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An algorithm for optimization of the multicell cavity cells is proposed. Inner cells are optimized for

minimal losses or minimal magnetic field, when the aperture diameter, Epk=Eacc—the ratio of peak

electric field to the accelerating field, and the wall slope angle are given. Optimization of the end cells is

done for minimal losses or maximal acceleration in them. Two shapes of the end cells—with and without

the end irises—are analyzed. This approach facilitates further optimization for higher order modes

extraction because it permits keeping the achieved optimal values nearly the same while changing some

dimensions of the cells. Comparison of the proposed cavity geometry with the TESLA cavity geometry

illustrates the traits of the presented approach. It is also shown that lower values of the wall slope angle,

which lead to the reentrant shape for the inner cells, are also beneficial for the end cells. For the Cornell

Energy Recovery Linac most dangerous are dipole modes causing the beam breakup (BBU).

Minimization of power of higher order modes (HOMs) in a multicell cavity was done using derivatives

of the BBU parameter with respect to geometric parameters of the cavity cells. As a starting point of

optimization, the shape with minimal losses at the fundamental mode was taken. Further changing the

shape for better propagation of HOMs was done with degradation of the fundamental mode loss parameter

G � Rsh=Q within 1% while decrease of the BBU parameter was nearly 3 orders of magnitude. The BBU

threshold current tends to be inversely proportional to this parameter.
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I. INTRODUCTION

A superconducting (SC) cavity is an expensive device as
regards to material, technology of mechanical and chemi-
cal processing, and conditions of work: vacuum, liquid
helium, adverse effect of outside magnetic fields, etc.

On the first glance, the choice of a superconducting
cavity shape does not seem to be a complicated issue and
a wide variety of cavity shapes can be fabricated using
nearly identical manufacturing procedures. However,
along with the surface treatment, the shape determines
nearly all basic cavity figures of merit, such as achievable
acceleration (accelerating field Eacc), peak electric and
magnetic field (Epk and Hpk), and minimal losses (G �
Rsh=Q, geometric factor times specific shunt impedance).
It plays a major role in setting limits to maximal beam
current and minimal emittance, which strongly depend on
beam excitation of higher order modes (HOMs). A poorly
chosen shape can be responsible for multipacting, which
can limit the accelerating voltage, impair vacuum, and heat
the cavity surface.

Many of the problems associated with the choice of
cavity shape were overcome early on by adopting spheri-
cal/elliptical cell shape with tilted end plates [1]. A cumu-
lative experience of the superconducting radiofrequency
(SRF) community was later applied to the development of
the cavities for the TESLA project [2]. The resulting cavity

shape was remarkably well optimized as we will see in the
following sections.
Further development of the individual cells’ shape is due

to progress achieved in developing clean cavity preparation
procedures that reduced significance of the peak electric
field and led to understanding of the principal importance
of the ratio of peak magnetic field to the accelerating field
[3] and proposal of usage of the reentrant (RE) shape [4],
which decreases the value of Hpk=Eacc sacrificing to some

extent the ratio Epk=Eacc. This approach brought world

record accelerating gradient values of 47 MV=m [5] and
52 MV=m [6] for a single-cell 1300 MHz SC cavity with
70 mm aperture, 20% higher Epk=Eacc, and 10% lower

Hpk=Eacc than in the TESLA cavity.

There is still a lot to be done to convince the SRF
community that reentrant (RE) SC cavities should be ac-
cepted for broad use in accelerator applications. One of the
most pressing issues is to demonstrate that the high accel-
erating gradient can be achieved in a multicell RE cavity.
In spite of the success of single-cell reentrant cavities,
some people expect problems with chemical treatment of
multicell cavities. These problems are now being studied at
Cornell. Behavior of HOMs is also to be studied for this
geometry.
In what follows, the author wants to separate the prob-

lem of optimization for minimal losses of the cavity and
the problem of HOMs extraction. The inner cavity cells can
be optimized for maximal GRsh=Q, whereas the end cells
can be tuned for extraction of HOMs. The end cells’*vs65@cornell.edu
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GRsh=Q can be sacrificed to some extent because their
contribution to the total losses is limited. The similar
procedure was done for the TESLA cavity optimization
(Haebel, 1992 [2]).

This paper consists of two major parts. In the first part,
optimization for maximal GRsh=Q (minimal losses) is
done for inner and end cells. The description of tuning
the end cells for HOMs extraction is the subject of the
second part.

As a preliminary work, a thorough study of both non-RE
and RE geometries of the inner cells was performed and
optimal shapes for these cells were found in [7]. Any wall
slope angle, the Epk=Eacc ratio, and aperture radius can be

given depending on the project requirements. All other
geometrical dimensions of the inner cell in the elliptic
approximation for both equatorial and iris region can be
found using the tabulated data or following the procedure
described in these papers.

Shape and parameters of the end cells of a multicell
cavity are mostly responsible for propagation of HOMs out
of the cavity. At the same time they should not reduce the
total value of acceleration and not be the weakest link in
the sense of Epk or Hpk.

Under preset limitations on the aperture, Epk=Eacc, and

the wall slope angle, the optimization of the inner cells
consists in minimization of losses for a given Eacc.
Acceleration in the end cells is not necessarily the same
as in the inner ones. One can optimize the end cells in two
different ways: either for maximal acceleration regardless
of the power loss (minEpk=Eacc, because Epk should be

the same as in the inner cells), or for maximal acceleration
per unit power (maxG � Rsh=Q for the end cells). The first
optimization brings maximal acceleration for a given num-
ber of cells, the second one—for a given power. While the
difference in results can be small, it is important to under-
stand what optimization is being performed.

A short recollection of the inner cell shape optimization
is presented here. More details can be found in [7]. Some
aspects of the end cell optimization are also discussed in
the present paper.

Optimization of a SC cavity for minimal losses of the
fundamental mode power is necessary because these losses
define the major part of total power needed for cryogenics
in the continuous wave operation. On the other hand, the
current in the accelerator is limited by HOMs excited in the
cavities by the electron bunches, and to minimize this
detrimental effect one should change this initially found
‘‘best’’ shape.

