC. The two

2



Table 1.1: Complementarity of the LHC and ILC capabilities. [4]

If LHC discovers: What ILC could do:
A Higgs particle Discover why the Higgs exists and who its cousins

are. Discover effects of extra dimensions or a new
source of matter-antimatter asymmetry.

Superpartner particles Detect the symmetry of supersymmetry. Reveal the
supersymmetric nature of dark matter. Discover
force unification and matter unification at ultra-high
energies.

Evidence for extra
dimensions

Discover the number and shape of the extra dimen-
sions. Discover which particles are travelers in ex-
tra dimensions, and determine their locations within
them.

Missing energy from a
weakly-interaction heavy
particle

Discover its identity as dark matter. Determine what
fraction of the total dark matter it accounts for.

Heavy charged particles
that appear to be stable

Discover that these eventually decay into very
weakly interacting particles. Identify these “super-
WIMPs” as dark matter.

A Z-prime particle,
representing a previously
unknown force of nature

Discover the origin of the Z-prime. Connect this new
force to the unification of quarks with neutrinos, of
quarks with the Higgs, or with extra dimensions.

Superpartner particles
matching the predictions
of supergravity

Discover telltale effects from the vibrations of super-
strings.

Figure 1.1: Diagram of the ILC complex. The electron and positron damp-
ing rings are shown around the interaction point.
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most important design parameters are the center-of-mass energy of 500 GeV,

and the luminosity of 2×1034 cm−2/s [5]. Other parameters are shown in Ta-

ble. 1.2.

The luminosity of a collider is given by

L =
nb N2

e f
4π σ∗x σ∗y

× HD (1.1)

where nb is the number of bunches, Ne is the number of particles per bunch, f

is the pulse frequency, σ∗
x,y are the horizontal and vertical beam sizes, and HD is

the disruption factor.

The vertical beam size depends on the vertical emittance εy and the vertical

β-function. If we assume that β∗
y = σz in order to minimize the hourglass effect,

then we can write the luminosity as

L ≈ 5.74×1020 m × Pb
Ecm

×
√

δE
εy

× HD (1.2)

where Pb is the power in the beam, Ecm is the center-of-mass energy, and δE is

the fractional beam energy loss due to beamstrahlung [6].

From Eq. 1.2, the best way to increase luminosity is to reduce the vertical

emittance. That is accomplished by damping rings which reduce the phase-

space volume of the beams through synchrotron radiation.

In ILC damping rings, the bunch train is wound around the damping rings

several times, reducing the effective bunch spacing to a few nanoseconds. The

short bunch spacing, together with the small vertical emittance, raises several

performance issues that need to be addressed ahead of finalizing a design. The

main goals of CesrTA are to study these damping ring issues in an environment

that is a reasonable approximation to the ILC damping rings.

4



Table 1.2: ILC Parameters

Parameter Value

Center-of-mass energy 500 GeV
Peak luminosity 2×1034 cm−2/s
Repetition rate 5 Hz
Main Linacs

Average accelerating gradient 31.5 MV/m
Length of each Main Linac 11 km
Beam pulse length 1 ms

Total site length 31 km
Total site power consumption 230 MW
Total installed power 300 MW
Number of particles per bunch 2×1010

Number of bunches per pulse 2625
Bunch interval in the Main Linac 369.2 ns
in units of RF buckets 480
Average beam current in pulse 9.0 mA
Normalized emittance at IP x 10 mm ·mrad
Normalized emittance at IP y 0.04 mm ·mrad
Beta function at IP x 20 mm
Beta function at IP y 0.4 mm
RMS beam size at IP x 639 nm
RMS beam size at IP y 5.7 nm
RMS bunch length z 300 µm
Crossing angle 14 mrad

5



1.3 CesrTA

1.3.1 CesrTA Goals

CesrTA will address a number of issues regarding the ILC damping rings, most

have to do with low-emittance operation. These include the following [7]:

• Characterization of electron cloud build-up

• Development modeling tools for electron cloud instabilities

• Determination of electron cloud instability thresholds

• Characterization of ion effects

• Specification of techniques for suppressing ion effects.

The most critical issue for the positron damping ring is the electron cloud

effect. This occurs when radiation from the beam strikes the vacuum chamber,

causing the emission of photoelectrons. The beam then drives those electrons

into the vacuum chamber, causing the emission of secondary electrons. If the

number of emitted electrons grows sufficiently large, a so-called electron cloud

forms and may disrupt the beam itself.

Measurements of the electron cloud have already been performed at CESR,

but CesrTA will have the opportunity to study its impact on ultra low-emittance

beams. CesrTA will also have the opportunity to evaluate suppression tech-

niques such as chemical coating of the vacuum chamber, or grooved cham-

bers [8].

In addition to low-emittance studies, CesrTA will provide the opportunity

to test hardware and instrumentation for the ILC, including kickers, wigglers,

and alignment and survey techniques.

6



1.3.2 CesrTA Design

CESR must be reconfigured in order to operate in the same emittance regime as

the ILC damping rings. The CesrTA lattice creates three zero-dispersion regions

and relocates the superconducting wigglers to those areas. The resulting lattice

functions are shown in Fig. 1.2 and the parameters for CesrTA are shown in

Table 1.3.

It is evident from Fig. 1.3 that CesrTA is significantly smaller than the ILC

damping ring. Its energy is also lower (2 GeV vs. 5 GeV), however, CesrTA will

be similar to the ILC damping rings in several important ways [9]:

CesrTA will be wiggler-dominated. Wigglers are a significant driver of non-

linear behavior in damping rings, and are especially problematic in gener-

ating electron clouds. Understanding that behavior will be critical in ILC

damping rings. CESR wigglers are well characterized, and will provide a

baseline design for ILC wigglers [10].

CesrTA can store electrons or positrons. Some of the instabilities that will be

of concern in the ILC (e.g., electron cloud) are species-dependent. CesrTA

can study those phenomena and make a direct comparison between the

different species.

CesrTA can operate with variable bunch-spacing. The nominal bunch spac-

ing is 14 ns, but with upgrades, that can be reduced to as small as 2 ns.

This will allow CesrTA to study multi-bunch instabilities that may impact

the ILC.

CesrTA will have a vertical emittance comparable to the ILC. The emittance

requirements for the ILC are beyond the capabilities of present storage

rings. CesrTA will provide opportunities to study the effects of machine

7



 0
 10
 20
 30
 40
 50
 60

 0  100  200  300  400  500  600  700
Longitudinal position (m)

PSfrag replacements

β
x

(m
)

βy (m)
ηx (m)

 0
 10
 20
 30
 40
 50
 60

 0  100  200  300  400  500  600  700
Longitudinal position (m)

PSfrag replacements
βx (m)

β
y

(m
)

ηx (m)

-1
-0.5

 0
 0.5

 1
 1.5

 2
 2.5

 3

 0  100  200  300  400  500  600  700
Longitudinal position (m)

PSfrag replacements
βx (m)
βy (m)

η
x

(m
)
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imperfections and low-emittance tuning in the ILC regime, and emittance

dilution due to the electron cloud and other collective effects.

The small horizontal emittance from the new lattice helps reduce the amount

of vertical emittance due to coupling, but magnet misalignments are still present

and must be corrected. In CesrTA this is accomplished by 62 vertical correctors

(for correcting the orbit and dispersion) and 18 skew quadrupoles (for correct-

ing the dispersion and coupling).

The vertical correctors are distributed uniformly throughout the ring. How-

ever, since the skew quadrupoles have previously been used to correct coupling

from the CLEO solenoid, they are concentrated near the interaction point.

CESR has 99 beam position monitors, 13 of which have upgraded electronics

and are capable of taking turn-by-turn measurements. The remaining BPMs will

be upgraded for CesrTA.

This dissertation discusses sources of emittance dilution in the CesrTA lattice

and beam-based techniques for minimizing the vertical emittance.
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Table 1.3: CesrTA parameters.

Parameter Value

Energy (GeV) 2.0
Circumference (m) 768.44
σE/E 8.6×10−4

Bunch Length (mm) 18
Energy loss/turn (MeV) 0.22
Momentum compaction 1.0×10−3

Horizontal emittance (nm) 3.3
Damping time (s)

τx,y (s) 0.048
τx 0.024

Damping Partition number
Jx 0.999397
Jy 1.000394
Jz 2.000209

Tune/2π

Qx 14.530
Qy 9.580

Chromaticity
ξx 2.960
ξy 3.376

Mean βx,y (m) 15.496, 22.523
Mean ηx (m) 0.793
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Chapter 2
Emittance in Damping Rings

2.1 Introduction

The remainder of this thesis is devoted to various aspects of generating low-

emittance beams in damping rings. This chapter starts with the basic math-

ematical formulas that describe damping ring emittance. Those formulas are

extended to include the effect of random element misalignments, which are the

principle cause of vertical emittance.

Simulations are then used to arrive at a more realistic characterization of

the vertical emittance in CesrTA, and those simulations are, where applicable,

compared to analytic calculations.

Finally, sources of vertical emittance other than random misalignment are

considered and shown to be negligible for the CesrTA design. We do not con-

sider collective (current-dependent) effects.

2.2 Horizontal Emittance

Both the horizontal and vertical emittance depend largely on the dispersion

function in that plane. For rings that lie in the horizontal plane, the horizon-

tal dispersion is known reasonably well based on the design of the lattice. In

contrast, the vertical dispersion is given by imperfections by which the physical

ring differs from the design. Therefore, we start with a calculation of horizontal

emittance, showing exactly where dispersion has an effect.
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2.2.1 Analytic Calculation

Following mostly the treatment of [11] and [12], we begin with the definition of

dispersion. In a ring, a particle with the design energy travels along a path that

closes on itself after one turn, the so-called on-energy closed orbit. By design, this

orbit usually travels through the center of each element. The relativistic Lorentz

force is given by
dp
dt =

d(γmv)

dt = e (E + v × B) (2.1)

so that particles which have different energies will experience different deflec-

tions, and have different closed orbits. As long as the energy deviation is small,

the new closed orbit will shift by an amount proportional to that deviation. We

can then define the dispersion function η(s) as the ratio of the closed orbit dis-

placement at longitudinal position s to the fractional energy difference:

η(s) =
∆xco(s)
∆E/E0

. (2.2)

With that definition, we can write the transverse position of a particle as the

sum of its dispersive orbit displacement and its betatron amplitude:

x = xβ + η
∆E
E0

. (2.3)

Now consider the case of a particle with energy E0 that emits a photon of

energy ε. Neither the particle’s position nor its trajectory changes (although

this statement will be revisited in the section on vertical emittance), but it does

have a new energy and, therefore, a new off-energy closed orbit. To compensate

for the change in closed orbit, the particle’s betatron amplitude must change

according to

δx = 0 = δxβ + η
ε

E0
→ δxβ = −η

ε

E0

δx′ = 0 = δx′
β + η′ ε

E0
→ δx′

β = −η′ ε

E0
.

(2.4)
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where primed quantities are derivatives with respect to longitudinal position.

