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A program of experiments is described mainly
on secondary particle spectra to test scaling hypotheses
derived from the multiperipheral model. It is assumed
that diffraction dissociati?n andlmultiperipheral
processes are distinct effects, and the consequences
of this for the scaling laws are explained. Feynman's
analogy linking multiple production to the statistical
mechanical distribution functions of a gas is outlined,
and based on this analogy it is suggested that one
look for a correlation length in the two particlc

spectrum of secondaries.
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High energy scattering cross sections of pions and protons
show a preponderance of multiple production processes. For
example, the mean multiplicity of charged secondaries is about
4 for 30 GeV p-p interactions, and cosmic ray data suggest a
mean multiplicity of order 10 at much higher energies,1
Multiple production will be a dominant effect at the NAL
accelerator and CERN storage rings, and there is currently
much interest in developing an experimental program to study
it.

Actually, multiple production is already dominant at
the energies of the present Brookhaven and CERN accelerators,
but experimental studies of it have been sporadic and always
subordinate to the study of elastic and quasi-elastic cross
sections.2 A major problem preventing more systematic study
of inelastic events has been the question of what variables
to observe in highly multiple events. A program to measure
the complete differential cross sections for a process with,
for example, 5 secondary particles is prohibitive in both time
and expense; one must select particular aspects of the cross
section to measure.

In the case of elastic or quasi-elastic scattering, one
must also be selective in any given experiment. One looks at
a limited range of incident energy and scattering angle, and
one selects particular final states. Usually the choice is
dictated by a desire to test a particular theoretical model:

a Regge pole fit, an optical model calculation, etc. However
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as the total number of experiments becomes large one collects
a reservoir of data on elastic and quasi-elastic scattering
covering most of the range of energies, angles and final
states accessible to experiment; that is the total range
covered by all data from all experiments is more limited by
experimental than by theoretical considerations. The impor-
tance of this is that a future theory of strong interactions
is likely to find its best test in different ranges of energy,
angle, etc., than any particular model now under consideration
so one would préfer not to have the range of data collected
in the sum total of high energy experiments be limited by
currently popular model theories.

It is out of the question to use the same approach in
experiments on multiple production; because of the number of
variables involved even the sum total of all multiple produc=-
tion experiments will provide only a small fraction of the
data that is experimentally accessible. Therefore it is
important to think about the chcice of experiments to be
performed, in particular to try to maximize the possibility
that the experimental data collected will remain useful
despite continuing changes in theoretical fashions.

The purpose of this papéf is to propose an experimental
program for studying multiple production, which takes into
account the problems mentioned above. The program is a set
of specific and feasible experiments, whose immediate aim is

to test some currently popular theoretical models.3 However



it will be argued that the vesults of thess szpzriments will
help to characterize the general fzatures of multiple produc~
tion indzpencently of any modei. As a basis for setting up the
experiments and predicting their outcome, it will be supposed
that theres are three types of mulciple production processes,
namely: a) multiperipheral eveats, b) dirfraction and
diffraction dissociation, and c¢) mmulti-Regge exchange events.'
- We shall give a simple but qualitative definicion for each of
the three types of processes; these definitions will not
involve specific models requiring detailed calculation and
parameter fits in order to compare with experimental data. The
experiments to be proposed will test whether multiple produc-
tion processes can be separated into these three categories.

Before discussing these.ideas in detail, some general
comments will be made about the purposes for doing high energy
experiments.

There does not exist a real theory of strong interactions
at present, and the models of high encrgy processes one studies
at present are no substitute for such a theory. It is the
ultimate aim of experiment and theory to try to obrain a real
theory, so it is worth considering how particular experiments
will affect the finding and testing of such a theory. First,
though, one must say what one means by a '"'real theory of strong
interactions'. My view is that there are four essential
requirements for a real theory:

A. It must be derived from a few fundamental principles



comprehensible to both experimentalists and theorists.

B. Any free parameters in the theory must appear explicitly
and obviously as a consequence of the fundamental
principles (just as e and 11 are explicit and obvious
in ordinary quantum mechanics, and ¢ is explicit
and obvious in relativity) and there should be no
arbitrary functions in the theory.

C. The fundamental principles should imply a set of
equations containing the fundamental parameters whose
solution will describe all aspects of strong interac-
tions including the complete S matrix (even the S
matrix for n particles going to m particles for any
n and m) and all matrix elements of the weak and
electromagnetic currents. For a given set of values
of the parameters the equations should have one and
only one solution; if this cannot be proven there
should at least be plausible physical arguments
suggesting it.

D. One should be able to determine qualitative features
of the solution of the equations from qualitative
features of the equations, or better from qualitative
statements of the fundamental principles without using
the equations at all.

One has to be an idealist to believe that a theory will

be found satisfying these four requirements. So the author

is prepared to be flexible but would be very skeptical about



any proposed theory that seriously viclates any of these
requirements.

At present there are two principles (in addition to the
principles of quantum mechanics) wnich one hopes will be a
part of a real theory when it is found, namely, locality and
Gell-Mann's current commutators. Model-independent tests of
these principles are of vital importance. Locality can be
tested, at least partially, by checking forward dispersion
relations and rigorous bounds on high energy cross sections.
However these tests do not involve detailed experiments on
multiple production processes, so they will not be discussed
further here.’ One has some ideas on what the fundamental
parameters of strong interactions are, namely, the strengths
of the SU(3)X SU(3) breaking terms in the Lagrangian are
probably fﬁndamental parameters. It is difficult to learn
much about these parameters in a model-independent way from
high energy cross sections. We have not even a glimmering of
an idea what the equations of strong interactions would be,
let alone how to obtain qualitatively or quantitatively the
solution of these equations.

It is likely that the equations of strong interactions
will be as complicated as the many-body equations of non-
relativistic quantum mechanics or classical physics. In
consequence it will probably be very difficult to get detailed
quantitative solutions of them; the best one can hope for is

to determine the basic qualitative features of their solution.



Because of this I think the experimental program on multiple
production should be aimed at finding clear-cut qualitative
features of these processes rather than trying to have pre-
cise numerical data on particular processes just to test a
particular model. Also, I think it is more important to under-
stand processes with large cross sections than to study pro-
cesses with small cross sections. For example, the elastic

. cross sections at large angles where the cross sections are
~10™2 or less may well be usefess for either finding or
testing a real theory because there can be very many competing
small effects which would become important in calculating a
cross section of this size. Where a cross section is large
there is more hope that a few qualitative features of the
theory will be sufficient to determine the behavior of the
cross section.