We suppose to resolve this contradiction in the following
way. (1) Find the best shape of the inner and end cells of the
cavity from the viewpoint of minimal losses. (2) Change
the shape of the end cells, even end half-cells only, to
improve coupling between the cavity and the beam pipes
keeping the increase of fundamental losses in the end cells
at some limited level. The losses will increase in the end

cells only, so the total relative increase will be smaller for a
multicell cavity. (3) If necessary, change the shape of the
inner cells, keeping in mind their bigger contribution into
total losses.

II. OPTIMIZATION OFA MULTICELL CAVITY
FOR MINIMAL LOSSES

A. Inner cell shape: The geometry for optimization

We employ the construction of the cell profile line as
two elliptic arcs with half-axes A, B, a, and b, separated by
a straight segment of length l, Fig. 1, conjugated to arcs.
We talk about a nonreentrant shape if the angle � is more
than 90�. The reentrant cell can also have a straight seg-
ment. In earlier optimization [4] the length of this segment
appeared to be zero after consecutive steps of optimization.
The radius of the iris aperture Ra is chosen by some

additional considerations; it is not the task of this optimi-
zation and should be taken as an independent parameter.
The length L of the half-cell is taken as a quarter of the
wavelength, and boundary conditions correspond to the �
mode. The procedure of search for the best shape consists
in calculatingHpk=Eacc orG � Rsh=Q for all suitable sets of

the half-axes; the value of Req is used for tuning the inner

cells to the operating frequency. (In further discussion the
tuning is done to the resonance frequency f ¼ 1300 MHz,
which is the fundamental � mode of the cavity).
Sure, a more intricate profile line can give a better

eventual result, and we used earlier a description of the
profile with six circular arcs [4]. However, an improvement
of Hpk=Eacc was not more than 1% in the case of six circle

arcs in comparison to two elliptic arcs though this optimi-
zation can be incomplete because of its complexity.
Adoption of an elliptic arc for the equatorial area is

crucial. The problem of cavity electric strength led to the
iris edge to take the shape of an elliptic arc a long time ago.
We apply an ellipse to the inductive part of the cell because
now we have a problem of magnetic strength.

FIG. 1. (Color) Geometry of the inner cell: nonreentrant (left)
and reentrant (right) shapes.
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In the optimization with two elliptic arcs without a
straight segment we have three independent parameters
for optimization: three half-axes (A, B, and a), the fourth
one (b) is defined by geometrical restrictions.

If we introduce the limiting angle of slope we need to
search the minimum (of Hpk=Eacc or losses) in a 4D space:

A, B, a, and b under two limiting conditions: Epk=Eacc is

less and the angle � is bigger than definite values. As a
result of these conditions the value of l can be not a zero
anymore.

Calculations were done with TUNEDCELL code that is a
wrapper code for SLANS and was developed especially for
fast optimization [8]. The SLANS code [9] is known as a
code with high accuracy [10] that is necessary for our goal.

B. Results of optimization inner cells

Results of optimization for a minimal magnetic peak
field are presented in Fig. 2 (solid lines). For easier com-
parison with the well-known TESLA cavity [2], with � ¼
103:2� which is a prototype for the ILC, the values of
Hpk=Eacc on the graph are normalized to corresponding

values of TESLA (42 Oe=ðMV=mÞ) so that h ¼
Hpk=42Eacc is equal to 1 for TESLA cells. {According to

our calculations, the normalized magnetic field appears
about 1.5% less than this value [41:4 Oe=ðMV=mÞ], as
shown on the graph, Fig. 2. In publications [2] of 1992
(Haebel) Hpk=Eacc ¼ 41:7, later (Edwards, 1995) this

value is shown as 42, the last publication (Aune, 2000)

gives 42:6 Oe=ðMV=mÞ. Normalization for 42 is chosen
because: (1) it is convenient to use ‘‘round’’ numbers,
(2) some deviations in different references are about this
value.} Another defining parameter, Epk=Eacc which is

close to 2 for the TESLA cells, was kept for the upper
curve and increased for the next ones. (Again, our calcu-
lations give for the TESLA regular cells Epk=Eacc ¼ 1:99.

This is why this point slightly falls out of the curve.) 10%
higher electric peak field decreases the magnetic peak field
by 7% as can be seen from the end point of the second solid
curve. A sacrifice of the next 10% in electric field de-
creases h more only by 2% [4] giving in sum �9% in h
for þ20% in Epk=Eacc. The aperture radius Ra ¼ 35 mm

for the first group of curves is the same as in TESLA inner
cells while it is 30 mm for another group. Influence and a
possible benefit for higher gradient from decreasing the
aperture is much higher than from increasing the over-
voltage Epk=Eacc. Smaller aperture causes smaller cou-

pling and hence worst field flatness, also as higher
wakefields. However, it is shown that ILC will tolerate
the cavities with the new (reentrant) shape and the smaller
iris diameter [11].
Results of optimization for maximal G � Rsh=Q are pre-

sented in Fig. 3. They are also normalized for the TESLA
value: g � r=q ¼ ðG � Rsh=QÞ=ð30 800 Ohm2Þ.
The extreme left points of curves in Figs. 2 and 3

correspond to minimal length of the straight segment:
l ¼ 0 when the cell presents two conjugated elliptic arcs,
the geometry discussed earlier [4,12].

FIG. 2. (Color) Normalized magnetic peak field for different
angles of slope. Solid lines present optimization for min h,
dash lines are for maxG � Rsh=Q.

FIG. 3. (Color) Normalized loss parameter for different angles
of slope. Solid lines are for maxG � Rsh=Q, dashed lines are for
minimal h. (Graphically both lines nearly overlap).
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When optimizing for maxG � Rsh=Q, the values of h
slightly increase, these dependences are shown in Fig. 2
by dashed lines. When we optimize formin h, values ofG �
Rsh=Q become somehow smaller than immediately by
maximization of G � Rsh=Q. There is an attempt to show
this in Fig. 3 by dashed lines but actually these lines
graphically coincide with the solid ones. This means that
we do not need to optimize for maxG � Rsh=Q—optimiza-
tion for min h gives us the shapes that have practically
minimal losses. When we try to optimize for maxG �
Rsh=Q, the maximal magnetic field shifts to smaller radius
because the losses depend not only on the value of the field
but also on the value of area where it exists. Smaller radii
can give a smaller contribution to losses even if they have a
higher field. However, this change is negligible if we
optimize for maxG � Rsh=Q. A minimal peak magnetic
field secures low losses in the whole cavity.