The particle’s original motion in phase space was described by an invariant

ellipse with area given by

π
(

a2
)

= π
(

γx2 + 2αxx′ + βx′2
)

. (2.5)

where α, β, and γ are the Twiss parameters and a is invariant as long as the

motion is linear. After the emission of the photon, the ellipse has changed, and

if the values from Eqs. 2.4 are inserted into Eq. 2.5, the resulting change in the

area of the ellipse is

δa2 = γ δ(x2
β) + 2α δ(xβx′

β) + β δ(x′2
β )

= γ
[(

xβ0 + δxβ

)2 − x2
β0

]

+ 2α
[(

xβ0 + δxβ

) (
x′

β0 + δx′
β

)
− xβ0x′

β0

]

+ β

[(
x′

β0 + δx′
β

)2
− x′2

β0

]
.

(2.6)

This expression depends upon the initial phase of the betatron motion,

which enters through xβ0 and x′
β0. However, since all betatron phases are

equally likely to emit a photon (to good approximation), we average over all

phases. By doing this, any term that depends linearly on the initial phase

vanishes, and we are left with

〈
δa2
〉

= γ(δxβ)2 + 2α(δxβ)(δx′
β) + β(δx′

β)2. (2.7)

Finally, inserting the values from Eqs. 2.4 gives

〈
δa2
〉

=
ε2

E2
0

(
γη2 + 2αηη′ + βη′2

)
(2.8)

which we can write more compactly by defining a function

H(s) = γη2 + 2αηη′ + βη′2 (2.9)
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where all terms on the right-hand-side are functions of the longitudinal position

s.

This is the average change in amplitude due to the emission of a photon

of a specific energy at a specific location in the ring. Now we would like to

generalize this result to the average change due to all photons emitted at all

ring locations. If the number of photons at energy ε emitted per unit time is

given by ṅ(ε), then we get

d
〈

a2〉

dt =
1

CE2
0

∮ [∫
ε2 ṅ(ε) dε

]
H(s) ds (2.10)

where C is the circumference of the ring. The function ṅ(ε) depends on the local

radius of curvature, and therefore, depends on the longitudinal position. The

inner integral can be replaced by the total photon flux times the average of the

square of the photon energy:
∫ ∞

0
ε2 ṅ(ε) dε = Ṅ

〈
ε2
〉

. (2.11)

Finally, averaging around the ring (denoted by the subscript s) gives

d
〈

a2〉

dt =
1

E2
0

〈
Ṅ
〈

ε2
〉
H(s)

〉
s

(2.12)

This expression tells us the excitation due to radiation, which will drive the

phase-space-volume of the beam larger until it is balanced by radiation damp-

ing.

The rate of change in the phase space ellipse due to damping is given by

d
〈

a2〉

dt

∣∣∣∣∣
damping

=

〈
Pγ

〉

E0

〈
a2
〉

Jx (2.13)

where Jx is the horizontal damping partition number, which is a constant for

the ring, and Pγ is the radiated power, which also depends on the local radius

of curvature:

Pγ =
cCγ

2π
e2c E4

0
ρ2 (2.14)
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where Cγ is a constant.

When excitation and damping are balanced, Eqs. 2.12 and 2.13 are equal.

Then we have
〈

a2
〉

=
1

E0

〈
Ṅ
〈

ε2〉H
〉

Jx
〈

Pγ

〉 . (2.15)

With the photon flux given by

Ṅph
〈

ε2
〉

=
55

32π
√

3

[
c Cγh̄c(mc2)4

]
γ7 1

ρ3 , (2.16)

we can write Eq. 2.15 as a function of the local lattice functions and radius of

curvature as
〈

a2
〉

=
1
Jx

〈
H/ρ3〉

〈1/ρ2〉
55

16
√

3
h̄cγ2

mc2 . (2.17)

At equilibrium, the particle’s motion is sinusoidal, with amplitude given by

a
√

β, so the mean square value is

σ2 =
1
2a2β (2.18)

and we are left with the final expression for the horizontal emittance

εx =
σ2

β
= Cq γ2

〈
H/|ρ|3

〉

Jx 〈1/ρ2〉 (2.19)

where

Cq =
55

32
√

3
h̄c

mc2 . (2.20)

2.2.2 Wiggler-Dominated Emittance

The twelve superconducting wigglers in CESR provide most of the synchrotron

radiation radiation damping in the ring (approximately 90%). The ILC damping

rings are also wiggler dominated, and in fact, the ability to study dynamics in

the wiggler-dominated condition is a major motivation for the CesrTA project.

As it concerns the calculation of emittance, two comments can be made.
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Figure 2.1: Wiggler radiation calculation. The top plot shows the H func-
tion inside each wiggler, and the bottom plot shows the inter-
nal dispersion. Variation in H between wigglers is due to dif-
ferent β-functions.

Internal Dispersion

When calculating the emittance in a ring (or many other parameters), it is com-

mon practice to average over the ring by taking values at the end of each ele-

ment. This makes the reasonable assumption that β, η, etc., are changing slowly

on the length scale of the typical element. Since the wigglers in CesrTA are lo-

cated in (nearly) dispersion free regions, H is also zero, and this leads one to

erroneously conclude that they contribute nothing to the overall excitation.

The wigglers dominate because of the fact that, while H is zero at the en-

trance and exit to each wiggler, it is nonzero inside the wigglers [13]. This can be

17



Table 2.1: Contribution to radiation integrals from wigglers and bends in
CesrTA.

Integral Bends Wigglers

I2 (m−2) 0.0959 0.871

I5a (m−2) 1.55×10−4 3.81×10−4

seen in Fig. 2.1, which shows the ηx and H inside each wiggler. The spectrum

of amplitudes for H is caused by different β-functions in different wigglers. As

the next comment will show, including the internal dispersion is critical for the

emittance calculation in CesrTA.

Optimal Number of Wigglers

Equation 2.19 is a ratio of averages, and those averages are often written as

integrals around the ring:

εx =Cqγ2 I5
I2

where (2.21)

I2 =

∮
1/ρ2 ds (2.22)

I5 =

∮
H/|ρ|3 ds. (2.23)

Therefore, one can break up the emittance calculation into a part due to wigglers

and a part due to bends (all other contributions are negligible). The relative

contributions from each element type are shown in Table 2.1.

Using the separate values for the radiation integrals, it is possible to write a

simple model for the emittance in CesrTA as a function of the number of wig-

glers. The emittance is given by

εx = Cqγ2 I5,bend + n I5,wiggler
I2,bend + n I2,wiggler

(2.24)
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Figure 2.2: Wiggler radiation calculation. This shows the horizontal emit-
tance in the CesrTA lattice as a function of the number of wig-
glers. It is evident that increasing the number of wigglers past
the current number of 12 is not significant for reducing emit-
tance. With 12 wigglers, the emittance is approximately three
times as large with the correct calculation including internal
dispersion.

where n is the number of wigglers and the wiggler terms are the average over

the twelve wigglers in the current design.

If we ignore the internal dispersion in the wigglers, then n appears only in

the denominator of Eq. 2.24, and the emittance approaches zero as n becomes

very large. If the internal dispersion is included, then n appears in the numera-

tor as well, and the emittance approaches

εx ≈ Cq
γ2

Jx

8βx
15π k2p ρ3w

(2.25)

where kp and ρw are the wave-number and bend radius of the wigglers. This

different limiting behavior is shown in Fig. 2.2.
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2.3 Vertical Emittance

Equation 2.19 was derived for the horizontal emittance, and it assumed that the

horizontal lattice functions (the terms in H) are well-known. Furthermore, it

assumed that the horizontal dispersion was large enough that, when a particle

emitted a photon, the dominant effect would be the change in the particle’s

energy and the consequences of that change due to dispersion.

Those assumptions are not valid for the vertical emittance, since most damp-

ing rings lie in the horizontal plane, and the vertical dispersion is much smaller

(and usually assumed to be zero). We now turn to the problem of calculating

the vertical emittance for a ring with no vertical dispersion and for a ring with

finite vertical dispersion due to element misalignments.

2.3.1 Radiation Limit

If a particle with energy E0 emits a photon of energy ε, the particle receives a

kick due to the momentum carried off by that photon. We ignored this in the

horizontal case, but we now look at it explicitly. The changes in the vertical

coordinates are given by

δy = 0

δy′ =
ε

E0
θγ.

(2.26)

where θγ is the emission angle of the photon which is approximately equal to

1/γ. From there, the derivation follows the same procedure as Eq. 2.19. That

leads to a vertical emittance of

εy =
Cq
〈

βy
〉

2 Jy

〈
1/ρ3〉

〈1/ρ2〉 (2.27)

which is smaller than the horizontal emittance by approximately a factor of

1/γ2.
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2.3.2 Element Misalignments

The radiation limit just presented is only a lower limit. Element misalignments

also increase vertical emittance by generating vertical dispersion and coupling.

Here we will derive explicit formulas for that contribution, and in the next chap-

ter, we will show that this effect, in general, overwhelms the radiation limit.

The dispersion in a damping ring is described by a differential equation that

is similar to a driven harmonic oscillator, with the modification that the restor-

ing and driving forces are periodic, rather than constant. That period is at least

as small as the entire circumference of the ring, but may be smaller in rings with

greater symmetry.

For a restoring force K1 (given by the focusing strength), and a driving force

F, the vertical dispersion obeys the following equation

d2ηy
ds2 − K1ηy = F. (2.28)

where all parameters are functions of the longitudinal position s. The solution

of Eq. 2.28 is given by

ηy(s) =

√
βy

2 sin πνy

∮ √
βy(s′) cos

(
ψy(s) − ψy(s′) + πνy

)
F(s′) ds′1. (2.29)

In the usual calculation of the horizontal dispersion, the driving term is

dominated by the bending magnets. By design, most damping rings, includ-

ing CesrTA, lie entirely in the horizontal plane. They have no vertical bending,

and therefore, the principle contributions come from vertical offsets and rota-

tions of the quadrupoles, and the vertical offsets of the sextupoles. In this case,

the driving function in Eq. 2.28 becomes

Fy ' K1yc − K̃1ηx + K2ycηx (2.30)
1The above expression appears most often in the literature. However, in order to ac-

count for the phase discontinuity at the end of the ring, the cosine term should be written as
cos

(∣∣ψy(s) − ψy(s′)
∣∣− πνy

)
[14]
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where K̃1 and K2 are the normalized skew quadrupole and sextupoles strengths,

and yc is the vertical closed orbit [15].

The first term in Eq. 2.30 gives the displacement of the vertical closed orbit

relative to the center of a quadrupole, but if the closed orbit is assumed to be

zero, it can also be interpreted as the vertical displacement of the quadrupole

itself. The same argument applies to the last term and the vertical displacement

of the sextupoles.

The second term is the contribution from a skew quadrupole, but it also

describes normal quadrupoles which are rotated by arbitrary amounts. We can

calculate the effect of all three misalignments in a similar fashion, but since the

skew quad term is slightly more involved, we present it here as an example.