There are already known a number of simple properties of

high energy cross sections which are good examples of the
"elear-cut qualitative features' that one should look for.
We know that (at presently accessible large energies) total
cross sections are constant (at least roughly). Elastic or
quasi-elastic cross sections requiring exchange of intermal
quantum numbers (isospin, strangeness, etc.) fall with s

roughly like gl o=l

where a depends only on what is exchanged
and not the particular process. In multiple production pro-
cesses, we know that the transverse momentum of secondaries

is bounded, having a mean value around 300 MeV independent of



the incident energies. Tae probanility of finding a secondary
with transverse momentum P, much larger chan 300 GaV falls
rapidly as P, increaces, pernaps exponeatially. As new
energy ranges open up it is imporccanc £o check that tnese
results continue to hold.

Now the three types of hign energy events discussed in
this paper will be defined., It will be assumed that total
cross sections are strictly constant at hign energy (i.e. they

do not increase with energy, even logarithmically). First

0)

consider diffraction and diffraction dissociation. These

are the processes that would be described by single Pomeron
exchange, if one can describe these processes by Regge theory.
They include elastic and quasi-elastic scattering where no
quantum numbers are exchanged. They also include processes in
which the incident or target particle (or both) fragment into
several particles where the several particles are not just the

7

decay products of an N* or p or etc. It is assumed that the
cross sections Zor diffraction or diffraccion dissociation to
a fixed final state are comstant at high energy. By a 'fixed
final state', I mean that the fragments of the target particle
have fixed momenta in the lab system independent of the
incident energy, while the fragments of the incident particle
have longitudinal momenta which are fixed fractions of the
incident energy (fixed x in the Feynman language) and fixed

transverse momenta.

The assumption that total cross sections are constant
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puts a strong restriction on the nature of diffraction
dissociation. Consider the partial cross section o (diff) for
producing n secondaries by diffracrion dissociation at high
energies. Because of the constant total cross section,

Zn 0, (diff) must be finite. Since oy, 95, etc. are fixed
with energy, this means Un(diff) - 0 as n = . This means
that diffraction dissociation will go predominantly to low
-multiplicity intermediate states. In other words the mean
multiplicity in diffraction dissociation must be constant
independent of energy. 1If the average multiplicity of all
inelastic events increases indefinitely with energy there must
be other processes besides diffraction dissociation.

By the same argument the probability that a pion of
longitudinal momentum k is emitted as a fragment of the
target in diffractioh dissociation to a final state of fixed
multiplicity must decrease rapidly as k, increases; to
be precise the cross section must fall faster than l/kz, since
the integral over kz nust converge.8 To produce pions of
large kz is possible only if large multiplicities are allowed
so that large kz pions appear simultaneously with low kz pions
rather than in separate events. But by the previous argument
large multiplicities are unimportant for diffraction
dissociation.

So our picture of diffraction dissociation is that
diffraction dissociation cross sections are constant with

energy for fixed final states, that the final states resulting
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from diffraction dissociation are predominantly of low multi-
plicity, and that final state particles will mostly be of low
energy either in the lab system or the projectile system.
There will be a tail of events not satisfying these criteria,
but it will be assumed that this tail is negligible compared
to multiperipheral cross sections.

Secondly, consider double Regge pole exchange. A typical
double Regge pole exchange process is shown in Fig. 1:
p+p =>p+p+ p° where the p® is at rest in the center-of-
mass system, with pions exchanged between the p° and each
proton: Double Regge pole exchange is expected to apply when
the particles emitted at the intermediate vertex are highly
relativistic with respect to both incident particles; in other
words when the particle s across each Regge pole is large (Sl
and Sp of Fig. 2 must be large). For any exchange other than
double Pomeron exchange these double exchanges should fall
rapidly with energy and hence be a negligible part of the
total cross section. If there is double Pomeron exchange
these processes are important, and wreck the picture of this
paper because with double Pomeron exchange one has a process
with a fixed number of particles in the final state where
secondaries can come out with any k. However, because
diffraction may well not be an exchange process at all, and
because multiple Pomeron exchange causes theoretical diffi-
culties% it will be assumed here that double Pomeron exchange
is either non-existent or very small. One of the experiments

described later is to test this assumption.
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Finally, consider multiperipheral processes. The multi-
10

peripheral model of Amati, Fubini, and Stanghellini™ " is at
first sight a special model basad on multiple pion exchanges
which one would not want to take very seriously. But as
Amati et al. found, the multiperipheral model exhibits simple
scaling laws for inelastic processes at high energieslo
(including the scaling law for the single particle spectrum
rediscovered 7 years later by Feynma 3). These scaling laws
‘were shown by Amati et al. to be independent of the details
of the model, such as the values of coupling constants; one
can also have other particle exchanges besides pions. By
multiperipheral processes I mean any processes satisfying the
scaling laws predicted from the multiperipheral model. The
author has stated elsewhere the rules for constructing such

10

scaling laws. The best way to introduce these scaling laws

is, I think, to use an analogy invented by Feynman.ll This
analogy links multiparticle production cross sections to the
multiparticle distribution functions of a classical gas, with
the total cross section becoming the partition function of a
gas. This analogy is very much on Feynman's ﬁind when he dis-
cusses his parton model of high energy collisions, although it
is not discussed in his papers.

In the Feynman gas analogy, a secondary particle with

momen tum k’ and energy ko corresponds to a gas particle at

position r; the components of r are
~J oS
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Xk, (1)
y =k (2)
z = fnf(k,+k_)/m, ] (3)
and m, = (2 +k2 +x2)l/2 (4)

Here m is the mass of the secondary and k. and ky are the
transverse components of the momentum. The variable z is
Feynman's "rapidity™ and is used because a Lorentz transforma-
tion in the z direction on k is equivalent to a translation of
Z.

It will be assumed that multiple production cross
sections are defined using the invariant form of phase space
d3k/ko for each secondary. When one changes variables from‘h
to r, invariant phase space becomes just Pr. We also need
the form of the energy-momentum conservatica §-functions

written in terms of the r variables. One notes that
"~

_ z

ko +k, =me | (5)
m2 -z

ko =y = PR T Me ()

Let 51 and S, be the r variables of the incidené particles
while I1se+s,r  are the coordinates of the secondaries. Let
the incident momenta be p; and Pos the secondary momenta

51 "'Enf Let p = pl-Fpe-kl-...-kn; then the energy-

momentum conservation & functions are

8(pg)8? (P) = 25(py+p,)8(Py - P,)5%(p, ) (7)

One now has
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where Cl is the z component of 5 and {? the z component of

Sp3 Wq and h, are the masses of the iunccuwing particles (which
~

have no transverse momentum so L, = |t , KL, = 1, , ). The
1 11 2 2L
vector p, contains the transverse components (px, py) of p.
The total cross section, written in v variable form, is
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LA N 2 i "I' e -. r
where Uanl, ’fh’ﬁl’EQ) is the invariant cross section™ fo

producing n secondaries with r variables ry««. . One must

- ~r

" . - T 4
also sum over particle species (7 ,nn,w ,K , etc.) but this

will not be written explicitly.