Another remarkable fact is that the cell-to-cell coupling
for the inner cells optimized for minimal Hpk=Eacc in-

creases when passing from non-RE to RE geometry,
Fig. 4. Even though this benefit is not very significant,
about 0.1%, it denies the anxiety that the coupling can be
lower for the RE case.

Distributions of the magnetic field along the profile line
of the cells with Ra ¼ 30 mm, Epk=Eacc ¼ 2:2 and with

minimal slope angle (lowest curves in Fig. 2 and the uppers
in Fig. 3, extreme left points with l ¼ 0) for both cases of
optimization are shown in Fig. 5.

There is also shown on the graphs of Figs. 2 and 3 the
cell of the low-loss (LL) cavity of JLab [13]. This well-

optimized geometry takes its place on our graphs corre-
sponding to its aperture and slope angle (98.0�). Its posi-
tion on the graphs is defined also by Epk=Eacc ¼ 2:22 and

Ra ¼ 30:49 mm (recalculated to 1300 MHz). These ex-
amples, both TESLA and LL, show that cavity cells can be
compared only taking into account their Epk=Eacc ratio,

aperture radius Ra, and the wall slope angle. After the
choice of these values, the correct optimization should be
done, and other figures of merit can be obtained. There is
no necessity to optimize specially for low losses because
optimization for lowest peak magnetic field successfully
serves to both goals: highest gradients and lowest losses.
Calculation of elliptic arc parameters, namely A, B, a,

and b, for both cases of optimization, appeared a time-
consuming task not only because of four-dimensional
space of these parameters but also because of a very small
change of h in some cases when this parameters are varied.
Gradients of the functions could not be calculated because
the computational noise becomes higher than accuracy of
calculations for small steps. To avoid false local minima
the dependences of these parameters on � were also ana-
lyzed. First results of these calculations gave smooth
curves hð�Þ but points for dependences Að�Þ, Bð�Þ, and
so on were scattered. After more accurate calculation most
points fell on smooth curves though corrections of hð�Þ
were mainly in the fourth digit. Results for these depen-
dences and other details are presented in our inner report
[7] (second paper).
Further in this paper we will use a seven-cell cavity

being developed for the Cornell Energy Recovery Linac
(ERL) as an example. During preliminary discussions of
this project it was decided to choose an optimized inner
cell with Epk=Eacc ¼ 2, � ¼ 95�, and Ra ¼ 35 mm.

These numbers, according to [7], lead to the following
geometry and parameters: A ¼ 43:99, B ¼ 35:06, a ¼
12:53, b ¼ 20:95 (all in mm), G � Rsh=Q ¼ 31 838 Ohm2

(3% higher than for the TESLA cavity), and Hpk=Eacc ¼
40:23 Oe=ðMV=mÞ (96% of the TESLA cavity). Small

FIG. 4. (Color) Cell-to-cell coupling vs angle of slope for inner
cell optimized for minimal h.

FIG. 5. (Color) Geometries of the cells (left picture) with min h
(red solid line) and maxG � Rsh=Q (blue dashed line) practically
coincide. Difference in magnetic fields along the profile lines of
the cell (right) is also negligible. A, B, a, and b are half-axes of
elliptic arcs.
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improvements are mainly due to a smaller value of �: the
TESLA cavity inner cells have � ¼ 103:2�. A summary of
geometrical limitations for inner and end cells will be done
in Sec. III because some of them are connected with
propagation of HOMs.

C. End cells of a multicell cavity

Let us consider two shapes of the end cells presented in
Fig. 6. The left half-cells are taken to be of the same shape
as the inner half-cells. However, the right half-cells should
be different because addition of the beam pipe changes
both the frequency and the field distribution.

For the seven-cell cavity we have chosen asymmetric
end cells: one of each type. The radius of the beam pipe for
the type a end is Rbp ¼ 39 mm, like in the TESLA cav-

ities. For the type b end Rae ¼ 37 mm, and Rbp ¼ 55 mm.

These values were adopted after several preliminary at-
tempts to optimize higher order modes. Some considera-
tion about further optimization of these radii will be given
later.

The equatorial radius of the end half-cells is now fixed to
be equal to the radius of the inner, optimized, cell. In
contrast with the inner cells, where Req was used for

tuning, tuning of the end cell is now performed by chang-
ing its length Le (all parameters of the end half-cells are
denoted by the index e, of the inner cell by i, and of the
elliptic arc on the tube side by t). Dimensions Ae, Be, ae,
be, at, bt, and c can be used for optimization. Of course, so
many free parameters make the problem of optimization
very difficult, but we can ease our task by making some
simplifications. For example, the value of the rounding
radius c influences the frequency and peak fields very
weakly and can vary in a broad range. On the other hand,
if this radius is small, a local minimum of the electric field
occurs in this corner that can lead to multipactor [14] (in
spite of weakness of this field). A reasonable choice for c is
2 � ðRbp � RaeÞ as was checked in the cited paper.

The end cells can be optimized separately from the rest
of the structure if they are tuned to the same frequency.
However, even in this case, when the end cell is added to
several inner cells with the same frequency, the frequency
of the united structure is slightly different from the initial
one. This frequency shift depends on the cell-to-cell cou-
pling and was about�1 � � � þ 3 kHz for the type a end cell
andþ4 � � � þ 5 kHz for the type b. For optimization of the
end cells, analogous to inner cells, a special envelope code
TUNEDCELLEND was developed [8] on the basis of the

SLANS code for both end cell geometries discussed here.

This code saves time spent on tuning to the desired fre-
quency and, like the above-mentioned TUNEDCELL code,
makes it possible to analyze shapes for selected sets of
half-axes. Thus the tuning change of Le is moved ‘‘out of
brackets’’ and from now on we may not mention Le when
tuning the end cell separately of others.
In the following we will use Ae and Be as a pair of

variables for optimization. In principle, it is possible to
choose any other pair of values, e.g. ae and be, and make
compensation for one of them by changing the second one,
keeping all other variables (Ae and Be in this case)
constant.