First consider the 4×4 transfer matrix of an upright quadrupole, and the

matrix to rotate the four transverse coordinates x of a particle by an angle θ:

Mquad × x =




1 0 0 0

− 1
f 1 0 0

0 0 1 0

0 0 1
f 1




×




x

x′

y

y′




(2.31)

Mrot(θ) × x =




cos θ 0 sin θ 0

0 cos θ 0 sin θ

− sin θ 0 cos θ 0

0 − sin θ 0 cos θ




×




x

x′

y

y′




. (2.32)

(2.33)

Rotating the quadrupole is equivalent to rotating the particle’s coordinates

(or dispersion parameters) by the same angle before the quad, then by the op-

posite angle after the quadrupole, so the transfer matrix of a rotated quadrupole
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is

M̃quad = Mrot(−θ) ·Mquad ·Mrot(θ) (2.34)

=




1 0 0 0

− cos(2θ)
f 1 − 2 cos(θ) sin(θ)

f 0

0 0 1 0

−2 cos(θ) sin(θ)
f 0 cos(2θ)

f 1




. (2.35)

For small rotations (θ � 1)

M̃quad ≈




1 0 0 0

− 1
f 1 − 2θ

f 0

0 0 1 0

−2θ
f 0 1

f 1




. (2.36)

The (4, 1) and (4, 3) components give the effect on the vertical motion. From

the (4, 3) component, the rotated quadrupole looks like the regular, upright

quadrupole, which couples the outgoing η′
y to the incoming ηy. This is expected,

since the rotation is assumed to be very small. On the other hand, the (4, 1) com-

ponent shows that the quadrupole also couples the outgoing η ′
y to the incoming

ηx. The effective difference in strength is given by the factor 2θ. In other words,

the effect of an upright quadrupole of strength K1, which has a small rotation θ,

is mathematically identical to a skew quadrupole of strength 2θK1.

If we now include only the skew quadrupole term (of the form just derived)

in F(s) and use the fact that K1 is either constant (for each quadrupole, or zero

everywhere else, then the integral in Eq. 2.29 becomes a sum over only the quad-

rupoles:

ηy(s) =

√
βy

2 sin πνy
∑

i

√
βy,i cos

(
ψy(s) − ψy,i + πνy

)
(2K1,i li θi ηx,i) (2.37)
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We don’t know the rotations of the individual quadrupoles, so it is not pos-

sible to evaluate Eq. 2.37 directly. The best we can do is estimate the mean-

squared value of the vertical dispersion based on an estimate of the mean-

squared quadrupole rotation. Assuming the values in Eq. 2.37 are uncorrelated,

many terms vanish upon averaging and we get the simple estimate

〈
η2

y
〉

=

〈
βy
〉

2 sin2 πνy

(

∑
quads

βy(K1 l ηx)
2
)〈

θ2
〉

. (2.38)

Using the other misalignments as driving terms, we can calculate formu-

las [16]:

〈
y2

co

〉
=

〈
βy
〉

8 sin2 πνy

(

∑
quadrupoles

βy(K1 l)2
)〈

∆Y2
quadrupole

〉
(2.39)

〈
η2

y
〉

=

〈
βy
〉

8 sin2 πνy

(

∑
sextupoles

βy(K2 l ηx)
2
)〈

∆Y2
sextupole

〉
. (2.40)

Note that that Eq. 2.39 also gives the mean-square dispersion
〈

η2
y
〉

due to

quadrupole offsets if we interpret
〈

∆Y2
quadrupole

〉
as the closed orbit distortion

from those offsets. This means that
〈

η2
y
〉

〈
∆Y2

quadrupole

〉 ∼




〈
y2

co
〉

〈
∆Y2

quadrupole

〉




2

. (2.41)

For isomagnetic rings, where the bend radius is either zero or a constant,

we can write Eq. 2.19 so that the vertical emittance depends upon the vertical

dispersion according to

εy = 2Jε

〈
η2

y
〉

〈
βy
〉
(

σE
E0

)2
. (2.42)

so we expect that the emittance depends quadratically on the misalignment am-

plitude. These formulas will be used to check the simulations presented in the

next chapter.
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Chapter 3
Impact of Magnet Misalignments in CesrTA

This chapter evaluates the effect of magnet misalignments on the vertical emit-

tance in the CesrTA design. This is a characterization of the uncorrected emit-

tance. Although we will, ultimately, be more interested in the corrected emit-

tance, considering the uncorrected emittance is valuable for a few reasons:

1. The emittance and dispersion of the simulated, uncorrected damping ring

can be compared more easily with theoretical calculations.

2. A potential strategy for achieving a minimum corrected emittance is to

improve the initial alignment of the optics. In order to evaluate this op-

tion and develop an efficient strategy, a detailed understanding of which

misalignments have the largest impact will be critical.

3. Some classes of misalignment (e.g., due to ground motion) may occur on

a timescale too fast to be corrected. The fully characterized dependence

of emittance on misalignments can be used to specify tolerances for these

misalignments.

3.1 Misalignment Values

To predict the level of misalignment in CesrTA, we rely on survey data about

the present state of CESR, and on predictions of what improvement may be

achieved given the greater focus in CesrTA on low emittance. In the end, we

present putative misalignments that are considered nominal for the purposes of
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Figure 3.1: Diagram of misalignment parameters.

this study. Since the realistic misalignments may turn out to be worse (or better)

than these estimates, we show a range of misalignment levels at each step.

3.1.1 Magnet Misalignment

Figure 3.1 shows the six possible misalignment parameters for each element.

Of the six, only the horizontal and vertical offsets and the tilts have received

much attention. Of those three, we will show that only the last two are of much

concern, so we next look at the available data on the vertical offsets and tilts.

Figure 3.2 shows data accumulated for the quadrupoles during the years

2006-2007. We can observe that, with some outliers, the data has an approxi-

mately normal distribution with σ = 70 µm from the fit (the RMS of all data

points is 100 µm) [17]. From here on, we will assume that all misalignments are

normally distributed.
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The magnets move continuously, so we need an estimate of how far their

actual positions may have drifted since last surveyed. The yearly drift in the

vertical magnet position is shown in Fig. 3.3 to be less than a few tens of microns

per year for the vast majority of CESR magnets. Since this is much smaller than

the variation in the surveyed position, we can trust that the surveyed variation

is a reasonable estimate of the true variation on a timescale of at least a few

years. Therefore, we assume that the RMS horizontal and vertical misalignment

for quadrupoles is 150 µm.

Magnet tilt is measured using a spirit level that attaches to bushings on the

top of each magnet [18] (see diagram). We find an RMS tilt of approximately

270 µrad. It is expected, however, that for CesrTA that value can be improved to

approximately 100 µrad. In any case, improvement beyond 100 µrad is unlikely,

since the bushings are separated by 10” and the machining tolerances of the

magnets are approximately 1
1000 ”

(
1/1000′′

10′′ = 100 µrad
)

.

So far, we have focused on quadrupoles, and we will show that they are, by,

far, the biggest concern. There are three other magnet types that are are also

important: dipoles, sextupoles, and wigglers. We don’t have such detailed data

on the other types, but given that they are mounted, surveyed, and aligned in

a similar fashion, it is reasonable to expect a similar level of misalignment from

them.

Sextupoles do present a slight exception to this because they are attached

to the quads and not independently adjustable. The displacement of the sex-

tupole is the same as the attached quadrupole, but if the quad has some vertical

pitch, then the sextupole will have an additional displacement due to its lever

arm relative to the quad. We estimate the RMS sextupole displacement to be

approximately twice that of the quadrupoles [19].
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Figure 3.4: Phase residual in CESR after correction. This characterization
data shows RMS φx=3.391◦ and φy=3.317◦ (59.2 and 57.9 mrad,
respectively).

3.1.2 Quadrupole Field Strength

Due to calibration errors, power supplies, etc., the quadrupole field strengths

deviate from the design values. This changes the betatron phase advance with

respect to the design, which potentially impacts the emittance by changing

the dispersion. More importantly, to the extent that the phase advance is not

known, it becomes more difficult to model the effect of the corrector magnets

that will be used in the next chapter.

In CESR, the phase is corrected by varying the quadrupole strengths until the

measured phase matches the design. After correction, there is still some residual

phase error, so here we try to estimate the corresponding quad strength error.
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strength deviation.

Figure 3.4 shows a typical phase correction from January 31, 2007 [20]. The

RMS horizontal and vertical phase residuals are 59.2 and 57.9 µrad, respectively.

We assume that these are a typical values.

Next, Fig. 3.5 shows the simulated RMS phase residual as a function of

the RMS quad strength error. From the fits, we can calculate that that the

quad strength error that best reproduces the phase residual is approximately

0.0004 m−2. It is worth emphasizing that this is after correction.

3.1.3 Nominal Values

Table 3.1 shows the nominal misalignment values for CesrTA. Those values are

used for the remainder of this document. We have not explicitly mentioned
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Table 3.1: Nominal misalignment parameters values for CesrTA.

Element Parameter Value Element Parameter Value

Quadrupole

x-offset 150 µm

Sextupole

x-offset 300 µm
y-offset 150 µm y-offset 300 µm
z-offset 150 µm z-offset 300 µm
x-pitch 100 µrad x-pitch 100 µrad
y-pitch 100 µrad y-pitch 100 µrad
Tilt 100 µrad Tilt 100 µrad

Bend

x-offset 150 µm

Wiggler

x-offset 150 µm
y-offset 150 µm y-offset 150 µm
z-offset 150 µm z-offset 150 µm
x-pitch 100 µrad x-pitch 100 µrad
y-pitch 100 µrad y-pitch 100 µrad
Tilt 100 µrad Tilt 100 µrad

rotations about axes other than the beam axis, or longitudinal offsets. They are

not consequential in terms of vertical emittance, but to the extent that they are

used in these simulations, we assume that they have the same amplitude as the

other offsets and rotations for each particular element.

3.2 Simulation

Using the nominal misalignment values, we can now simulate the impact these

misalignments will have on vertical emittance in CesrTA. Then, using the for-

mulas given in the previous chapter, we can verify that the simulation gives

reasonable results.
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3.2.1 Procedure

There is the question of whether the normal distribution of misalignments

should have a cutoff at very large amplitudes. A point in favor of the cutoff

is that, for very large amplitudes, the ring can become unstable and the rele-

vant parameters cannot be calculated. In the unlikely event that this happened

in the physical ring, some other measures would need to be taken before one

proceeded to store beam and tune the ring.

Other than mathematical convenience, there is little reason to trust that the

extreme tails of the normal distribution correspond to reality anyway. There-

fore, we impose a cutoff that no error be larger than than ±3σ.

From here, the procedure is simple. Normally-distributed random align-

ment errors are generated using the Numerical Recipes libraries [21]. The closed

orbit, dispersion, and emittance are calculated for the misaligned ring, and the

procedure is repeated until a sufficient statistical sample has been accumulated.

3.2.2 Comparison With Theory

Figure 3.6 shows the simulation of vertical offsets in quadrupoles and sex-

tupoles. In both cases, we show a linear fit to the RMS vertical dispersion, and

a quadratic fit to the emittance. For the quads, we also show a linear fit to the

RMS vertical closed orbit. Other elements and misalignments are treated in the

same way.

For each of the misalignments, we expect a linear relationship between the

mean-square vertical dispersion and emittance according to Eq. 2.42. That rela-

tionship is verified in Fig. 3.7 which includes the dispersion and emittance data

from every simulated misalignment parameter.
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are in Table 3.4.
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The parameters from the fits in Figs. 3.6-3.7, as well as other relevant fits that

are not shown, can be compared directly with the values predicted by Eqs. 2.38-

2.40. This comparison, which shows very good agreement, is shown in Table 3.2.

3.2.3 Emittance Results

The results from the misalignment simulation from Table 3.3 show that only the

five misalignment types contribute to the emittance at the picometer level or

greater.