In the Feynman analogy ol(ﬁl,ga), With,ﬁl and'g2 fixed,
is a partition function of a gas, and the functions
Un(ﬁl""’gn'31’£2) are the n-particle distribution functions
for the gas. The gas has some strange features, namely the
restriction on the positions of particles given by the
6-functions and the fact that transverse coordinates x and y
are measured in GeV; these features will not upset the useful-

ness of the analogy.
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The most important effect of the d-functions is to bound
the longitudinal positions z; of the gas particles. Assume
the invariant s = (p1'+p2)2 is large, and that one is in the
lab system. Then one finds

t1 = In[s/uqu,] (12)
0 (13)

C?
The 6 function for p, puts an upper bound on the Zgo namely
they cannot be much larger than §1 (zi can be larger than Cl
if my is less than p;, but the maximum value of z; -{; is
En(ul/mi) where m; is the mass of the secondary, and this
quantity is a constant independent of s). Similarly, the &
function for p_ puts a lower bound on Zss namely it cannot be
much less than {, = O (z; cannot be less than -fn(n,/m,).
Hence the quantities Ql and C2 define boundaries in the z
direction for the gas; one can imagine the gas being confired
between walls at Cl and C2. The separation of the walls is
proportional to fns and goes to infinity as s = o ., The
wall at {; will be called the "incident particle wall'; the
wall at £, is the "target wall". The Feynman gas is illus-
trated in Fig. 2.

In the transverse direction there are also kinematic
bounds but these are not noticeable except near the walls at
Cl and Ce; away from these walls the dynamic property of
bounded transverse momenta keeps the gas largely confined to a
tube of radius ~300 MeV.

In a real gas with over 1027 particles one does not even
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think of measuring the distribution functions for these 1022
particles. Instead one measuresthermodynamic (statistical)
average properties of the gas, such as the density. A density
p(E) is readily defined for the Feynman gas; to be precise it

is a function p(r,sl,s The density-density correlation
~ a~d

2)-
function is another statistical average which is readily de-
fined for the Feynman gas; it is a function g(fl’EE’El’EE)'
In real gases a knowledge of the density and density correla-
tion functions (as a function of temperature and pressure,
say) determines all the properties of the gas of practical
interest. By analogy a knowledge of the density and density-
density correlations of the Feymman gas should be invaluable
for characterizing its properties.

The density p(E,El,ge) is simply the invariant single
particle spectrum for the scattering problem. The definition
of the density p is that p(g,gl,ﬁg)dBr is the average number of

particles to be found in the volume dzr. From the partition

function of Eq. (1)) it follows that p is

_ 1 0 1 3 3
p(r,81,85) = 5 51555) “n=2 '(n—.ﬂ'rfd vy e JPr
(14)

26(p4)8(p_)0% (5, )9 (715 + 5 To1 581 550)
This is just the probability density per collision to produce a
secondary with position variable‘g [i.e. momentum 5 given by
Eqs. (1) - (4)]. 1If one converts from position variables to
momentum variables, p becomes a function p(k,pl,pe). Since

Pr is d3k/ko, p(k,pl,pz)dBR/ko is the probability per
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collision to produce & secondary of momentum k in a range Pk.
This p is an inclusive quantity in Feynman's language; all
events are included which have a secondary in this range. 1In
practice one defines separate densities for each particle
species-—w+,wo,w-,K+, etc. I have normalized the spectrum to
the total cross section instead of the total inelastic cross
section as is sometimes done; the question of normalization
will be reconsidered later.

To define the two particle correlation function one first
defines a joint probability density P(z’ztkflﬂﬁe) for finding

one particle at r, another at r'. P is given by
Fac

' _ 1 o 1 J} 3
P(E%E ’El{fQ) oTEsl,sei “n=2 (n-2)7 47Ty "‘jﬁ Tn-2

26(1”.{_)‘5(13_)‘52(&)01-1(5’5'arf]_’“'szn_gs'ﬁl!‘fg) (15)

If the particles of the gas were uncorrelated the joint
probability density P(ﬁ’E"ﬁl’Ee) would be a product of two
single particle densities. The correlation function is defined
by subtracting this product from P:

8(x,x',81:5,) = P(r,x',81,85) = p(L,81,85)0(2"51:55) - (16)
The most interesting property of the correlation function for
a real gas is the correlation length €. Qualitatively £
measures the maximum separation |£-£U for which g(E’E') is
appreciably different from zero. Quantitatively £ is defined
from the expectation that 3(5’51) falls off exponentially in
the separation IE'E!I when this separation is large. One then

defines £ by the asymptotic form
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glE.x') = exp{- fx-£tl7e } (17)
'
apart from a power of lz-x ).

By analogy with the real gas one should define a correla-
tion length £ for the Feynman gas. This makes sense only at
high energies where large values of lr—z'l are possible and

~

one might be able to see experimentally the function g(r,r')
~ o~
dropping to zero as |r-r'| increases. Consider, to be

. s + - . :
specific, the m -7 correlation function; let r refer to the
~

: 2 - ;
m , r' to the 7 and let k and k' be the corresponding momenta.
-~

. i + - . P
Let s,_be the invariant mass of the m -7 pair; in terms of

the r variables, one has
~
i B

. ] . " 1
(m,. is the 7 mass). The "perpendicular masses m, and m,

are typically approximately equal to ky and gi, all being of

- 2
sy. = 2m~+ 2m m!| cosh(z-z') - %EL-EL (18)

order 300 MeV. So for s, to be large, z-z' must be large.
One expects strong correlation between the v+ and 7 when

Sy g_nk? (mp is the p mass). The best one can hope for is
2
0"
fall-off one has to let z-z' become large. In principle one

that g(z,z',gl,ge) becomes small when s, >> m To see this
can also make s, large by going to large transverse momenta,
but this means going well out into the tail of transverse
momentum distribution. This involves looking at small cross
sections of the kind one would prefer to .Ezvoit:‘l.]'3 - So what one
should look for is a correlation length in g(ﬁlgl’ﬁl’EQ) as a
function of the longitudinal variables z and z'; an experiment

to measure this correlation function is included in the
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program,

The Feynman gae amalogy makes clear, I think, that any
program to studylmultiple production should include experi-
ments on the single particle spectrum and two-particle corre-
lation functions.