D. Optimization of end cells for maximum acceleration

1. End cells of the type a

Curvature radius at the lowest point of the rightmost
ellipse [Fig. 6(a)] is chosen to be not less than 6 mm
because of possible technological problems in the process
of stamping the half-cells. Let us start with this curvature
and the simplest case of ae ¼ be ¼ 6 mm. Scanning Ae

and Be, one can plot the dependence of e ¼ Epk=2Eacc on

these variables, Fig. 7. The value of e should be minimal if
we want maximal acceleration in the end cell, according to
its definition and by the following reasons. The accelerat-
ing field of the last cell is defined as Eacc ¼ Vacc=ð�=2Þ ¼
Vacc=ð2LiÞ like for the inner cell. This is because we are
actually interested in acceleration in the end cell and by

FIG. 6. (Color) Two possible end cells of a multicell cavity: with
a simple transition to the beam pipe (a), and with an iris and a
broader beam pipe (b).
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changing the length of the end half-cell for tuning we want
to increase the voltage Vacc without paying much attention
to its length. At the same time, the maximal electric field
Epk should be on the inner side of the end cell. In this case

it will be the same as on the other side of the inner iris due
to the same geometry of both sides of it. The right-hand
rising part of each curve in Fig. 7 corresponds to the peak
of electric field jump from the left side (iris) to the right
side (pipe rounding) of the cell in Fig. 6(a). This is why the
progress of the curves changes. One can see a very shallow
minimum of the envelope curve close to Ae ¼ 48 mm and
Be ¼ 33 mm (Fig. 7). When we move along the envelope
curve, changes of Ae are compensated by adjusting Be so
that each point on the envelope curve corresponds to the
minimum of e for an individual curve e vs Be.

By changing the value ae ¼ be, one can find that the
minimum of such envelopes occurs at the value of about
12 mm, Fig. 8(a). Values of Ae, providing minimal e for
each Be, are shown in Fig. 8(b). Figure 8(c) reveals that the
wall slope angle decreases very fast with the increase of
ae ¼ be. So we have to stop at ae ¼ be ¼ 10 mm having
e ¼ 1:0125, because of the agreement to keep the angle
� � 95�. [The curve with ae ¼ be ¼ 11 mm is not shown
because it overlaps with the curve for 10 mm in Fig. 8(a)
and gives no improvement in e.]

Further improvement in e can be made if we allow ae �
be, and make the iris elliptical. This phase of optimization
can be done by small steps around the best point while
checking for two conditions: � � 95� and radius of cur-
vature Rc ¼ a2e=be � 6 mm as it was mentioned above.
This optimization results in transforming the circle ae ¼
be ¼ 10 mm into an ellipse with ae ¼ 8:4 mm, be ¼
11:5 mm at Ae ¼ 50:9 mm, Be ¼ 45:3 mm for e ¼
1:0103. The final result for the type a minimum e value
is shown as a separate point in Figs. 8(a)–8(c).

The last step of the procedure can be called a fine-tuning
for the minimum. It was not used from the very beginning
because a very shallow minimum of e is difficult to find

FIG. 8. (Color) Normalized electric field e envelopes (a), length
of the half-axis Ae (b), and the wall slope angle � (c) for
different circular roundings of the iris (ae ¼ be) vs length of
the other half-axis, Be. The single point is the final result.

FIG. 7. (Color) Normalized electric field vs Be and Ae for ae ¼
be ¼ 6 mm.
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and the search often led to false minima because of lack of
accuracy and was very time consuming. The phase of
initial, rough tuning (Figs. 7 and 8) provides us some
additional clues: we could see that values of half-axes
can vary in a broad range having the optimized function
nearly the same. For example, Be can be changed within
10 mm while e increases by no more than 0.1%, see
Fig. 8(a). Here the change of Be is compensated by the
change of Ae, Fig. 8(b). This fact can be used for tuning
HOMs without noticeable decrease of e or G � Rsh=Q of
the fundamental mode.

Further calculations were done for the half-cavity with
an electric wall boundary condition at the left end plane,
Fig. 9, to exclude influence of the other end cell. The upper
curve in Fig. 10 is analogous to the V-like curves of Fig. 7
for the end cell when only Be is being changed, and the
frequency is kept constant by adjusting Le. The lower
curve is for the half-cavity case. Addition of the end cell
disrupts flatness of the electric field on the axis of the inner
cells and changes the frequency by about 1 kHz. Tuning by
changing the end half-cell length Le restores the flatness.
This tuning is similar to tuning field flatness of the cavity
in situ because it amounts for only a few microns of length
change and cannot be achieved in fabrication.

One can see that the point where the electric field peak
jumps from the inner iris to the outer side of the cell is at a
different value of Be for the half-cavity as compared to the
end cell calculated alone, Fig. 10. However, at bigger
values of Be the angle � decreases below 95�, so one could
not increase Be, and even if one could, the decrease of e
with this change is negligible. The value of e for the half-
cavity can be found using formula

e ¼ 7Epk

5Eacc;i þ 2Eacc;e

¼ 7

5=ei þ 2=ee
: (1)

For ei ¼ 1 (actually 1.0002) and ei ¼ 1:0103 we calculate
e ¼ 1:0031. The actual value from computer simulation is
1.0035. The discrepancy is due to a change of the end cell
by tuning and accuracy of calculation.

2. End cells of the type b

For the end cells of type b we could not search for
minimum e with arbitrary values of ae and at. This is
because the sum ae þ at in this optimization would grow
infinitely resulting in a smaller radius of the beam pipe Rbp

and preventing propagation of some HOMs. So this value
has to be limited in some way. ‘‘Thickness’’ of the iris can
be defined by its curvature radius at the point nearest to the
axis, for inner cells it is Rci ¼ a2i =bi ¼ 7:494 mm. For the
end iris we have two curvatures: Rce ¼ a2e=be and Rct ¼
a2t =bt. Let us set the upper limit for the end iris to Rce þ
Rct < 2Rci � 15 mm. Technological limitations Rce �
6 mm, Rct � 6 mm are also valid as above.
Graphs analogous to the graphs for the type a cell are

shown in Figs. 11 and 12. The same behavior of the peak
electric field, jumping from one side of the cell to the other
one when Be increases, is observed as for the type a
transition, Fig. 7. Reduction of the normalized electric field
with growing sizes of the end iris is shown in Fig. 12 in

FIG. 9. Half-cavity with the type a end cell.

FIG. 10. (Color) e ¼ Epk=2Eacc for the type a end cell alone and
for the half-cavity from Fig. 9.