Since the emittance depends quadratically on the RMS dispersion, and the

RMS dispersion is proportional to the RMS misalignment, it is possible to write

down a simple model for the uncorrected emittance for arbitrary misalignments

〈
εy
〉

= k
〈

∆2
〉

(3.1)
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Table 3.2: Comparison of analytical and simulated misalignment quanti-
ties.

Quantity Analytic Simulation Units

εy
〈η2y〉 1.31 1.45 m−1 (×10−7)

√
〈y2co〉〈

∆Y2
quad

〉 14.7 13.8

√
〈η2y〉〈

∆Y2
quad

〉 216 186

√
〈η2y〉〈

∆Θ2
quad

〉 23.6 21.9 m

√
〈η2y〉

〈∆Y2
sext〉 23.4 21.8

√
〈y2co〉〈
∆Y2

wig

〉 1.57 1.52
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where ∆ is the amplitude of the misalignment parameter (either offset or ro-

tation) and k is a constant for each particular misalignment parameter. The

coefficient will depend on what confidence limit we chose for the dependent

variable. We typically choose the median (50% level), but it is also possible to

set a higher confidence, e.g., 95%, and get a different constant for the emittance

corresponding to that limit.

Since the dispersion and orbit depend linearly on the misalignment ampli-

tude, we can compute linear coefficients from the same data. The various val-

ues of k, found by the appropriate quadratic or linear fits to simulated data, are

shown in Table 3.4. To the extent that the quadratic model is correct, one can

generate the values in Table 3.3 from the values in Table 3.4, or vice versa.

3.3 Other Misalignment Tolerance Estimates

3.3.1 Ground Motion

Using the emittance coefficients in Table 3.4, and inverting Eq. 3.1, we can cal-

culate the misalignment tolerances for any specified emittance. This is useful

in cases where the misalignment cannot be corrected. For example, if we set an

emittance threshold of 2 pm, then the approximate magnet alignment tolerances

that correspond to that emittance are given in Table 3.5.

In Fig. 3.8, the vibration spectrum is shown for quad Q23W [22]. This motion

happens too quickly to be corrected, but the data in the figure establishes that,

for frequencies greater than 3 Hz, the RMS vertical motion is less than 1 µm.

This is compatible, therefore with the 2 pm alignment tolerances established in

Table 3.5.
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Table 3.4: Coefficients from misalignment fits. The emittance columns
show the constants from the quadratic fit between the misalign-
ment parameter and the vertical emittance (at two different con-
fidence levels). The remaining two columns show the constant
from a linear fit to the median dispersion and orbit.

Quadratic constant (m−1) Linear constant
εy

Element Parameter P50 P95 ηy y

quad y-offset 4.28×10−3 1.18×10−2 174 131
bend tilt 6.05×10−4 1.62×10−3 65.6 5.03
quad tilt 8.57×10−5 2.09×10−4 20.7 3.58×10−4

sext y-offset 7.91×10−5 1.94×10−4 20.9 3.16×10−4

wig y-offset 4.86×10−5 1.75×10−4 18.1 1.46
wig y-pitch 3.47×10−6 1.22×10−5 5.38 2.50×10−2

bend y-pitch 1.09×10−7 2.94×10−7 8.14×10−1 3.66×10−2

wig tilt 4.13×10−8 1.65×10−7 8.02×10−4 1.38×10−5

quad y-pitch 3.33×10−8 1.04×10−7 4.77×10−1 3.66×10−2

bend y-offset 2.24×10−8 5.79×10−8 3.89×10−1 2.91×10−2

sext y-pitch 4.66×10−10 1.09×10−9 4.65×10−2 1.03×10−6

sext tilt 1.71×10−13 4.45×10−13 9.73×10−4 1.33×10−8

Table 3.5: Alignment tolerances for uncorrected emittance.

εy=2 pm εy=10 pm
Element Parameter P50 P95 P50 P95

quad y-offset (µm) 21.6 13.0 48.3 29.1
bend tilt (µrad) 57.5 35.1 129 78.5
quad tilt (µrad) 153 97.8 342 219
sext y-offset (µm) 159 101 356 227
wig y-offset (µm) 203 107 454 239
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Figure 3.8: Ground motion at Q23. Above a few Hertz, the amplitude of
ground motion is smaller than the tolerance for uncorrected
emittance.

3.3.2 Slow-Wave Misalignments

So far, we have only considered uncorrelated misalignments. There are at least

a couple of scenarios in CESR that merit looking at correlated, or slow wave mis-

alignments. One potential source of slow-wave misalignment is the survey pro-

cedure itself, which surveys each magnet, in part, relative to its neighbors. Be-

cause of this, small errors can accumulate around the ring producing correlated

misalignments that may be larger than our random estimates.

Another potential source of slow-wave misalignment is the temperature gra-

dient in the accelerator tunnel, which causes different amounts of thermal ex-

pansion in different locations.

We model the slow-wave by introducing a sinusoidal misalignment with

amplitude A that must close on itself at the end of the ring. This applies to
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Figure 3.9: Simulation of slow-wave misalignment. Each curve corre-
sponds to a different wave amplitude, and each point is an av-
erage over all phases of the wave.

every element, so the vertical offset at any point s in the ring is given by

∆y = A sin (ks − φ) (3.2)

with k =
2nπ

ring length. (3.3)

The phase φ adjusts where the slow wave has its extrema.

The slow-wave simulation is shown in Fig. 3.9 for various amplitudes. Each

point represents the average and standard deviation over 100 values of φ be-

tween 0 and 2π. The effect on vertical emittance increases as the frequency of

the wave approaches the vertical tune. However, typical thermal expansion is

estimated to be about 30 µm [23]. Since it has a relatively slow wave that oscil-

lates only a few times around the tunnel, the uncorrected emittance is well be-

low our targets. For larger amplitudes or shorter wavelengths, the uncorrected

emittance may not be satisfactory, and correction algorithms will be required.
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Chapter 4
Optics Correction

In this chapter, we present an algorithm for minimizing the vertical emittance

generated by magnet misalignments. The performance of the algorithm is sim-

ulated in a variety of possible scenarios for misalignment level and BPM reso-

lution. The general algorithm can be run in a variety of configurations, but we

focus on two simple configurations that are shown to be effective for CesrTA.

4.1 Correction Algorithm

The correction algorithm minimizes the vertical emittance by reducing the

sources of emittance, specifically, vertical closed orbit and dispersion, and beta-

tron coupling. We do this by varying the strength of corrector elements, such as

steerings and skew quads.

For the uninitiated, it is a puzzling fact that the algorithm never considers

the emittance directly. To understand this, consider the fact that when mini-

mizing a function, one needs a way to determine how the function responds

to a change in one of its parameters. For minimizing emittance, we could do

this by changing a corrector in the physical ring and measuring the new emit-

tance. However, there are many correctors, and measuring the response to each

of them would ultimately require many hundreds, even thousands, of corrector

changes and emittance measurements. This is impractical, or at best, extremely

time consuming. Also it is difficult to measure the emittance with any precision.

Alternatively, we could use a model of the ring and simulate the response

of the emittance to changes in the parameters. Unfortunately, since we don’t
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know the details of the misalignments in the physical ring, the model can’t tell

us what happens to the real emittance. In other words, since we don’t know

the misalignments, we can’t model this aspect of the physical ring. If we did

know the details of the actual misalignments, they would already be accounted

for in the design of the ring, and correction of this sort would be irrelevant (or

at least significantly less important). Since the model has no misalignments, it

is already optimally tuned for low emittance, and a change to any corrector is

likely to make the simulated emittance much worse.

Just as the unknown misalignments make it impossible for our model to

predict the emittance in the physical ring, they also make it impossible for our

model to predict the orbit, dispersion, and coupling in the physical ring. How-

ever, the model can be used to predict changes in those quantities, and that fact

is what allows us to use the model ring in our algorithm. Furthermore, since

we can measure those quantities fairly easily, we know how much they need to

change.

Therefore, the job of the correction algorithm is to predict the corrector set-

tings that will reduce the sources of emittance (orbit, dispersion, and coupling)

from their measured values to their design values (usually zero). Since our

model starts out with the design values, we actually proceed by solving the

inverse problem: finding the corrector settings that will make the model look as

bad as a measurement of the physical ring. As long as we make small enough

changes to keep things fairly linear, then putting the opposite (negative) cor-

rector settings into the physical rings will cause the opposite changes in the

measured quantities, canceling the effect of the misalignments.

We can express this mathematically as follows: we have a set of measured

quantities M and the same quantities calculated from the model m. The model
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and the physical ring both have parameters P, so we want to find the values for

P that minimize the following expression:

χ2 = ∑
i

wMi (Mi − mi)
2 + ∑

j
wPj

(
δPj
)2 . (4.1)

The first sum is simply the square of the residuals between the measured and

calculated quantities. The second term provides an additional constraint on

the changes to the parameters. This is helpful for two reasons. First, it tends

to keep the iterative optimization process from wandering off into unstable re-

gions. Second, in the physical ring, one expects better (i.e., more linear) behavior

by making small adjustments to many elements, rather than large adjustments

to a few elements.

Each term in each sum is weighted according to the values of wMi (for the

measurements) and wPj (for the parameter changes). These could be differ-

ent for each term, but in practice, the parameter weights and the measurement

weights are usually uniform for each measurement type (e.g., orbit, dispersion,

or coupling). A reasonable extension of this might be to weight the measure-

ments at different detectors according to the lattice design, but we do not ex-

plore that here.

Once we have the values of P that minimize Eq. 4.1, the parameters in the

physical ring are changed by −P, and if desired, the process is repeated with

different parameters or measurements.

4.2 Simulation of the Algorithm

Simulating the correction algorithm is slightly more complicated than the proce-

dure just described, since we must model the physical ring as well as the model

ring used for the minimization. Figure 4.1 shows the relationship between the
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Figure 4.1: Schematic of correction algorithm.

various models. We start with the design ring which comes directly from the lat-

tice file–it has no misalignments, and therefore, negligible vertical emittance. A

copy of that ring is made and the copy’s elements are given random misalign-

ments; therefore, it is called the misaligned ring. The misaligned ring has nonzero

vertical emittance, and represents the physical ring.

A second copy of of the design ring is made, called the model ring, which is

used to model how parameter changes will affect the misaligned ring (as dis-

cussed in the previous section). It is worth restating that the details of the

physical misalignments are unknown, so they cannot be used anywhere in the

minimization. Therefore, only measurable quantities can be extracted from the

misaligned ring.

To make the simulation more realistic, when measurement quantities are

passed from the misaligned ring to the minimizer for comparison with the model
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ring, random errors are added to reproduce the effect of BPM errors. Once

the minimizer is finished, the parameter values (or rather, their opposites) are

loaded into the misaligned ring and the emittance can be calculated. Often, this

process is repeated, taking new measurements and loading new corrections.