To motivate the general predictions of the multiperipheral
model, imagine that the particles of the Feynman gas interact
only through short range forces. In particular, assume the
range of the forces stays fixed as s increases, so that for
large s the range of forces is small comparad to the separation
of the walls of the gas. I shall not give a precise definition
for the idea of '"'short range forces'", as it is hard to formulate
as a mathematical property of the distribution functions o.
Further discussion of this problem is given in the Appendix.

The hypothesis suggests some propertics of the density and
correlation functions for large s. The part of the gas that is
well away from the walls has no direct interacticns with the
walls, in fact being many interaction lengths away from them.
One would then expect the properties of the gas:in this region
to be independent of the precise location of the walls. This
means 9(5’51’§2) should be independent of 51 andﬁ2 when Ly~ %
and z - [, are large: p(z’i1’§2) - p(i) for £; -z and

z-—C2 -> o, By Lorentz invariance in the collision plane, which
is translational invariance along the z axis for ﬁhe Feynman
gas, p(E) cannot depend on z so p(z) depends only on x and v,

1%

i.e. only on k,. The parf of the gas near the incident
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particle wall (z = Cl) is many interaction lengths away from

the target wall; for this range of z, p should depend on il but
not on $,: 9(5'31’32) = p(x,sy) when z -, => » holding §, -z
fixed. . By translational invariance p(E’fl) can depend only on
kL and z-cl. Translated into momentum variables, this means
that p(k,pl,pe) depends only on k, and ko/p10 (Feynman's x varia-
blels) when Pio > with x held fixed. These are just the
scaling predictions of Amati, Fubini, Stanghellinilo, Feynman3,
and Yang et 21.3 for the single particle spectrum,

Similarly, the correlation function g(ﬁﬂﬁ"flifE) should
be independent of Sq when z, z', and 1 all go to w , and in
this limit should‘;epend on z, z', and Cl only in terms of the
differences z - z' and z'-cl. So if one holds k , Ki, and
z' -, fixed (i.e. fixed inelasticity x' for the particle with
momentum r'), the correlation function should depend only on
z-z' and not on {; (i.e. not on s). Hence the correlation

length £ should also be independent of s, for fixed k, ,

Kk, »

and z' - {,+ More generally, the correlation length cannot
become large as s increases no matter what values one uses for
k,, gi, or z', since a dependence on s is possible only if
g(z,z',gl,ie) depends simultaneously on El andffe, and for
sufficiently large s this is excluded by the short range force
picture. (Once one has a function independent of §1 or s,, one
can write a scaling law for that function from which one shows

that € is bounded.)

If the density of the Feynman gas is independent of z
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except near the walls, the mean number n of particles in the
Feynman gas is of order Cl"CE ~ fn s. There can be large
fluctuations in the density over small ranges of z, but these
are unlikely to be coherent over the entire volume of the gas
so fluctuations in the number n of particles about m should

)1/2.16

be small relative to n, presumably of order (n In
particular it is unlikely that n will be 2 or 3 or 4 when s is
sufficiently large. But this is in clear contradiction with
the assumption that diffractive cross sections are constant as
s = . This provides the motivation for trying to distinguish
diffractive processes from multiperipheral processes; we
imagine that it is only the multiperipheral part of the
inelastic cross sections which act like the distribution
functions of a gas with short range forces. It would then only
be the multiperipheral cross sections which produce a multi-
plicity proportional to fns on the average, with fluctuations
of order [bnsfﬂ/z. Since diffractive cross sections are mostly
of low multiplicity, while the multiplicity of multiperipheral
processes increases indefinitely with s, they should be
clearly separated at sufficiently large s. In particular, for
very large s there should be values of the multiplicity n with
1 << n << fns for which both the diffractive and multiperipheral
cross sections should be very small. One of the experiments is
designed to test whether multiperipheral processes can be dis-
tinguished by their multiplicity from diffractive processes.'
We must now reexamine the problem of how to normalize the

single particle spectrum. This normalization is important due
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to the definition of the two particle correlation function
' . U
g(£,£ ,31,32). In particular, whether g(g,z ﬂ§1%§2) goes to
zero as | r-r'| becomes large depends on how p(r,sl,sz) and
~N o ~N oo
P(r,r',sl,sg) are normalized [see Eq. (16)]. 1If it is only
~No o ~
the multiperipheral part of the inelastic cross sections which
behave like distribution functions of a gas with short range
forces then it is desirable to define a partition function
which is a sum only over multiperipheral cross sections and to
define the density and correlation functions using this
partition function. What this means is that both P and p
should be normalized using oys the multiperipheral part of the

cross section, rather than either o, or the total inelastic

T
. 1
cross section. Let us denote by pM(EﬂflﬂfE) and gM(fﬂf 251;§2)
the density and correlation function for the multiperipheral
cross sections normalized to o,. That is, py(r,s;,s )d3r is
M MiT>51:52
the probability per multiperipheral interaction that a secon-

dary is found in a multiperipheral interaction with position

variable r in a range @r. It will now be assumed that

it is pM(ﬁ’El’fe) and gM(E’E"£1’32) (rather than p(x,s;,s,)
and g(ﬁ’ﬁ'ﬂfl’fQ) which satisfy the Amati-Fubini-Stanghellini
scaling laws.

One now has the problem of determining whether p and g
will also satisfy scaling laws or whether one must measure PM
and gy separately. The answer is that some scaling laws apply
also to p and g, some do not. For example, the scaling law

pM(E’ﬁl’fe) - pM(Efﬁl) when {; and z —> « holds also for p.
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To see this one defines pD(r,sl,se) to be the single particle
L B Rl

spectrum for diffractive events, normalized to the total

diffractive cross section op+ At high energies we assume the

total cross section g, is approximately equal to op+ oy; then

P(}:agl’jg) = '5]:',{)"""5;1 pD(.E’.E]-’j?) + ED_?iEg Pm(ﬁsflsﬁg) (19)
One further assumption: assume that Oy approaches a constant
as s = o(i.e. does not go to zero). Now it is easily seen
that pD(E’fl’EQ) becomes independent off2 when z and {; >
due to diffractive cross sections individually being constant
for large s. Since c¢p and oy are constants for large s, the
combined spectrum p is also independent of Sp» in the limit z
and Cl - ™,

An example of a result holding for gM(§’£|’£1’32) which
does not hold for the full correlation function g(x,z',gl,gg)
is the result that gM(E,E',El,EQ) - 0 when 1z-2z'l>> ¢ where
£ is a fixed correlation length. Suppose for example that C1
is very large, z' ~ £y and z lies in the range 0<< z<< ¢y (so
that cl-z and z-C2 are both >> 1). Then there are no

diffractive events which give secondaries of position r; as a
~

result the correlation function g(r,r',sl,se) can be written
~ N ~ ~

Pt i i sl B P TR SRS
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opPp(E 281 »S2) FopPp(E'581185)

M %D
a OO
- M 1 - MD 1
oo BM(Z:E 2 51082) (onitor )2 Pu(Z21552) Pp(Z +31552)
M °D

- pM(E;"El’EQ) (20)



oY

It follows from this formula that the full correlation
function 8(5’5"21’32) will not be zero for|z-z'| large unless
the digfractive spectrum pp is equal to the multiperipheral
spectrum py. This is impossible for all z' because pM(ﬁihfltfe)
is constant when {,<<z'<<; while pD(£"§1’52) is zero in
this range.