FIG. 11. (Color) Normalized electric field e vs Be and Ae for
ae ¼ be ¼ 6 mm for the type b end cell.
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accordance with above-mentioned effect of the smaller
beam-pipe radius. Three upper curves in Fig. 12 are calcu-
lated for equal half-axes of the end iris. The fourth curve
shows the result of redistribution of the curvature radii in
the sum Rce þ Rct ¼ 15 ¼ 9þ 6 mm: if the outer radius
is smaller the force lines are better attracted to it and Eacc

increases. The lowest curve represents replacement of the
circle of radius 9 mm by an ellipse with same curvature at
the lowest point. Further increase of ae and be is prevented
by the 95� limit on the wall slope angle. Change of the
outer elliptic arcs of the end iris under condition a2t =bt �
6 mm leads only to a negligibly small decrease of e when
both at and bt grow. This is also because of an effective
decrease of the beam-pipe diameter with the thicker iris.
Thus we decided to keep at ¼ bt ¼ 6 mm.

The final (‘‘fine’’) tuning of the type b end cell gives
min ee ¼ 1:0174 for Ae ¼ 52:1, Be ¼ 47:9, ae ¼ 9:9,
be ¼ 11:3 mm, and �e ¼ 95:0�. This is shown as a sepa-
rate point in Fig. 12. Behavior of ee vs Be, when all other
cell dimensions but Le are constant, is shown in Fig. 14,
upper curve. The lower curve, for the half-cavity, has e ¼
1:0054, while from (1) we calculate 1.0051.

After adding the type b end cell to the chain of half-cells
(Fig. 13), the frequency of the whole cavity became several

kHz higher and the decrease of Le was needed to tune the
half-cavity. Figure 14 is similar to Fig. 10. Comparing
these two figures, one can see that now the jump of the
peak electric field to the outer iris happens at a smaller
difference of Be values before and after adding than for the
type a end cell.

E. Optimization of end cells for minimal losses

1. End cells of the type a

Results of optimization for minimal losses of the type a
end cells are presented in Fig. 15. Normalization of G �
Rsh=Q (or Rsh, which is the same because we compare the
cells from the same material, and G=Q ¼ Rs, surface
resistance, is therefore constant) is made on this value of
the inner cell (G � Rsh=Q ¼ 31 838 Ohm2). As above, we
started from the circular iris with values ae ¼ be ¼ 6 mm:
the lowest group of four curves in Fig. 15. The curve
crossing the other three corresponds to the jump of Epk

from the inner iris to the outer side of the cell (now we do

FIG. 14. (Color) e ¼ Epk=2Eacc for the type b end cell alone and
for the half-cavity from Fig. 13.

FIG. 13. Half-cavity with the type b end cell. FIG. 15. (Color) Normalized Rsh for the type a end cells.

FIG. 12. (Color) Normalized electric field envelopes vs half-axis
length Be for the type b end cells. The single point is the final
result.
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not have this simple indicator as the break of curves in
Figs. 7 and 11). Increase of the values of ae and be up to
10 mm increases the maximum of this separating curve
(see the group of four curves for ae ¼ be ¼ 10 mm, and
Ae ¼ 48, 49, and 50 mm). A further increase of ae and be,
up to 12 mm, leads only to a small increase of the maxi-
mum of the separating curve; the wall slope angle for ae ¼
be > 12 mm becomes smaller than 95� and these points do
not add to the maximal Rsh.

Change to an elliptical cell-to-pipe transition (ae � be)
further improvesRsh, and the best point is shown in Fig. 15.

2. End cells of the type b

Results of optimization for maximal G � Rsh=Q for the
type b cells are shown in Fig. 16. Here we again started
from minimal half-axes of the iris ellipses: ae ¼ be ¼

at ¼ bt ¼ 6 mm—the lowest group of curves, then we
change these values to 7.5 mm, and then redistribute the
sum ae þ at ¼ 15 mm, so that to increase curvature at the
outer side of the iris: ae ¼ be ¼ 9, at ¼ bt ¼ 6 mm. In
these transformations, Epk again jumps from the inner iris

to the outer one. Finally, the best point under two condi-
tions: Epk on the inner iris and � � 95�, is found by

stepwise search of the maximal Rsh.
Adding of the optimized end cell of both a and b types to

the uniform row of inner cells is done similar to the earlier
described procedure for maximal acceleration and requires
only small frequency tuning afterwards.

F. Discussion of optimization results

Results of optimization for maximal acceleration and for
minimal losses are summarized in Table I. In spite of
different goals of two optimizations, the results are very
close in terms of e and G � Rsh=Q. Only 0.03% to 0.04%
gain in Rsh was obtained with optimization for minimal
losses versus optimization for maximum acceleration.
Even smaller gain was obtained for e, not more than
0.01%, which is at the level of accuracy of the calculations.
The situation is similar to the optimization for minimal
losses and for minimal Hpk performed in [7] where the

difference in results and in shapes of the optimal cavities
was very small.
However, in the presented here case half-axes of the big

ellipses differ by more than 0.5 mm, and the cells with
maximal Rsh are about 1% shorter than those with minimal
e. This is not a very strong but an additional argument to
optimize for maximal Rsh: the whole cavity length be-
comes shorter.

FIG. 16. (Color) Normalized Rsh for the type b end cells.

TABLE I. Comparison of geometries. All dimensions are in mm. Rsh=Q is in Ohm, G � Rsh=Q is in Ohm2. Angles �i or �e are in
degrees. Some dimensions for the TESLA [2] cavity (Req, Li and Le) are tuned for 1300 MHz.