4.3 Beam Position Monitor Accuracy

The measurement values coming from the physical ring will contain errors

caused by the physical or electronic properties of the BPMs. For example, BPMs

may be misaligned or rotated, the internal button locations may be slightly

different, or their may be slightly different gains from the different buttons. A

reasonable way to model all of these effects is to introduce three types of BPM

errors as follows:

Absolute resolution Uncertainty in the horizontal and vertical location of the

beam after a single turn. This applies only to orbit measurements.

Differential resolution Uncertainty in the horizontal and vertical difference be-

tween two orbit measurements. This applies only to dispersion measure-

ments, and because many systematic effects are subtracted out, is signifi-

cantly smaller in magnitude than the absolute resolution.

Rotation resolution Degree to which the horizontal and vertical beam behavior

gets mixed by the BPM. This effects orbit, dispersion, and coupling mea-

surements (although the effect on coupling measurements is shown later

to be very small).
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4.3.1 Orbit and Dispersion with BPM errors

Applying BPM errors to the orbit measurement is straightforward. Random

numbers of the appropriate magnitude are simply added to the measured hor-

izontal and vertical measurement values. For the dispersion measurement, we

first convert the differential resolution to a dispersion resolution by dividing by

the energy change δ that is assumed to be used in the dispersion measurement.

For these studies, we assume δ = 10−3. After applying the appropriate offsets,

the horizontal and vertical values are rotated using the usual rotation matrix, by

an angle given by the rotation resolution.

4.3.2 Coupling

The coupling in CESR is characterized by the C matrix which relates the mo-

tion of the beam’s normal-modes (A and B) to the motion seen in the laboratory

frame (x and y) [24]. When the beam is driven to oscillate horizontally or verti-

cally, measurement of the resulting motion in both planes is used to determine

the appropriate matrix elements.

The coupling measurement is insensitive to the detector’s location, but de-

tector rotation is more complicated than in the orbit or dispersion measurements

because the coupling involves both the horizontal and vertical beam motion si-

multaneously. The strategy so far has been to add errors to the measurements

using only the measurements themselves and the amplitude of the errors. To

do the same with coupling, we first need to work backward from C to get the

beam motion, then add the errors, and finally propagate those forward into the

new coupling matrix.
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When the beam is driven in the horizontal plane, two elements of the C

matrix are given by

C12 = γ

√
βA
βB

( y
x
)

A
sin ∆φA (4.2)

C22 = γ

√
βA
βB

( y
x
)
A

cos ∆φA (4.3)

where
( y

x
)
A

is the ratio of the amplitude of the vertical and horizontal motion

and ∆φA is the phase difference between the vertical and horizontal motion.

The subscript A denotes the fact that driving in the horizontal plane excites

primarily the A-like mode.

Once C has been calculated from the (simulated) misaligned ring, we can

invert Eqs. 4.2-4.3, describing the beam motion in terms of C matrix elements

as

(y
x
)
A

=
1
γ

√
βB
βA

√
C2

12 + C2
22 (4.4)

∆φA = arctan
(
C12, C22

)
(4.5)

where the values of βA, βB, and γ come from the lattice.1

Since we only care about the relative amplitude and phase of the horizontal

and vertical motion, we can write the turn-by-turn position of the beam as



x

y




rel

=




cos(ωt)

A cos(ωt − φ).


 (4.6)

where the values of A and φ are given by Eqs. 4.4-4.5, and ω is the driving

frequency.
1We use arctan(y, x) = arctan

( y
x
)
, following the convention from Fortran and C. Mathemat-

ica reverses the order of the arguments.
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If we now rotate the coordinates of that beam, which is equivalent to rotating

the detector, we have



x′

y′


 =




cos θ sin θ

− sin θ cos θ


×




cos(ωt)

A cos(ωt − φ).




=




(A cos φ sin θ + cos θ) cos ωt + (A sin θ sin φ) sin ωt

(A cos φ cos θ − sin θ) cos ωt + (A cos θ sin φ) sin ωt




=




A cos φ sin θ + cos θ A sin θ sin φ

A cos φ cos θ − sin θ A cos θ sin φ




︸ ︷︷ ︸
M

×




cos ωt

sin ωt


 (4.7)

where the matrix M is defined as shown. Using the trigonometric identity

a cos x + b sin x =
√

a2 + b2 cos (x − arctan(b, a)) (4.8)

and the definitions

A′
x =

√
M2

11 + M2
12 φ′

x = arctan(M12, M11) (4.9)

A′
y =

√
M2

21 + M2
22 φ′

y = arctan(M22, M21)

the motion of the beam in a rotated detector is given by



x′

y′


 =




A′
x cos(ωt − φ′

x)

A′
y cos(ωt − φ′

y)


 . (4.10)

As before, we only care about the relative motion, so the equation can be

rewritten 


x′

y′




rel

=




cos(ωt)

A′ cos(ωt − ∆φ′)


 (4.11)

where A′ ≡ A′
y/A′

x and ∆φ′ ≡ (φ′
y − φ′

x).
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Finally, according to the definitions of of the C matrix elements given in

Eqs. 4.2-4.3, the apparent C elements from a rotated detector are given by

C′
12 = γ

√
βA
βB

A′ sin ∆φ′ (4.12)

C′
22 = γ

√
βA
βB

A′ cos ∆φ′ (4.13)

The lattice functions in the final result are independent of BPM rotations

because they are calculated from the lattice, not measured.

When the rotation angles of the BPMs are small, these rather cumbersome

expressions reduce to

C′
12 ≈ C12

(
1 − 2θ C22

)
(4.14)

C′
22 ≈ C22 + θ

(
C2

12 − C2
22 − 1

)
. (4.15)

We are primarily interested in C12 , but there are two interesting features of

this result. First, in the absence of any genuine coupling at a given detector, even

a rotated detector will report zero coupling. This is different from the orbit and

dispersion measurements where detector rotations create false signals, and it

comes from the measurement technique, where the use of the phase information

prevents the signal from the horizontal motion from leaking into the vertical.

Second, in the limit of small coupling where C12, C22 � 1, the measured C22

is equal to the detector rotation. Knowing the detector rotation would allow us

to remove that error from the orbit and dispersion measurements.

4.3.3 Limits from Detector Resolution

The resolution of the detectors sets a limit on how well the various optical pa-

rameters can be corrected. For example, in the unreasonable case that a ring had

no vertical dispersion, detector resolution would cause the measured values to
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Table 4.1: Correction limits from BPM resolution. These coefficients deter-
mine the level of errors created by BPMs in a perfectly aligned
ring.

Resolution Quantity Coefficient

Absolute resolution
√

〈y2co〉
〈Y2

BPM〉
0.64

Differential resolution
√

〈η2y〉
〈∆Y2

BPM〉
0.58 /δ

Rotation resolution
√

〈η2y〉
〈Θ2

BPM〉
0.72 m

be nonzero. When those values were used to correct the ring, vertical dispersion

would be introduced.

Each of the three detector resolution parameters is considered in Fig. 4.2.

We start with a ring with no misalignments and simulate how much orbit or

dispersion is generated solely due to BPM resolution. The ratios from the linear

fit are shown in Table 4.1. In each case, the ratio is smaller than 1, since the

numbers of detectors is sufficient to average out some of the random noise.

4.4 One-Parameter Correction Sequence

The first correction sequence we study corrects one lattice parameter at a time

in three stages. First, the orbit is measured and corrected using vertical steer-

ing magnets. Then the dispersion is measured and corrected, also with vertical

steerings. Finally, the coupling is measured and corrected with skew quads.

Recall from Chapter 3 that we assume the phase has already been corrected.
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Figure 4.2: BPM resolution fits. The coefficients from these fits are shown
in Table 4.1.
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Table 4.2: Misalignment and BPM resolution scenarios.

Absolute Differential
Resolution Resolution Rotation

Scenario Misalignment (µm) (µm) (mrad)

1 1× nominal 0 0 0
2 1× nominal 10 2 1
3 1× nominal 50 10 2
4 1× nominal 100 30 2
5 2× nominal 0 0 0
6 2× nominal 10 2 1
7 2× nominal 50 10 2
8 2× nominal 100 30 2

At each stage, we use uniform weights on all detectors and on all corrector el-

ements, so at each stage, there are two parameters that control the optimization.

Since the χ2 from Eq. 4.1 is linear in the weights, the location of the minimum

depends only on their ratio. To determine which combination of weights yields

the lowest corrected emittance, we fix one weight and vary the other. In this

case (and all cases that follow), we will assume that the weight on the changes

in the corrector elements is equal to 1.

When optimizing the weights, we look at eight scenarios for misalignment

and BPM resolution. These are shown in Table 4.2. Of these, scenario two is

considered nominal.

Figure 4.3 shows the weight scan for each of the three stages in the one-

parameter correction sequence. The minimum at each stage is used in the sub-

sequent stage(s). One sees that when the weight on the measurement is small

(left side of the plots), the optimizer makes no changes to the correctors and

simply reproduces the minimum emittance from the previous plot.
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for each scenario (each curve) is carried forward. Therefore,
the minimum on one plot is equal to the left-most value on the
following plot.
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Table 4.3: Optimized weights for the one-parameter correction for CesrTA.

Orbit Dispersion Coupling
Correction Correction Correction

εy (pm) εy (pm) εy (pm)
Scenario wy P50 P95 wη P50 P95 wC12

P50 P95

1 1 8.5 20.9 10−4 1.8 7.1 10−4 1.4 4.3
2 1 8.6 20.9 10−5 2.1 7.7 10−4 1.7 4.6
3 1 8.4 21.4 10−6 3.3 9.6 10−4 2.4 6.0
4 1 8.5 21.4 10−7 6.6 15.0 10−4 4.8 11.5
5 1 37.5 98.9 10−4 8.5 39.9 10−4 5.8 21.7
6 1 37.5 99.0 10−4 8.8 42.9 10−4 6.0 22.1
7 1 37.5 99.5 10−5 11.0 49.1 10−4 8.4 24.0
8 1 37.7 98.2 10−6 18.2 61.7 10−4 13.7 32.4

On the other hand, when the weight on the measurement is large (right side

of the plot), the emittance is somewhat higher than the minimum. There are

at least two likely causes for this behavior. The first is that the optimizer is

not guaranteed to find a global minimum (in fact, no such general optimizer

exists). By limiting the weight on the measurement, the weight on the corrector

changes has more effect, keeping the optimizer from wandering too far and

becoming stuck in a local minimum. The second reason is that as the random

BPM errors become larger, the measurement becomes less physical and more

difficult for the model ring to reproduce. Keeping the corrector changes small

helps filter out some of this randomness. In the dispersion measurement, where

BPM errors have the most impact, it is quite clear that the optimum weight on

the measurement gets smaller as the BPM errors get larger.

Figure 4.4 shows the distribution of random seeds after each stage of the

correction for scenario #2 (nominal).
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Figure 4.4: One-parameter correction histogram.
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The results from the optimized one-parameter correction are shown in Ta-

ble 4.3. For the scenarios we consider, magnet alignment is far more impor-

tant than BPM resolution in achieving the desired vertical emittance. Even for

the worst-case resolution, we achieve 11.5 pm emittance 95% of the time–just

slightly higher than the CesrTA target emittance.