The problem of separating multiperipheral and diffractive
events will be discussed in connection with individual experi-
ments.

To conclude the discussion of multiperipheral events there
are two miscellaneous observations to be made. First, there has
always been some reluctance to measure secondary pion spectra on
the grounds that most of them are probably decay products of p's,
Al's, etc., and so one would prefer to know the spectra of p's
and Al's. However, the scaling laws of Amati, Fubini, and
Stanghellini for pion spectra are equally valid whether or not

10 The intuitive reason for

the 7's are mostly decay products.
this is that the decay process is itself a short range effect in
r-space [for example a 77 and 7~ with an invariant mass of order
m, cannot have a large separation in z, frOm_Eq: (18)]. Hence,
if the cross sections for producing p's and other resonances
obey the multiperipheral scaling laws, then so will the cross
sections for the 7's resulting from p decays. This means that
to test the multiperipheral scaling laws it is pointless to

distinguish 7's from p decay from uncorrelated 7's.

The second observation is this. In p-p collisions it is
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possible for pions to be emitted backwards in the lab system
due to the low mass of the pion. The minimum z for the pion
is -zn(mp/mv) where m  is the proton mass (this was shown
earlier). This value for z corresponds to a rather fast back-
ward pion. It is not easy to find dynamic mechanisms that
would produce such fast backward pions; they are too fast to
be decay products of low-lying N*'s. So there should not be
many such pions. By symmetry there cannot be many pions going
much faster than the incident proton either, for such pions
would be going backwards in the rest system of the incident
proton. However a pion having the same velocity as the inci-
dent proton and a transverse momentum of about 300 MeV has
only 1/3 the energy of the incident proton. Hence the spectrum
of pions in p-p collisions should fall rapidly as the
longitudinal momentum kz of the pion increases once kz/E > 1/3
where E is the incident proton energy. This is the explana-
tion for the exponential fall-off in kz seen experimentally
for kz/E > 1/4 in pion spectra in p-p collisions.17 This
exponential tail is useful for experimental purposes, as will
be discussed later. No similar tail is expected for high
energy m's in 7-p interactions; in m-p interactions the 7 spec-
trum should be reasonably ‘flat up to the kinematic limit
kz/E ~ 1.

Now a specific program of experiments will be described.
They test the theoretical ideas already described. However, if

the predictions are correct the experiments can be interpreted
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without making numerical fits to a particular model; rather
the experiments will define non-trivial properties of multiple
production which all future models would have to agree with.
The experiments should all be feasible with present-day tech-
niques. I have tried to define the simplest and most practical
experiment to test each theoretical prediction; I hope that
these experiments will not be replaced by more elaborate
"improvements'" of them. The individual experiments are not
new; what is important is that they form a sensible program.
Experiment 1: Partial Cross Sections as a Function of
Multiplicity
In this experiment one considers p-p interactions at fixed

but large s. One measures the partial cross section o s) for

nc(
producing n charged secondaries, as a function of n. No dis-
tinction is made between w+,w-,p, P, etc.: all charged
particles are counted, and all neutrals are ignored. What one
is looking for is a dip in a plot of cnc(s) versus n. Namely,
at sufficiently high s the partial cross section o__(s) should
first decrease with n as one moves out of the diffraction
dissociation region, and then increase again as n approaches
the mean multiplicity Hé(s) of charged secondaries from multi-
peripheral processes. One expects EE(S) to be proportional to
Ins, so the larger s is the more pronounced the dip should be.
There is no guarantee that a dip will occur at the energies

of NAL or the CERN ISR, even if the theoretical picture of

diffraction dissociation plus multiperipheralism is correct.
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So an absence of a dip, while disappointing, does not disprove
the picture. The importance of the experiment is that a dip, if
found,, would be clear cut and model independent evidence for the
existence of two separate processes in multiple production.

If one could detect neutrals as easily as charged parti-
cles one would measure o_(s), the partial cross section for
producing n secondaries including neutrals instead of dnc(s).
Because the mean number n(s) of all secondaries in multiperipheral
processes is larger than ﬁé(s), the dip is likely to appear at a
lower energy in the function o_(s) than in o_.(s). But I
believe the charged multiplicity remains the simplest experi-
ment to do even if large bubble chambers can see y-rays, and I
urge that an experiment on charged multiplicities not be held up

in hopes of doing a measurement including neutrals.

The next group of experiments concern the single particle
spectrum. For purposes of this discussion I shall write p as a

function of kL, k_, and E, where KL is the transverse momentum

z
of the secondary, k, is the longitudinal momentum in the lab
system of the secondary, and E is the incident energy. Phase
space is &k/k_: p(k ,k_,E)@k/k_ is the probability per
collision to find a secondary of momentum k in a range Fk.

~
There are separate spectra for v+,v_,K+, etc.; there are also
according to theory separate spectra pD(kL,kz,E) and pM(kL,kZ,E)
for diffractive events and multiperipheral events. The spectrum

py is normalized to the total multiperipheral cross section UM(S)
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instead of the total cross section; pp is normalized to the
total diffractive cross section: When it is necessary to
separate py Or pp from p we will discuss how to do it, if
possible. |

I beg all experimentalists not to plot single particle
spectra as angular distributions. It is k¢, not an angle,
which has an average value around 300 MeV independent of k,;
this fact makes plots vs. k, and k, much simpler to interpret
than angular distributions. I personally prefer the use of
the lab variable kz or else the rapidity z to a center-of-mass

variable, since the multiperipheral scaling laws look simpler

in terms of these variables.