Cell ERL ERL, max acceleration ERL, min losses TESLA

Inner End a End b End a End b Inner End 1 End 2

Req 101.205 101.205 101.205 101.205 101.205 103.353 103.353 103.353

Ai or Ae 43.99 50.9 52.1 50.3 51.4 42 40.34 42

Bi or Be 35.06 45.3 47.9 44.8 47.3 42 40.34 42

ai or ae 12.53 8.4 9.9 8.4 10.0 12 10 9

bi or be 20.95 11.5 11.3 11.7 11.5 19 13.5 12.8

at � � � � � � 6 � � � 6 � � � � � � � � �
bt � � � � � � 6 � � � 6 � � � � � � � � �
Ra or Rai 35 35 35 35 35 35 35 35

Rae � � � 39 37 39 37 � � � 39 39

Rbp � � � 39 55 39 55 � � � 39 39

Li or Le 57.6524 59.988 62.665 59.421 62.094 57.6524 55.716 56.815

�i or �e 95.0 95.0 95.1 95.0 95.0 103.2 106.0 107.3

Rsh=Q 116.1 110.0 108.1 110.3 108.5 113.6 110.0 109.4

G � Rsh=Q 31 837 31 404 30 987 31 408 30 991 30 800 29782 29976

G � Rsh=Q 1 0.9864 0.9733 0.9865 0.9735 1 0.9669 0.9732

e ¼ Epk=2Eacc 1 1.0103 1.0174 1.0104 1.0174 0.9938 1.0140 1.0108

Eacc, or Vacc 1 0.9898 0.9829 0.9897 0.9829 1 0.9801 0.9832
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A minimum of e (or maximum of Rsh) is very shallow
and we can remain to be close to it even if one of the
parameters (Ae, Be, ae, be) is perturbed: the other three
variables can be adjusted to compensate the initial devia-
tion, keeping the declared limitations.

The limiting angle � ¼ 95� was reached in all optimi-
zations. This means that the abandonment of angle limita-
tions and transition to the RE shape will be beneficial for
the end cells as it is for the inner ones.

It should be noted that optimization for minimal
Hpk=Eacc is not needed for the end cells, at least in the

presented case. A maximum of the magnetic field always
appears on the inner wall of the end cell and its value is
close to the maximum in the inner cells as it is seen in
Fig. 17.

We can also note that in the case of TESLA cavity, the
magnetic field in the end cells has nearly equal values at
both sides of the end cells while the electric field is lower at
the outer side, Fig. 18.

G. Field flatness

The quality of the cavity tuning is usually characterized
by so-called field flatness, which is defined as cell-to-cell
equality of maximal fields on the cavity axis [15]. This
requirement is important from the practical point of view
and gives a clear guide for cavity tuning.

In the presented here analysis, keeping Epk constant, and

striving to increase Eacc (or to minimize losses), we can

have different maximal fields on axis in the inner and in the
end cells. Our goal makes it unnecessary to have exactly
the same amplitude of the axial electric field in the inner
and end cells. Let us compare fields in the seven-cell ERL
cavity optimized for minimum losses, Fig. 17, with the
TESLA cavity, Fig. 18. The ERL cavity optimized for
maximum acceleration is not too different.
One can see that the maxima of both electric and mag-

netic fields on the surface along the profile line of the ERL
cavity are equal in both inner and end cells. Maximal
electric fields on the cavity axis are higher in the end cells
(2.3% and 2.6%, for the left and right side, respectively)
than in the inner cells. This difference is big enough and
can be taken into account in the process of cavity tuning
after fabrication. Optimization for maximal Rsh made it
possible to have the end cells only by 1.0% (type a) and
1.7% (type b) less accelerating than the inner cells.
The TESLA cavity has not identical end cells. This

asymmetry, however, is not seen in Fig. 18, because of
scale. For calculation of fields in the TESLA cavity, we
used geometric data from [2] but ‘‘tuned’’ them to
1300.000 MHz by changing lengths of the cells and equa-
torial radius, because accuracy given in the papers is not
sufficient to have equal frequencies of inner and end cells,
and, consequently, field flatness of the inner cells. These
changes, however, were within the precision range given in
the papers, for example, the left cell length given as Le ¼
56 mm was tuned to be 55.722 mm. The TESLA cavity

FIG. 18. (Color) Geometry, fields along the profile line, and
electric field on the axis of the TESLA cavity.

FIG. 17. (Color) Geometry of the cavity combined from the two
half-cavities: shown in Fig. 6 (mirrored about the left end plane)
and 10, the fields along the profile line, and the electric field on
axis.
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geometry and our results for fields on the cavity surface
and on axis are presented in Fig. 18. Our ‘‘tuning’’ shows
also a slight excess of the axial field in the end cells, 0.9%
and 1.3%, respectively. The end cells have lower peak
fields on the cell-to-pipe transitions, 7.2% and 7.9%, re-
spectively. Because of this ‘‘easier regime,’’ the contribu-
tion to acceleration of the end cells is lower than in the
inner cells, by 2.0% and 1.6% (both of the type a in our
designation). If this is a payment for better extraction of
HOMs—and the TESLA end cells were designed with this
purpose (Haebel [2])—it is, of course, acceptable.

Each end cell has 4 degrees of freedom: their half-axes
Ae,Be, ae, and be, whereas Req is defined by inner cells and

Le is used for tuning to the fundamental frequency. A very
strong influence of the cell profile on the mode spectrum
was pointed out in [16] that gives us a hint to use these
degrees of freedom—but mainly in the end cells—for
better extraction of HOMs.

III. EXTRACTION OF HOMS FROM A
MULTICELL CAVITY

A. Limitations for the peak electric field and geometric
parameters

We should impose some limitation on the cell shape due
to computational, technological, and other conditions. This
discussion will be also done on the basis of parameters
chosen for the Cornell Energy Recovery Linac (ERL).

We should choose limitations for the cell wall slope
angle. In spite of better loss properties of the reentrant
shape [7], Fig. 1, this shape is still in a stage of detailed
investigations in our lab and elsewhere and now we will
discuss more traditional, nonreentrant shape. Nevertheless,
the angle � of the wall slope should be given, and we will
take � ¼ 95�, trying to come closer to the angles �< 90�
but still to be on the traditional side of this barrier.

The next limitation is connected with normalized peak
surface field Epk=Eacc, where Epk is maximal electric field

on the surface and Eacc is the acceleration Vacc in the cell in
volts divided by �=2. This definition, Eacc ¼ Vacc=ð�=2Þ
instead of Eacc ¼ Vacc=Lcell, where Lcell is the geometric
length of the cell, should be kept for the end cell also
because its active length is not defined: the field is pene-
trating into the beam pipe and actually we are interested in
voltage on the cell, the length of the end cell is not very
important. Increasing the value of Epk=Eacc, one can de-

crease the maximal normalized magnetic field Hpk=Eacc

and losses in the cell. Minimization of Hpk=Eacc also gives

a possibility to achieve the maximal accelerating rate Eacc

in the cavity because the magnetic field is a hard limit for
the SC niobium and the electric field is a soft limit [3].
However, too high Epk=Eacc will lead to the field emission,

and we should be limited by the reasonable value of it. In
the case of the Cornell ERL we took a conservative value
Epk=Eacc ¼ 2.