4.5 Two-Parameter Correction Sequence

We can also study a two-parameter correction where two lattice functions are

corrected simultaneously. This requires two passes, with the orbit and disper-

sion corrected in the first pass using vertical steerings, then the dispersion and

coupling are corrected in the second pass with the skew quads.

There is a constraint on the changes in the corrector elements, giving a to-

tal of three parameters to optimize at each stage. Just as in the one-parameter

correction, we are free to fix the weight on the correctors, which we set equal to

one. The space of the remaining two parameters is a plane, so the optimization

is much more time consuming. However, this only needs to be done once for a

given set of misalignments and BPM resolutions, and would not necessarily be

slower than the one-parameter correction in practice.

Figures 4.5 and 4.6 show the optimization of the two stages of the two-

parameter correction. For each pass, a coarse lattice was scanned first, then a

small region near the minimum was scanned with a finer lattice. The resulting

optimized weights and corrected emittances are summarized in Table 4.4.
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Table 4.4: Optimized weights for the two-parameter correction for
CesrTA.

Orbit-Dispersion Dispersion-Coupling
Correction Correction

εy (pm) εy (pm)
Scenario wy wηy P50 P95 wηy wC12

P50 P95

1 10−1 10−2 1.9 6.2 102 10 0.4 1.4
2 10−2 10−3 2.2 7.0 10 1 0.5 1.7
3 10−2 10−4 3.5 9.6 10−1 10−1 1.4 3.9
4 10−2 10−5 5.9 15.0 10−3 10−3 3.8 9.6
5 10−1 10−2 10.8 42.5 103 102 2.4 18.8
6 10−2 10−3 10.8 42.9 103 102 2.7 18.0
7 10−1 10−3 13.4 48.3 10−1 10−2 4.1 17.8
8 1 10−3 19.4 55.0 10−2 10−3 9.6 24.3

4.6 Summary

We have shown that, for the nominal misalignments and BPM resolution, a one-

parameter optimization for the

orbit → dispersion → coupling

sequence is sufficient to achieve the target vertical emittance at the 95% level.

We can also tolerate significantly worse BPM errors and remain close to our

emittance target, again at the 95% level.

We have also shown that a two-parameter correction for the

orbit/dispersion → dispersion/coupling

sequence is more effective, sometimes by more than a factor of two (depending

on parameters).
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For both correction sequences, however, when misalignments are increased

by a factor of two (in Scenarios 4-8), our 95% confidence limit exceeds our emit-

tance targets. We conclude, therefore, with the statement that, for the ranges of

parameters considered, achieving the specified alignment is much more critical

than achieving the specified BPM resolution.
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Chapter 5
ILC Damping Ring

In this chapter, we describe the ILC damping ring, and apply the correction

algorithms developed in the previous chapter to it.

5.1 Design

In the ILC the beams coming from the sources (particularly from the positron

source) have large emittances. The damping rings reduce the size of the beams

before their injection into the main linacs. The challenge with the ILC damping

rings is to do two jobs: accept a huge beam and deliver a tiny one. These jobs

are sometimes at odds with one another, for example, with regard to the damp-

ing wigglers. A larger physical ring helps capture more of the incoming beam,

but increasing the vertical gap in the wigglers degrades field quality and may

degrade the dynamic aperture.

In its present configuration, the ILC has two damping rings, one for elec-

trons and one for positrons. The rings are stacked vertically in the same tunnel,

located near the interaction point.

After the consideration of many different designs, a reference lattice has been

agreed upon which has the required acceptance and emittance [25, 26]. Gen-

eral parameters for the damping rings are shown in Table 5.1. Most important

for these studies is the desired vertical emittance of 2 nm, which achieves the

desired emittance of 0.04 µm (normalized) at the IP, with an emittance growth

budget of 100%.
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However, the current lattice file does not contain explicit beam detectors or

vertical correctors. For this study, the following guidelines are used for posi-

tioning those elements:

• One detector for each quadrupole (748 total). Our simulations assume

measurements (orbit, dispersion, coupling) are made at the end of each

physical quad.1

• One skew quad for each sextupole pair (240 total). Horizontal sextupoles

are given skew quad components. This gives two skew quads per arc cell.

• Approximately one vertical steering per arc cell or wiggler section, with

additional steerings in straight sections and transitions (154 total). Zero-

length vertical steerings are added manually to the lattice file at reasonable

locations. These are the only elements added to the lattice itself, and are

also the least specified at this point in the lattice design process.

The shape of the ring, indicating the the locations of added vertical steerings,

is shown in Fig. 5.1.

5.2 Sensitivities and Misalignments

In our examination of emittance correction in CesrTA, we used the estimated

survey accuracy to provide initial misalignments for the magnets. Those spec-

ifications are not available for the ILC damping rings, but studies have been

done to determine the ILC’s sensitivity to misalignments, i.e., the level of mis-

alignment below which no correction is necessary [27, 28]. Those values are

shown in Table 5.2, along with the same quantities for CesrTA and the ATF. For
1There is an accidental double-counting of the half-quad at the beginning/end of the ring;

the prescribed number of detectors is actually 747.
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Figure 5.1: ILC damping layout. The locations of vertical steerings and
skew quadrupoles are shown with black and white dots, re-
spectively.
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Table 5.1: ILC Damping Ring Parameters. The value quoted for εy is the
target emittance after correction. The other values are properties
of the lattice.

Parameter Units Value

Energy GeV 5.0
Circumference km 6.695
Nominal # of bunches 2625
Nominal bunch population 2.0×1010

Average current A 0.40
Energy loss per turn MeV 8.7
Beam power MW 3.5
Nominal bunch current mA 0.14
RF frequency MHz 650
Total RF voltage MV 24
Transverse acceptance, Ax + Ay mm 9
Equilibrium emittance, εx nm 500
Equilibrium emittance, εy nm 2
Chromaticity, ξx, ξy -63/-62
Partition numbers, Jx,Jy,JE 0.9998/1.0000/2.0002
Harmonic number, h 14,516
Synchrotron tune, νs 0.067
Synchrotron frequency, fs kHz 3.0
Momentum compaction, αc 4.2×10−4

Betatron tunes, νx, νy 52.40/49.31
Bunch length, σz mm 9.0
Energy spread, σp/p 1.28×10−3

Transverse damping time, τx ms 25.7
Longitudinal damping time, τs ms 12.9
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Table 5.2: ILC sensitivities. Other values are shown for comparison, in-
cluding CesrTA at 2 and 10 pm.

Parameter ATF OCS6 CesrTA CesrTA

Target vertical emittance (pm) 4.5 2 2 10
Orbit amplification factor 20.6 31.6 13.1
Quadrupole roll (µrad) 582 78.3 153 342
Sextupole alignment (µm) 34.8 67.1 159 356

CesrTA, sensitivities are shown for both 2 pm (the ILC target), and for 10 pm

(the CesrTA target).

Because CesrTA has many fewer elements than the ILC damping ring, it has

a smaller orbit amplification factor, and larger misalignment tolerances (refer to

Eqs. 2.38-2.40). It is also important to note these are isolated misalignments for

comparison among the various rings. Since the physical rings have many other

misalignments (including quadrupole offsets, which are the most problematic),

these figures do not literally mean that no correction will be required.

It is reasonable to estimate that the actual survey accuracy for the ILC will

be somewhat better than for CesrTA (since the survey and magnet alignment

systems will be more advanced) and somewhat worse than the estimated sen-

sitivity (since doing better than the sensitivity would be inefficient). For our

study, however, we simply assume that the ILC will have the same misalign-

ments and identical detector resolutions as CesrTA. The only difference is that,

because the OCS lattice file specifies wigglers as individual dipoles, wigglers

are not misaligned.
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5.3 Correction

Since low-emittance tuning for the ILC damping ring is a global effort, it is

worth putting our results in context. We briefly discuss two prominent alter-

natives before presenting results from CesrTA-style emittance correction.

5.3.1 Other Approaches

First, recall briefly that our correction algorithm uses single measurements to

fit a model to the measured data (or perhaps two measurements, but of two

different quantities). Only then are corrector elements adjusted and all at the

same time.

One prominent alternative is the so-called orbit response matrix (ORM),

where one uses the ring itself, rather than a model of the ring, to calculate the

correction. ORM can also be used to determine the magnet and detector errors

themselves, and this will likely be utilized in CesrTA [29]. Our comparison here

is with ORM as tool for routine optics correction.

In that case, Typically, steerings are changed, one-by-one, and a new mea-

surement is taken each time. The accumulated data form a matrix from which

one extracts the appropriate corrector settings.

Since the ORM uses more data from the physical ring (which has the actual

misalignments present), it may be more effective. However, since so many mea-

surements need to be taken under different conditions, it would likely be much

more disruptive to the regular operation of the ring. In other words, it would

be harder, if not impossible, to perform in the background. Studies done so far

consider using ORM on something like a weekly timescale, and show that, for

certain parameters, the method does preserve the required emittance [30].
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Another prominent alternative comes from a different way of measuring

coupling. Recall that our coupling measurement involves shaking the beam and

measuring the resulting amplitude and phase. A simpler approach is to use hor-

izontal steering magnets, and then observe the change in the closed orbit [31].

One can then define the coupling of the ring as

Cxy =

√√√√√√
1
N ∑

steering




∑
BPM

(δy)2

∑
BPM

(δx)2


. (5.1)

As this is basically just an orbit measurement, it is much simpler than the

method we use in CESR. However, it is sensitive to rotation of the steering mag-

nets. It would also be sensitive to BPM rotations, but as we have shown, our

measurement is largely insensitive to BPM rotations.

5.3.2 Our Approach

We apply our correction algorithm to the ILC lattice just as we did for the one-

parameter case with CesrTA. The ring is corrected with one measurement at a

time, applying a new set of corrector settings after each measurement.

The time to fit the model to the measured data scales roughly as the product

of number of elements to be varied, times the length of the lattice. If we assume

the the density of elements is uniform across different lattices, then in a loose

sense, the time to correct the ring scales as the square of the length of the lattice.

Since the ILC damping ring is roughly ten times as large as CesrTA, it is

much more time-consuming to perform optimizations with multiple seeds and

multiple scenarios. This is not prohibitive in the long run, but until the relevant

ILC parameters are better established, it is useful simply to demonstrate that

our correction algorithm is effective with some reasonable set of parameters.
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Figure 5.2: Weights for one-parameter correction of the ILC damping ring.

We therefore focus on a single case using the nominal parameters from CesrTA.

Generally speaking, these tend to be somewhat worse in terms of misalignment,

but somewhat better in terms of BPM resolution, than what some others have

used. But again, formal numbers have not been specified.

The optimization of the correction is shown in Fig. 5.2. One sees the same

basic features as in the optimization for CesrTA–most noteably, that the orbit

correction is fairly forgiving for large weights, but that the dispersion and cou-

pling weights require more care to hit the minimum. The emittance after each

stage is shown in Fig. 5.3.