Experiment 2: Beam Survey from a Hydrogen Target

In this experiment one measures the spectrum p(kL,kz,E)
of high energy secondary m mesons from p-p collisions. The
measurement is made varying E holding k, and kZ/E fixed (fixed
x in Feynman's language). The prediction to be tested is that
p(k,,k,,E) is independent of E when k, and kz/E are held fixed.
The range of E should be ~30 GeV and up; k, should be of order
300 MeV and kZ/E ~ 1/3. The choice of k, and k; is meant to
ensure that one is in a region where the spectrum is large.
The choice of m~ over other particles is for simplicity, since
all but a few negative secondaries are m . A good experiment
would be to hold k.L fixed, measure the spectrum as a function
of kz and E and try to fit the data to an exponential depending

only on kz/E.
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The experiment can also bé done in #+p or m p collisions
but in this case one does not have the exponential behavior in
k, which makes for a good experiment. On the other hand, one
can get to higher values of kz for the secondary m if the inci-
dent particle is a 7, since the limitation kz/E < 1/3 no longer
applies.

There is no need to separate diffractive from multiperipheral
contributions since both are predicted to obey the Amati-Fubini-

Stanghellini-Feynman scaiing law.

Experiment 3: Factorization in the Single Particle Spectrum

In this experiment one measures the spectrum p(kl,kz,E)
for backwards m in the lab in both p-p and m-p collisioms.
The energy E is high and fixed; I suggest holding k, fixed and
fitting to an exponential in kz. What one is testing for is
whether these spectra are equal for p-p and m-p collisions,
that is whether p(KL’kz’E)wp = p(kL,kz,E)pp. According to the
picture described earlier the multiperipheral spectrum
pM(kL,kz,E)'shbuld be the same for high energy 7 p and pp
collisions as long as one is looking at low energy secondaries;
this is because a low energy particle is a particle near the
target wall in the Feynman gas and cannot tell what particle was
incident at the other wall which is many interaction lengths
away. (This prediction is another general consequence of the

10.) It is not clear whether or not the

multiperipheral model
diffractive component pD(k ,kz,E) should be the same for w-p

and p-p collisions. 1If diffraction is described by a simple



30

Regge pole then the factorization property of Regge poles
requires that pD(kl, kz,E) be the same for 7-p and p-p. If
diffraction is something else than Regge exchange then
pD(EL,kz,E) could very well be different (at least in magnitude,
if not in shape) for m-p and p-p scattering. If this is the
case then one will see a violation of factorization when one
performs this experiment. I do not expect there will be large
violations of factorization, so I think it is important to do
this experiment carefully so that one can make accurate com-
parisons of mp and pp collisions at the same values of‘h; also
the experiment will have to be done at several incident energies
E to see if any violations of factorization persist as E
increases. One does not have to use incident 7's and p's of the
same energy; one might instead use 7's and p's with the same
velocity, which means the m would have 1/7 of the energy of
the proton. I would suggest a compromise: Let the incident
m's have 1/3 the energy of the incident protons.

There is no way in this experiment to separate PM from
Pps @ separate experiment will be proposed later to test factori-
zation in multiperipheral processes separately.

- This experiment tests whether factorization holds when p
has both diffractive and multiperipheral contributions. Even
if factorization breaks down, it is still possible for Pp and
py separately to factorize; if Pp # py and if the ratio
UM/GTOT is different for mp and pp collisions, then p will not
factorize (see Eq. (19)).
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Experiment 4: The dkz/kz Law

In this experiment one measures the spectrum p(KL,kz,E)
of secondary m in p-p collisions. The energy E is held fixed
and should be the highest energy available. The spectrum is
measured as a function of k, holding k, fixed. As usual k,
should be of order 300 MeV, while kZ should be in the inter-
mediate range, say 1 GeV<k, <E/4. What one is testing for is
whether p(KL,kz,E) is independent of kz in the range
1 GeV<<k, << E/4. This prediction is called the "de/kz" law
because longitudinal phase space has the form dkz/kz in this
region.

The problem with this experiment is that the prediction
that p is independent of k, is valid only for secondaries which
in the Feynman gas analogy must be many interaction lengths
away from both walls. In experiments 2 and 3 the only require-
ment is that the walls be separated by many interaction lengths.
So if "many interaction lengths" turns out to be a distance z_,
then the bound for s in experiments 2 and 3 is
€q - C2 = zn(s/ulue))>zo but the bound for this experiment is
£n(s/u1u2)2>2zo. To double fns means squaring s; for example,
if experiments 2 and 3 require s >30 GeV2, this experiment
requires s > 900 GeV2! (ul and w, are of order 1 in GeV for p-p
collisions and can be neglected in these units.) One is
further squeezed in this experiment because the pions must have

z's considerably less than 52 which means energies << E/3 instead

of energies << E. This latter squeeze can be avoided by using
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mp instead of pp collisions; if one can get enough incident
pions with more than 1/3 the beam energy the 7p experiment is
probably better.

The prediction is precisely that pM(EL,kZ,E) is inde-
pendent of kz in the intermediate range; but according to the
picture of diffraction described earlier pD(KL,kZ,E) is
negligible in this range so p(EL,kZ,E) should also be inde-

pendent of kz in the intermediate range.

18

Experiment 5: Search for Double Pomeron Exchange

In this experiment one measures the cross section for the
specific reaction p+p = p’Fp'Fﬂﬁ:¥W-. One looks in particular
at r+—v" pairs whose center of mass is at rest in the center-of-
mass system of the incident particles. The cross section is
studied as a function of the incident energy E and the invariant
mass squared s' of the pair. What one is looking for is
a) the energy dependence of the reaction, for fixed s', and
b) whether the p peak broadens as E increases.

The theory of this experiment is as follows. Double
pomeron exchange (see Fig. 1), if it exists, can only produce
I=0 7 pairs and cannot produce p's. Pomeron exchange with
the incident particle plus p exchange with the target particle
can produce p's. Double Pomeron exchange if it exists should
become the dominant process compared to other exchanges at
sufficiently high energies. There should not be a narrow
resonance like the p in the I=0 channel; if I=0 pairs become

important the p peak in the 7' -7~ mass distribution should
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appear to be broadened due to these pairs. The cross section
for producing p's should fall with energy; for example, if p's
are produced by Pomeron exchange + p exchange, one finds the

cross section should behave as E-1/2

, E being the incident energy.
(To be precise the ecross section is the cross section for pro-
ducing‘v+-w_ pairs with fixed windows in the center of mass
for the w+ and 7 and no restrictions on the final state of
the protons.) A naive double Pomeron model predicts a constant
cross section for f+-v- pairs with I1=0; there are enough problems
with double Pomeron exchange9 that I am unwilling to make this
or any other prediction for the I=0 pair cross section.

There is no sign of I=0 production at 30 GeV energies,
so it is unlikely to overwhelm p production at NAL or CERN
energies; at best the 1=0 cross section might become com-
parable to the p cross section.