The basic geometric parameter which we will take as a
given one, is the iris aperture Ra. Smaller values of Ra

decrease losses of the fundamental mode but strongly
increase problems with HOMs. We will rely upon
TESLA experience and take for the inner cells Ra ¼
35 mm. As it was said earlier, the curvature radius of the
iris cannot be too small even if it does not increase the Epk.

This is due to difficulties to guarantee accuracy in the
process of stamping the half-cells.
The higher order modes should have a possibility to

propagate to the load through the beam pipe. So, the radius
of the beam pipe should be above the cutoff value of the
lowest HOMs. In the TESLA cavities (Edwards and Aune
[2]) the beam-pipe radius is Rbp ¼ 39 mm. This corre-

sponds to the cutoff frequency of the dipole mode equal
to fc ¼ 2253 MHz. For the geometry chosen for the ERL
cavity, only modes of the 3rd dipole band and higher can
propagate through this beam pipe. The lowest modes of the
first band have their frequency near 1600 MHz but can be
tuned for our geometry to about 1700 MHz. To guarantee a
possibility of their extraction, we choose the beam-pipe
radius Rbp ¼ 55 mm with a cutoff frequency of 1597 MHz

and decided to make the beam pipes on different sides of
the cavity with different inner radii:Rbpa ¼ 39 and Rbpb ¼
55 mm.
We will keep the smaller radius from one side of the

cavity because in the case of a broad beam pipe we need to
place the HOM load further from the cavity to prevent
degradation of the quality factor of the fundamental (ac-
celerating) mode. We are forced to use a broad pipe but can
use it from only one side of the cavity to make the whole
cavity shorter. The solution with a broad pipe was not used
in the TESLA cavity, possibly because the need to suppress
HOMs was not as essential as it is in the case of the ERL.
Trying not to weaken accelerating properties of the end

cell with a broad pipe, we will use an iris between the
cavity and the broad pipe. So, the end cells will be of two
kinds, Fig. 6, in Sec. II they are called ‘‘end cells of type a,
and type b’’.

B. Model of the HOM load for simulation

If we optimize the end cells for better propagation of
HOMs whose frequencies are over the cutoff, we should
have a nonreflecting load at some distance from the end
cell at each side of the cavity. For the free space such a load

is known: having the impedance of material Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

��0=""0
p

of the same value as the impedance of free

space Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�0="0
p

, we should have relative permeability
and permittivity of the material equal and having nonzero
imaginary parts, for example, � ¼ " ¼ 1� i, we will
have full absorption if the thickness of the absorber is big
enough. Unfortunately, in the waveguide, the impedance
has a dispersion, and such a perfect absorber cannot be
realized in simulation or in practice. The impedance has
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different dependences on frequency for TE waves, ZTE ¼
Z0�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

"�� ð�=�cÞ2
p

, and for TM waves, ZTM ¼ ðZ0="Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

"�� ð�=�cÞ2
p

, where � is the wavelength in the free
space and �c is the cutoff wavelength of an empty
waveguide.

The reflection coefficient from the interface between an
empty and a filled waveguide can be found for the TE wave
as

� ¼
�
�
�
�
�
�
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð�=�Þ2p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð�=�Þ2p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p

�
�
�
�
�
�
�
�

;

where � ¼ �0=�c; for the TM waves � in the equation for
� should be changed by ". If we take the loss tangent equal
to 1, we can see, Fig. 19, that � very weakly depends on the
absolute value of " and�. For simplicity of the mesh in the
simulation of the lossy stuff, we will take � ¼ " ¼ 1� i.

One can see that for the 10% shorter wavelength than the
cutoff wavelength, the reflection is equal to � ¼ 0:5 or
only 25% in power. Absorption of three-quarters of power
propagating into the pipe will secure very low Q of the
mode if the coupling with the pipe is big enough.

The ideal absorption can be found if we calculate the
external quality factorQext of the cavity. Calculation of the
Qext is analyzed in [17]. For the case of the round wave-
guide with a TE11 wave, we can find Qext ¼ QE þQH,
where QE and QH are defined when different boundary
conditions are imposed at the end of the waveguide:

QE ¼ 2U�

"0a
2�2E2

mð1� 1=�02
11Þ � J21ð�0

11Þ
;

QH ¼ 2U

�0a
2�H2

eð1� 1=�02
11Þ � J21ð�0

11Þ
;

where U is total energy in the cavity, � and � are wave-

lengths in the waveguide and in the free space, respec-
tively, a is the radius of the waveguide, Em is the maximal
electric field on the magnetic wall at the butt of the
waveguide, He is the maximal magnetic field on the elec-
tric wall at the butt of the waveguide, and J1ð�0

11Þ is the
Bessel function of the first kind at the point of the first root
of the derivative J01ðxÞ.
In the model, the load is a disk at the butt of the pipe

filled with the lossy material, Fig. 20. A half-cavity with a
magnetic wall at the left boundary was used for this
simulation. The structure of the electric field of a mode
with a low coupling with the load is also presented in the
picture.
Comparison of results with the lossy load in the beam

pipe of radius Rbp ¼ 39 mm having � ¼ " ¼ 1� i and

results with calculated Qext according to above-mentioned
procedure is shown in Fig. 21. The relevant values of the
beam breakup (BBU) parameter p are also presented. Its
change with the transition from the modeled load to the
ideal one is practically the same as of Q because R=Q
weakly depends onQ. The BBU parameter on this figure is
big because this calculation is done before its optimization.
Here the modes of the 3rd dipole band were examined.
One can see that the ideal Qext is about 2 times lower

than the loaded QL at the lowest frequency of this band,
and only 20% lower at the highest frequency. Let us remind
that the cutoff frequency is fc ¼ 2253 MHz, less than 10%
lower than the lowest frequency of this band. It is clear that
for highest bands of HOMs the load with � ¼ " ¼ 1� i
can be treated as a good one.

FIG. 20. A half-cavity with a disk shape load at the end of the
beam pipe for the data presented at Fig. 21 and a dipole mode
with high Qext.