The median corrected emittance is 1.3 pm, shown in Table 5.3. This is

roughly half of the target of 2 pm, and comparable to results achieved with

the ORM method (see references above).
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Figure 5.3: Seeds from ILC one-parameter scan.
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Table 5.3: Results of one-parameter correction for the ILC damping ring

Weight Weight εy (pm)
Correction Parameter value P50 P95

Before correction 664 1847
After orbit correction wy 1 43.6 121
After dispersion correction wηy 10−4 2.3 8.3
After coupling correction wC12

10−5 1.3 3.0

5.4 Summary

Because the ILC damping ring (and the project in general) is at a relatively early

stage, we have made important assumptions in our simulation of emittance

correction. We have added detectors and correctors to the lattice at locations

consistent with the description in the RDR. Eventually, these will be specified

precisely, but this is unlikely to have any significant impact on the correction

results.

We have also assumed misalignments and BPM resolutions will be compara-

ble to CesrTA, and while we have argued that these assumptions are reasonable

for the time being, it is quite possible that the ILC will do better. In any case, a

change in these assumptions would certainly change the emittance results.

Based on our assumptions, we have shown that our algorithm achieves the

target emittance. With further study in CesrTA, this correction algorithm can be

a significant tool for the ILC, perhaps in lieu of, or at least in addition to, the

other techniques discussed.
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Chapter 6
Fast Dispersion Measurement

Previous chapters have emphasized the fact that achieving low emittance in a

damping ring requires diligent control of the vertical dispersion. This chapter

describes the current technique for dispersion measurements at CESR, and pro-

poses a new technique that may prove advantageous for CesrTA and the ILC.

6.1 Motivation

In a scenario like CesrTA or the ILC, we would like to be able to measure the

vertical dispersion accurately and often. Accuracy is obviously important be-

cause of the potential impact that the vertical dispersion will have on the verti-

cal emittance. Even small amounts of incidental dispersion, arising purely from

deviations from the design, can be crippling.

The need to measure the vertical dispersion often comes from the fact that

damping rings are not static: magnets move, power supplies drift, etc. For ex-

ample, it has been observed at CESR that quadrupoles move by an appreciable

amount in response to the current in the ring.

Ideally, we would like the ability to measure the dispersion with minimal

disruption to the normal operation of the damping ring, allowing frequent, or

even continuous, monitoring and correction. This section describes a dispersion

measurement technique that addresses this goal along with results obtained at

CESR, and comparisons with the conventional method of measuring dispersion.
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6.2 Background

In a damping ring, we can calculate a closed orbit that is the unique trajectory that

closes on itself after one complete revolution. This trajectory will depend on the

energy of the particle. Suppose we calculate two closed orbits: one for a particle

with the design energy E0, and another for a particle whose energy differs by

a small amount ∆E (small enough that the transport around the ring remains

linear). The off-energy orbit will have some transverse displacement relative to

the on-energy orbit, and the amount of displacement will be proportional to ∆E,

and to the dispersion function η(s), where s is the longitudinal position.

In the horizontal case, the displaced orbit at s is given by

x(s) = x0(s) +
∆E
E0

ηx(s) (6.1)

where x0 is the on-energy closed orbit. From Eq. 6.1, we define the dispersion

as

ηx(s) ≡ ∆x(s)
∆E/E0

. (6.2)

The vertical situation is mathematically identical, but it is of some practical

importance to remember that ηy is usually zero by design, and that typically,

ηy � ηx.

An important consequence of dispersive orbit distortion is that particles with

different energies will have different path lengths as they curve through bend-

ing magnets. The change in path length ∆L is described by the momentum com-

paction and is given by

αc =
∆L/L0
∆E/E0

=

〈
ηx
ρ

〉
(6.3)

where L0 is the unperturbed circumference of the ring, ρ is the radius of curva-

ture, and the average is taken around the ring.
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6.3 RFFM Measurement Technique

The simplest dispersion measurement is to record two orbits at two slightly

different energies. The difference in those orbits at each location, scaled by the

energy difference, gives the dispersion at that location according to Eq. 6.2.

For such a measurement, the energy of the beam is changed by changing

(modulating) the frequency of the accelerating RF cavities, hence the abbrevia-

tion RFFM. Adjusting the cavity frequency causes the beam to come to a new

equilibrium energy that preserves the synchronous phase condition between

the arrival time of the beam and the oscillation of the RF wave. The relationship

between RF frequency f and beam energy is given by
∆E
E0

= −∆ f
f0

·
(

αc −
1

γ2

)−1
(6.4)

where γ is the relativistic factor. Electron damping rings operate well above

transition energy where γ2 � 1
αc

, so the relativistic factor can be safely ignored.

Equation 6.4 uses αc to calculate the dispersion, but αc itself depends on the

dispersion. To avoid this circular dependence, the value of αc that is used in the

dispersion measurement comes from the design lattice, not from an indepen-

dent measurement. It is assumed, therefore, that even though the dispersion at

any given detector may deviate from the design, those deviations average out

and are not reflected in the value of αc. This assumption will be explored further

in a subsequent section.

Two final points should be made about the RFFM measurement that help

motivate the improved technique that will be presented next. First, changing the

RF frequency affects every bunch in the ring. This is not necessarily a problem in

the CesrTA context where the low emittance beam will be stored for a relatively

long time. However, in an ILC damping ring, bunches are stored only until

they reach their target emittance, then sent down the linac for high-luminosity
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collisions. Disturbing every bunch in the ring, while perhaps not disastrous, is

clearly a disadvantage.

Second, the time that is required for the RF modulation is on the order of

minutes. This makes frequent RFFM measurements impractical, but as stated

in the introduction to this chapter, frequent dispersion monitoring may be es-

sential to maintaining low emittance in both CesrTA and in the ILC.

6.4 Fast Measurement Technique

This section introduces a new way of measuring the dispersion that we dub the

fast dispersion measurement. From the outset, it should be stated that this is an

attempt to demonstrate the prospects for a fast dispersion measurement. Some

of what is presented here by way of motivation will depend on the particular

context, and may or may not be possible in a particular realization of CesrTA or

the ILC.

This technique is faster than the RFFM technique at CESR because it does not

require changing the RF frequency and it makes use of the faster upgraded BPM

system. It is possible that hardware upgrades will remove this advantage–ILC

BPMs will certainly be capable of faster measurements.

However, there is still a speed advantage because, under certain scenarios,

the fast measurement only requires manipulating the energy of a single bunch.

Therefore, the integrated luminosity from the other few-thousand bunches

stored in an ILC damping ring will be unaffected. The technique might better

be called a fast/unobtrusive technique.
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6.4.1 Basics of Measurement

The basic idea behind the fast technique is to keep the ring’s equilibrium en-

ergy constant, and make a bunch oscillate in energy about that equilibrium

value. If we simply assume that the energy of the beam has a sinusoidal time-

dependence (ignoring the energy lost around the ring and gained at the RF cavi-

ties), then modifying Eq. 6.1 to account for that gives a closed orbit that oscillates

in time

x(s, t) = x0(s) +
∆Emax

E0
cos (ωE t) ηx(s) (6.5)

where ∆Emax and ωE are the amplitude and frequency of the energy oscillation,

respectively. Thus, we actually measure the dispersion by measuring the fluc-

tuations in the closed orbit.

However, the oscillating closed orbit is somewhat unconventional, and there

is no guarantee that a bunch will actually travel on that orbit. To take one ex-

treme, if ωE is very fast compared with the revolution frequency, then the beam

will not have time to respond to the changing RF frequency, and the oscillatory

behavior will wash out (if such exotic behavior were actually achievable in the

first place).

In reality, there is little flexibility to choose ωE. The energy of particles in

the beam has a natural oscillation frequency determined by the strength of the

phase-focusing from the accelerating RF. That frequency, called the synchrotron

frequency, is given by

Ω = ωrev

√
− e V0 h cos Ψ0

2π β2 E0

(
αc −

1
γ2

)
(6.6)

where ωrev is the revolution frequency, V0 is the peak RF voltage, h = ωRF
ωrev

is the

harmonic number, and Ψ0 is the synchronous RF phase. There are numerous

practical limitations to inducing energy oscillations at a frequency other than
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Ω, even if it were possible in principle. Those limitations would generally be at

odds with our goal of providing an unobtrusive measurement technique, so we

will assume that ωE = Ω in all cases.

Fortunately, in nearly every conceivable case, Ω � ωrev, so that a complete

energy oscillation requires many trips around the machine. Moreover, the dis-

persion changes on approximately the same length scale as the betatron oscil-

lation, which is generally much shorter than the circumference of any damp-

ing ring. Therefore, we are assured that the dispersion function is changing

around the ring much faster than the energy of the beam. The statement that

ωE = Ω � νx is important because it provides a reasonable guarantee that the

beam (or at least the average position of the beam) stays on the closed orbit,

which is necessary for us to see the behavior described by Eq. 6.5.

We are certainly ignoring many other components of the motion that may be

present, for example, coherent betatron motion. However, it will be shown that

Eq. 6.5 does provide a model that is realistic enough to extract the dispersion.

6.4.2 Inducing Energy Oscillation

Several potential methods have been suggested for creating energy oscillations

in a damping ring:

1. Injection Energy Offset. If a bunch is injected into a damping ring with

some energy other than the equilibrium energy of the ring, it will oscillate

about the equilibrium energy with an initial amplitude equal to the en-

ergy mismatch. This could be done by deliberately changing the injection

energy for a single bunch, leaving all other bunches untouched.

2. Injection Transients. It may be possible to measure injection transients

for many bunches without a deliberate energy mismatch, accumulating
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enough data after many successive injected bunches to make a meaningful

measurement.

3. Pulsed Longitudinal Bump. A pulsed element could provide a longitudi-

nal kick to a single stored bunch.

4. Pulsed Transverse Bump. A transverse bump could create a path length

difference for a single bunch that would turn into an energy oscillation on

successive turns.

For all of the aforementioned approaches, the energy oscillations that are

produced will damp down exponentially. The measurement must be conducted

before significant damping occurs, or the damping behavior must be accounted

for in the subsequent analysis. Another issue is decoherence, where the motion

of the individual particles in the bunch oscillate out of phase.

The effects of damping and decoherence limit how long we have to accumu-

late data once an instantaneous excitation has occurred. If enough data cannot

be obtained, then the excitation could be repeated.

6.5 Measurements At CESR

Despite the various proposed techniques for creating energy oscillations, the

situation at CESR is presently constrained in a couple of ways. First, although

the ILC design specifies injecting the full bunch current in one shot, CESR builds

up stored current by injecting many smaller bunches into the same RF bucket.

The signal from a single injected pulse is too far below the sensitivity of the BPM

system to make meaningful orbit measurements. This rules out using off-energy

injection schemes (items 1 and 2).

77



Second, although the prospects for using pulsed bumps (items 3 and 4) at

CESR are better, significant care will need to be taken in the configuration of the

bumps themselves so that unwanted transverse motion is not induced. Further-

more, the orbit measurement will need to be synchronized so that the oscilla-

tions do not damp or decohere before data can be taken.

The second concern is less fundamental than the first, and it is believed that

they can be overcome when sufficient machine time is available. Therefore, it

should eventually be possible to use CESR (or in the longer term, CesrTA), to

demonstrate the fast dispersion measurement on a single bunch.

6.5.1 RF Phase Modulation

For the time being, we can demonstrate the principle at CESR using phase-

modulation of the accelerating RF. Normally, the phase of the RF wave relative

to the arrival of a bunch is fixed so that the bunch receives the energy kick nec-

essary to replace the precise amount of energy lost due to damping. If the RF

wave is phase-shifted on a turn-by-turn basis, then the bunch will receive some

energy kick (positive or negative) relative to its equilibrium, and will tend to

oscillate.