In summary one leoks at the energy dependence of the p
cross section to see if it falls with E according to a Pomeron
+ p exchange model or another exchange model; one looks for a
broadening of the p peak to see if there is double Pomeron

exchange.

Experiment 6: Correlation Length Experiment

In this experiment one measures the two-particle spectrum
P(kl,kz,ki,k;,E) for production of a 7 of momentum k and a
7 of momentum k' in 7 p collisions. That is the probability

of finding a 7T of momentum k and a 7~ of momenmtum k' in ranges
X x

&’k and &k' in the final state, per collision, is



P’k @k'/k k.. This is an inclusive experiment in the Feynman

terminology. For fixed and large E, one holds ,kl, and k;

k,
fixed,‘with k, and ki_of order 300 MeV and ké ~ E (say kz==2E/3).
P is then measured as a function of kz. In other words one
looks at a fast forward m of fixed momentum, while varying the
longitudinal momentum of the w+. One wants a wide range of kz,
say from 500 MeV up to the beam momentum. Along with P, one
should also measure p(kL,kz,E) and p(ki,k;,E) for use in the
analysis discussed below.
If one uses the naive analogy to a gas then what one

should do with the data is to compute the two particle corre-

lation function g(kl,kz,kl,k;,E):

8(k, sk, k] k!, E) = Plk,  k, ki, k!, E) = plk, ok, E)p{k] k!, E)
(21)
What is interesting is to see if this correlation function
exhibits a correlation length, i.e. see if it goes to zero as
kz becomes small compared to k; and E. This is the first
thing to investigate with the data. However, according to the
theory of this paper it is the multiperipheral correlation
function gy (instead of g) that should have a correlation
length. If g does not go to zero when kz is small compared
to k; and E, then it is worth looking for a correlation length
in multiperipheral processes alone.
For kz in the intermediate range (300 MeV<ksz<3:E), both
P and p(k;'kz’E) should be free of diffractive contributions

and hence differ only in normalization from Py and py. Hence,
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if gy shows a correlation length, one should have
Plepsk, k), ko, E)/ p(k, ,k,,E) = Py/py = py(k),k},E) (22)

There is no independent way to measure pM(kL,k;,E), so the
content of this equation is that P/p should be independent of
kz when kz is in the intermediate range. This suggests that
one look for a correlation length by seeing if P/p does
approach a constant for kz<KIE. I1f so, the way to obtain a
correlation length is to fit the departure of P/p from the
constant to an exponential in the gas variable z, or else find
the value of ¢ = |z-z'l above which P/p is constant.

It is quite possible that P/p will be constant for kz'
in the intermediate range, but depart from this constant when
kz is small and P and p again have diffractive contributions.

For 25 GeV incident pions there is no intermediate range
for kz, because diffraction dissociation or isobar decays can
produce pions at rest in the center-of-mass system. This will
not be possible at NAL energies, unless diffraction dissociation
involves intermediate states of mass > 2 GeV (cf. Franzinie).

The main aim in choosing experimental parameters is to
have an intermediate range for k_ not contaminated with
diffraction dissociation products. It is important for this
reason not to let k, be much smaller than 300 MeV. The reason
for this is that the invariant mass squared of the w+ and T ,

for k, in the intermediate region, is

sy = Kk!/k, . (23)



36

If ki_is small then s, will be small even if the 7' is trans-
verse in the center of mass (i.e. in the middle of the inter-
mediate range). In practice one would like s _>14 GeVZ or so
when the w+ is transverse in the center of mass, to be well away
from diffraction dissociation effects. One does not want to
increase k¢.mUCh beyond 300 MeV because then one gets into the

tail of the transverse momentum distribution and out of the

interesting regiOn.l3

Experiment 7: Test of Factorization in Multiperipheral Processes
In this experiment one measures P(kl,kz,ki,k;,E) and

p(ki,ké,E) for very large fixed E in both 7p and pp collisions.

The momentum k' refers to a v+ coming out at 90° in the center

of mass, its momentum is held fixed. The momentum k refers to

a m which is backwards in the lab system (as in the previous

factorization experiment). Define

pMexp(k*’kz’E) = P(k, ,k,,k;,k},E)/p(ki,k},E) (24)

The purpose of this experiment is to see whether pMeXP(EL,kz,E)
is the same for mp and pp collisions.

The only difference experimentally between this experiment
and Experiment 3 is that instead of measuring the backwards
pion spectrum for all collisions one is now measuring the
backwards pion spectrum only for those collisions which emit a
transverse w* in the center of mass as well as a backwards
pion. In other words one is using the transverse pions as an

event or beam monitor. This excludes diffractive events
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according to our theoretical picture; both P and p should be
proportional to Py and py and the ratios P/p should equal
PH/pM. , Furthermore the v+ and 7 will be well separated in z
S0 PM(kL,kz,ki,k;,E) should factor into pM(KL,kz,E)pM(kl,k;,E).
Hence one expects

pMexp(kl,kz,E) L) pM(kL,kz,E) (25)
Hence comparing pMexp(EL,kZ,E) for mp and pp collisions is a
test of factorization for multiperipheral processes alone. As
in Experiment 3 one should make this test at several energies

E so one can see whether violations of factorization decrease

as E increases.

These seven experiments constitute the experimental
program. If any of these experiments agrees well with the pre-
diction, the result will be interesting whether or not one likes
the diffractive plus multiperipheral picture of multiple pro-
duction. Every one of the predictions cited can be wrong and
it would be remarkable if they all were to be verified. If it
turns out that diffractive events are not distiqguishable from
multiperipheral events, Experiment 7 may not be‘worth pursuing.
There are many reasonable ways to modify the experiments
proposed here but I hope that such modifications will be
examined critically to determine if they achieve the objectives
of these experiments as clearly and as simply as the specific

experiments cited here.
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Appendix. Short Range Forces and Bounded Transverse Momentum

In the text the hypothesis of short range forces in the
Feynman gas was used without specifying it precisely. It was
also pointed out that it is hard to reconcile the observed
bounded transverse momentum of secondaries with one's intuitive
picture of the Feynman gas if it has short range forces. The
multiperipheral model suggests a definition of short range
forces from which one predicts bounded transverse momenta: the
purpose of this Appendix is to describe this definition and show
how it leads to bounded transverse momenta.