FIG. 19. (Color) Coefficient of reflection from the lossy material
in the waveguide.
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For the 1st dipole band, we have a smaller margin than
for the 3rd one, approximately 1700 MHz versus
1600 MHz, i.e. about 6%. However, as we will see later,
there is no problem with coupling of these modes with the
pipe, and, moreover, the ideal Qext (and, hence, p) is
always less than in the model. Of course, we cannot find
the best solution with the nonideal load but we still can find
a geometry which has a significant coupling with the load.

Final optimization will be done with the model of a real
HOM load which (1) is far from the ideal in the shape, it
cannot fill the whole pipe; and (2) is far from ideal in the
electromagnetic properties of the lossy material. However,
we will try to separate again our task: first we separated
optimization of the fundamental mode and HOMs; now we
are trying to separate optimization of the HOMs extraction
and their absorption by the load.

C. Usage of derivatives @p=@q

We can find derivatives @p=@q of the BBU parameter
with respect to any size of the end half-cells’ half-axes: so
that q ¼ Aa; Ba; . . . ; ab, or bb. We can do this for any
HOM dipole mode. Having the matrix of @p=@q, we can
minimize the maximal value of p for a given frequency
range. We will limit the task by eight most dangerous
modes, i.e., the modes with biggest p. After the first run
of optimization with the end iris Rae ¼ 37 (as in Sec. II), it
was decided to increase it to the same value as at the other
side. The shape of the end cell was corrected for this
aperture. For the transition radius Rae ¼ Raea ¼ 39 mm
for the type a end half-cell and Rae ¼ Raeb ¼ 39 mm for
the type b end half-cell (Fig. 6), such a matrix is presented
in Fig. 22, for frequencies shown in the upper line and
values of p shown in the lower line. Values of q are shown
in the column on the right.

The values of p were decreased nearly 3 orders of
magnitude from the initial geometry when all the cells

had minimal fundamental losses, Fig. 23. A very high
BBU threshold [18], about 10 A, corresponds to this new
geometry. The value of G � Rsh=Q, defining fundamental
losses in the cavity, decreased in this optimization only by
4.6% for the type a cell and by 1.1% for the type b
(broader) cell. Since the losses in the inner cell did not
change, the total drop of G � Rsh=Q, i.e., increase of losses,
in a seven-cell cavity will be 0.8% only. Unfortunately,
small deviations of the shape lead to a dramatic increase of
p [19] and a further decrease of maximal p is desirable.
From a general point of view, a decrease of the BBU
parameter p should lead to a decrease of its derivatives
@p=@q because the value of p is limited from below. This
should lead to a weaker sensitivity of dimensions to dis-
turbances. However, another possibility to decrease this
sensitivity exists: broadening of the HOMs bandwidths
[19].
Further decrease of p is limited by behavior of deriva-

tives for two modes: 2511 and 2513 MHz, see Fig. 22. The

FIG. 22. (Color) Matrix of derivatives @p=@q and associated
frequencies, p’s, and q’s.

FIG. 23. (Color) BBU parameter p vs frequency for the cavity
with minimal fundamental losses before and after optimization
for minimal p.

FIG. 21. (Color) Qext and BBU parameter p [Ohm=cm2=GHz]
for the cavity optimized for minimum losses, before HOM
optimization.
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biggest derivatives correspond to half-axes Aa and Ba but
they have different signs. Values of p for these two modes
are nearly equal: 2261 and 2259. So, further improvement
of p can be done by changing other half-axes of the end
cells, but it will be insignificant.

From Fig. 22, one can see that lowest modes are more
sensitive to the change of the type b end cell (left lower
quarter of the matrix) whereas the higher modes depend
strongly on the type a cell, with the smaller pipe (right-
hand upper quarter). This means that the lowest HOMs are
directed to the broader pipe and the higher modes propa-
gate to the smaller pipe though they could be tuned for
propagation into the broader pipe as well. The example
pictures of electric field of these modes confirm the afore-
said, Fig. 24.

An attempt to redirect the lowest mode of the two with
highest @p=@q (f ¼ 2511 and 2513) was made. This sepa-
ration was successful, Fig. 25; frequencies of the modes
somewhat changed: to 2514 and 2517MHz. Unfortunately,
after this procedure several other modes substantially in-
creased their BBU parameter and this attempt was left
aside.
Further improvement of the geometry can be done using

the same procedure of decreasing the maximal BBU pa-
rameter—now for the inner cells. This tuning for lower p
can be closely related to the broadening of the bandwidths
of the HOMs.

IV. CONCLUSIONS

An algorithm for calculation of inner and end cells of a
multicell cavity with minimal losses or Hpk=Eacc is

presented.
It is shown that optimization of the end cells can be done

independently of the inner cells and only a small tuning is
needed when the end cell is added to the uniform cells’
chain.
The analysis shows that a proper choice of geometry can

help to use end cells either for their highest possible
acceleration or for minimal losses. In both cases, limita-
tions of maximal surface electric fields and wall slope
angle were the same as for the inner cells.
Comparison of the proposed ERL cavity geometry with

the TESLA cavity geometry illustrates the traits of this
two-sided approach to optimization. It is also shown that
the lower values of the wall slope angle are preferable not

FIG. 25. Redirection of modes with maximal @p=@q into
different pipes.

FIG. 24. Electric field of eight modes with biggest p.
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for the inner cells only but for the end cells as well.
Removing the angle restriction will lead to the reentrant
cavity having minimal losses or maximal acceleration for a
given Epk=Eacc and aperture.

As the next optimization step, mutual compensation of
variable geometric parameters is used to find a geometry
with better HOMs extraction properties with a very small
deterioration of the losses and the magnetic peak field.

A possibility to control tuning of the HOMs propagation
into the beam pipes was demonstrated. Usage of deriva-
tives of the BBU parameter with respect to cell dimensions
is a powerful method of suppression of the HOMs.
Minimization of the BBU parameter of dipole HOMs
was done changing the shapes of the end half-cells of the
cavity with increase of power losses of the fundamental
mode by 0.8%. Decrease of the BBU parameter was nearly
3 orders of magnitude compared to the original shape tuned
for minimal losses. The BBU threshold current increased
by the same amount, up to 10 A.
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