Since the beam naturally oscillates at the synchrotron tune, modulating the

RF phase at that frequency drives the beam on resonance. This produces energy

oscillations that are of sufficient amplitude for this measurement.

Furthermore because we drive the bunch continuously, damping and deco-

herence are not a factor. The bunch oscillates indefinitely, and there is no need

for synchronization of the orbit measurement.
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6.5.2 Multiturn Orbit Measurement

Presently in CESR, multiturn measurements are made for 1024 turns at thirteen

detectors located near the CLEO interaction point. It is expected that all the

detectors in the ring will eventually have this capability.

The multiturn data should have the form of Eq. 6.5. We know the oscillation

frequency, ωE = Ω, so that expression can be linearized as

x(t) = c1 cos
(

Ω

ωrev
n
)

+ c2 sin
(

Ω

ωrev
n
)

+ c3 (6.7)

where ωrev is the revolution frequency and n is the turn number. The same

function is fit for both horizontal and vertical motion.

Because the fit is for the fixed, known frequency ωE = Ω, the higher fre-

quency motion (including random noise) is effectively filtered out. Figures 6.1

and 6.2 show the horizontal and vertical data and fit from two multiturn mea-

surements at different drive amplitudes (different output levels from the spec-

trum analyzer). The top plot in each figure corresponds to a -38 dBm drive level,

and the bottom to a -18 dBm drive level. For the horizontal data in Fig. 6.1, there

is clearly a strong signal at the drive frequency even when the amplitude is rel-

atively low. However, for the vertical data in Fig. 6.2, the top plot shows a very

poor signal-to-noise ratio. The signal is not striking in the bottom plot either,

but as results will show, it is strong enough to extract the value of the vertical

dispersion.

From the fits to the multiturn data, we extract an amplitude and phase ac-

cording to

Ax|y =
√

c2
1 + c2

2 (6.8)

φx|y = arctan (c2, c1) . (6.9)
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Figure 6.1: Horizontal multiturn data. The horizontal data and sinusoidal
fit for the first 200 turns (out of 1024) are shown for detector 9W.
At this location, ηx ∼ 1 m, which makes the horizontal signal
clear, even at the weaker drive.
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Figure 6.2: Vertical multiturn data. The vertical data and sinusoidal fit for
the first 200 turns (out of 1024) are shown for detector 9W. At
this location, ηy ∼ 5 cm, and the signal-to-noise is much worse
than in the horizontal data (Fig. 6.1).
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These two parameters determine the measured dispersion, but because of

how we are performing the measurement, some further analysis is necessary.

6.5.3 Multiturn measurement phase

The actual dispersion may be positive or negative at a given detector. The mea-

sured displacement of the closed orbit is proportional to the dispersion and to

the energy deviation, so we need a way to determine the sign of the energy oscil-

lation independently. In other words, we need to know whether the multiturn

measurement started when the energy oscillation was positive or negative.

In principle, the measurement could be synchronized with the energy drive,

but even without that, we can determine the sign of the dispersion by looking

at the phase parameter from Eq. 6.9.

Given that the horizontal dispersion is known reasonably well from the

model, we choose the detector with the largest value of ηx and use the phase

from that detector as a reference. The phase from every other detector, for both

the horizontal and vertical, is compared with the reference. If the two phases

differ by less than ±π/2, then the two dispersion values have the same sign. If

the two phases differ by more than that amount, then their signs are opposite.

This is implemented as

sign ηi =





sign ηref
x , cos (φi − φref) ≥ 0

− sign ηref
x , cos (φi − φref) < 0.

(6.10)

6.5.4 Scale Factor

Comparing the fit function to Eq. 6.5, the amplitude of the closed orbit oscilla-

tion A is given by

Ai =
∆Emax

E0
ηi. (6.11)
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In our measurements, we do not know, a priori, the value of ∆Emax. The beam

is clearly being driven by the cavities, but by exactly how much is a difficult

question. Without ∆Emax, we only know the dispersion up to an overall scale

factor (a single number for all detectors). Fortunately, we can determine ∆Emax

by assuming that the mean value of the measured horizontal dispersion is equal

to that of the design lattice.

This is a reasonable assumption for two reasons. First, the horizontal dis-

persion is very large compared to the types of deviations we expect to get from

magnet misalignments (of course, this is not true for the vertical dispersion).

Second, the deviations that are caused by misalignments are small oscillations

about the design value, and tend to average out after a full turn.

This is similar to the assumption used in the conventional measurement, i.e.,

that the design momentum compaction is unchanged. We merely assume 〈ηx〉 is

constant rather than 〈ηx/ρ〉. In Fig. 6.3, different random element misalignments

with magnitudes given by the expected values in CesrTA are used to calculate

the expected variation in 〈ηx〉. This simulation verifies that the mean value of

the horizontal dispersion is stable to approximately 1%.

Under this assumption, we can determine ∆Emax from Eq. 6.11:

〈Ax〉 =
∆Emax

E0
〈ηx〉 (6.12)

=
∆Emax

E0

〈
ηmodel

x
〉

(6.13)

∆Emax
E0

=
〈Ax〉〈

ηmodelx
〉 . (6.14)

The dispersion at each detector is then given by

ηx|y,i =
Ax|y,i

∆Emax/E0
× (sign from Eq. 6.10) . (6.15)

A final point about the scale factor is that it may not matter very much. In

most conceivable applications of this technique, the objective is to reduce the
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Figure 6.3: Stability of 〈ηx〉. The horizontal dispersion is averaged around
the ring for one thousand random seeds with the nominal
misalignment parameters. The fit gives a value of 〈ηx〉 =

0.890 ± .0012 m, i.e., 〈ηx〉 is stable to approximately 1%.

vertical dispersion to zero. If there is some error in the scale factor, then the

correction will slightly over or undercompensate for the true dispersion. Simply

repeating the correction will reduce the error exponentially.

6.6 Results

The fast dispersion measurement procedure has been studied at CESR in several

machine studies periods [32, 33, 34, 35]. This section summarizes the last study,

from May, 2007.

First, we need to establish criteria for evaluating the fast measurement tech-

nique, or put another way, we need something to compare with the fast mea-

surement in order to judge its accuracy. We begin by comparing the fast mea-

surement to the model, and to the RFFM technique.
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6.6.1 Comparison with Model

The model dispersion is based on the lattice design, plus the calculated response

to whatever changes have been put into the ring at the time the measurement

was taken (steering, tuning, etc.). As we have demonstrated, the model value

for the horizontal dispersion is relatively reliable, and a direct comparison is

appropriate.

The vertical case is different, since the model value is typically small or zero,

and unknown factors, such as misalignments, produce vertical dispersion on

the scale that we would like to measure. We can, however, use the model to

predict changes in the vertical dispersion. For example, when a bump is added,

it changes the vertical dispersion by a known amount, on top of whatever was

there before.

Figure 6.4 shows the horizontal and vertical dispersion as measured with

both techniques. The data shows the mean and standard deviation for two mea-

surements of each type. Of course, the standard deviation of two numbers is not

of any rigorous statistical value, but it may give some idea of the reproducibility

of the two techniques.

In these particular measurements, there was some significant vertical disper-

sion due to the solenoid compensation for CLEO. In addition, a vertical bump

was used in order to generate even more vertical dispersion.

Both techniques indicate strong agreement with the model in the horizontal

case. Because of the large horizontal dispersion, we expect that this signal is

easy to see by either technique.

For the smaller vertical dispersion, both techniques show poorer agreement

with the model. However, for the reasons stated earlier, the vertical model is

known to differ from the true dispersion. The agreement between the fast and
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RFFM techniques is also poorer, but the fast technique does show better repro-

ducibility.

Since we believe the model is a better predictor of changes in the vertical dis-

persion, another valuable comparison between the fast and RFFM techniques is

to look at the change with the bump on and off. Figure 6.5 shows the vertical

dispersion for both techniques. Two measurements were taken for each tech-

nique in each bump condition, giving four possible comparisons. The mean and

standard deviation of each possible difference measurement is shown. With the

obvious exception of detector 2W (where the beam pipe is unusually large), the

fast technique is generally in better agreement with better reproducibility.

6.6.2 Energy Amplitude

An important variable in the fast measurement is how hard we should drive

the beam’s energy oscillation. When resources are available, a systematic study

is certainly in order. To some degree, this question can be addressed with the

data already taken. A first point to make is that none of the previous machine

studies, which have used fractional energy drive amplitudes between 0.1×10−3

and 1.8×10−3, have shown any appreciable beam loss.

A more subtle question is whether we are introducing any significant nonlin-

earities, either in the transverse motion or in the energy oscillations (which are,

of course, related), that would invalidate our simple model. Figure 6.6.2 con-

tains every horizontal dispersion measurement made using the fast technique.

The vertical dispersion cannot be compared in this way because the vertical

dispersion was not constant (or nearly so) across all of these different measure-

ments. The top plot shows that at each detector, the fit amplitude is proportional

to the ∆Emax/E0. Since ∆Emax/E0 is calculated from the fit amplitudes across
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Figure 6.5: Vertical dispersion difference. Two measurements with the
bump on and off (four total) were taken using each technique.
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Figure 6.6: Drive amplitude dependence in fast dispersion measurement.
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all detectors, this is somewhat circular, but if there were major problems at indi-

vidual detectors (where ηx might be particularly large), that would be evident.

The bottom plot in Fig. 6.6.2 shows the actual measured value of ηx as a

function of energy amplitude. From the plot, it doesn’t appear that there are any

systematic problems at higher energy, and this encourages us to explore even

higher energy oscillations where the small signals due to vertical dispersion

will be even easier to measure.

6.7 Conclusion

The principle behind this measurement technique has been demonstrated us-

ing simulation and experiment. The results obtained at CESR are encouraging,

and improvements may be expected with improved instrumentation and expe-

rience. For damping rings with multiturn measurement capabilities, such as

those in the ILC, this type of measurement may prove to be a useful addition to

their diagnostic tools.
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Chapter 7
Conclusion

We have shown that our simulations of magnet misalignments in damping rings

matches the results obtained from analytic calculations. Using those simula-

tions, we have shown that, for nominal misalignments and beam detector res-

olution, we can achieve the target vertical emittance of 10 pm with at least 95%

confidence.

Our simulation of other possible scenarios shows that obtaining the nomi-

nal magnet alignment is critical, but that detector resolution is more forgiving,

particularly with regard to the absolute position measurement.

For the ILC damping rings, we show that our beam-based alignment method

satisfies the required vertical emittance, although assumptions had to be made

regarding misalignments and detector performance. Our results are similar to

others using different techniques. This suggests the need to standardize all of

the parameters for the ILC damping rings so that more direct comparisons of

effectiveness can be made.

Our fast dispersion measurement gives results that are consistent with those

obtained from the traditional measurement technique, while offering some ad-

vantages over the traditional technique. When more dedicated machine time

is available with CesrTA, other methods of exciting the beam can be explored.

Those methods may be more relevant for using the fast technique at the ILC.

These results show that CesrTA will be able to make important contributions

to the low-emittance operation of ILC damping rings.
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