An intuitive picture of short range forces would be that
the dependence of Sn(EI’EE""’Kn’51’52) on one of the 5'8’
say I, would be affected only by other z's which are near ;.
A quantitative way of saying this is that if one changes 51 to

ri the exact value of r, does not matter if Irl-rel is large, i.e.
~L A
~ i~
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] I !
On(E1sXns ++5T381585)  _ Op(B15500 0 +5Xn28180)
O . e e . : & a o >
nlf1sTps«+>X581,85) 0 (X13Xps +++ 205815 55)

(A.1)

i . . . . ] ]
in a limit in which ]32-51[ - o while 151_511 and | 52152]
are held fixed. But this is not the prediction of the
multiperipheral model. 1In the multiperipheral model one must
first introduce a set of momentum transfer variables. If

kl,...,kn are the four-momenta of the secondaries, then one

defines
91 = Py - K
9 = 497 - kg
&’
9h-1 = -2 ~ kn-l " kn - Pp (A.2)

(see Fig. 3).

In the model of multiple meson exchanges, the k; are the momenta
of secondaries in order of emission from the multiperipheral
chain (Fig. 3). If one writes the cross section for emitting

n secondaries as a function On(ql""’qn-l’pl’pQ) of the n-1
momentum transfers, then the multiperipheral cross

section factorizes into functions depending on neighboring

q; (i.e. qq and d5, OY q, and q3, etc.). The pfincipal source
of this dependence on neighboring q's ‘is the kinematic re-

striction that (qi-qi_l)e - m? where m; is the mass of the

jth secondary; the propagators of the multiperipheral chain-
depend only on a single q;- If the vertices of the chain are
not point-like, they also depend on neighboring q -

The first generalization from the multiperipheral model

is that the short range force idea should be stated in terms
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of momentum transfers'qi instead of secondary momenta ki. But
there are still problems. The multiperipheral model predicts
a factorization in terms of an ordering of the 94 rather than
in terms of separation of a; from qj' That is, the dependence
of O, On gy in the multiperipheral model is independent of the
values of 95455 dj.p» €tc., regardless of whether di4p OF 94,5
is close to q; or not, and dependent on q,,, even if (qi"qiil)2
is large. 1In summary the cn's of the multiperipheral model
look more like a random walk distribution function than a gas
distribution with short range forces.

An analysis of the multiperipheral model shows that on
the average the q tend to order themselves so that 96 95+10
and kiz>’ki+1z; the highest energy transfers occur at the end
of the chain associated with the incident particle, and the
secondaries with the highest longitudinal momentum are emitted
near this end of the chair. Also the quantities (qi--qi_j)2
tend to increase as j increases, so on the average the factori-
zation of the multiperipheral is similar to a short range force
hypothesis. This suggests that the way to generalize the
multiperipheral model is as follows. First, one defines an
ordering of the secondary momenta, namely, they should be
numbered so that k; > Ky, 2 o0 2 k. (An alternative is to
order in terms of the z variables: 21222223 ...). Then
one defines 915259, by Eqs. (A.2). Then one supposes that
the dependence of cn(ql,...,qn_l,pl,pe) on q; is determined

only by those qj for which'(qj-qi)e is small. Since
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S35 = (qi--qj)2 is the total mass squared of the secondaries
numbered i+l to j (or j+l1 to i if j<i), it is reasonable to
suppose a dependence on Sij when Sij is in the resonance region;
the crucial assumption is that there will be no appreciable
dependence on 853 when 853 is beyond the region of the princi-
pal resonances.

There is another part to any short-range force hypothesis,
namely, the dependence of cn(ql oo qn—l’Pl’pQ) on q; must not
be changed if one changes the total number of secondaries but
leaves unchanged the qj near q; (in a gas analogy this is saying
the distribution function for particles in one region cannot
be changed if one adds or subtracts particles in a far-away
region). This is also true in the multiperipheral model and
should be demanded for any generalization from it. A quanti-
tative statement of this requirement will not be given.

As far as the properties of one and two particle spectra
are concerned, a short range force hypothesis in terms of the
q; is as good as a short range force hypothesis in terms of
the ki themselves. The reason is that ki =4;-4939 and q;
and q;_q are close variables; if ki and k. are ﬁell separated
the variables q and 9.1 tend also to be well separated from
q.

J
kj tend to be uncorrelated. One also assumes uncorrelated

and 93.1> and as a result the particles of momentum ki and

. 2 2
dependence on p; or p, and q 1€ (pl-qj) or (pg-qu) is
large; this then leads to factorization of the dependence of

spectra on the secondary momenta k and the incident momenta when
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the secondary is (in the gas analogy) well away from the walls.
These results can be shown in detail for the multiperipheral
model itself using the multiperipheral integral equation of
Amati, Fubini, and Stanghellinil'®; to show that scaling laws
hold for a generalized short range force picture quantitatively
is more difficult but it seems reasonable that they should still
hold.

Finally, using the momentum transfer variables q, it is
easy to bound the transverse momenta of secondaries. All that
is necessary is to bound the momentum transfers qf. The reason
that this bounds the transverse components kLL.OE ki is the
following. First, one shows that the 2-vector (qio’qiz) is
spacelike (except possibly for i near 1 or n). The reason is
simple. Consider the two-vectors (plo’plz)’ (p20’p22)’ (klo,klz),“
(kno’knz)' These are all timelike two-vectors, with masses
HysHpsMy H.e.,m . If the two-vector momentum transfer from P
to k]_"'...'l-ki is timelike also it acts like a final state
particle in one of two ways: either in the sense of splitting
P into qi+kl+ +ki or in splitting Py into -qi+ki+1+ ...+kn.
For the first splitting to be possible the mass R of p; must
exceed the sum of the masses mj of kl ...ki but since m, .2“3
this sum usually exceeds Hq (except for special cases when i is
small and the outgoing particles have lower rest masses than
the incident particle). Likewise it is unlikely for the sum of
m, from j = i+l to j = n to be less than Hoe Hence (q.o,qiz)

J i
is spacelike. But this means qii'< qul, so if qué' is bounded
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then qii.is also; since ki =495 -95.1> kiL is bounded also.
This argument breaks down if the incident particles have

large perpendicular momenta, for then the two-vectors (py,,P7,)

and (p20’p22) have masses ull_and uai_WhiCh are large and it is

quite easy for (q to be timelike. In summary, all links

10°947)
of the multiperipheral chain and its generalizations know the
direction of the momentum of the incident particle; however

the magnitude of this momentum is forgotten through a random

walk effect as one goes many links away from the incident

particle.
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Figure Captions

Fig. 1, Double Regge pole exchange graph for process
p+p = p+p+7 +7 . The exchanges can be T
exchange or any combination of Pomeron and p
exchange. The invariants s1 and s, are the
invariant mass squared for the Regge poles I and

ITI respectively.

Fig. 2 Sketch of the Feymman gas showing walls at Cl
and CQ and the bound on \r, | . There can be
.
some leakage beyond the walls, as noted in the.

text. 4 and L, are the incident particle masses.

Fig. 3 Multiperipheral chain.
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