Evaluation of a New Cavity Focusing Theory

Robin Bjorkquist

Reed College

Mentor: Georg Hoffstaetter

Cornell University

August 6, 2008

Outline

- Transport matrices
- 2 Cavity focusing
- 3 Initial project goals
- 4 What happened?
- 6 Plans for the future

Transport Matrices

Introduction

Transport Matrices

Accelerator elements in series

$$\begin{pmatrix} r \\ r' \end{pmatrix}_f = \begin{pmatrix} \mathsf{magnet} \\ \mathsf{matrix} \end{pmatrix} \begin{pmatrix} \mathsf{drift} \\ \mathsf{matrix} \end{pmatrix} \begin{pmatrix} \mathsf{cavity} \\ \mathsf{matrix} \end{pmatrix} \begin{pmatrix} \mathsf{drift} \\ \mathsf{matrix} \end{pmatrix} \begin{pmatrix} r \\ r' \end{pmatrix}_{i}$$

What does the radial force look like?

The particle experiences an oscillatory radial force inside the cavity.

But actual particles have changing r...

r-dependence of the radial force

The radial force is stronger farther from the axis.

How does this affect the particle motion?

r-dependence of the radial force

The radial force is stronger farther from the axis.

r-dependence of the radial force

The radial force is stronger farther from the axis.

Linear?

r-dependence of the radial force

The radial force is stronger farther from the axis.

Linear?

Yes, for small enough r

The Beginning

Initial project goals

I started with

- a paper by J. Rosenzweig and L. Serafini
 [Phys. Rev. E 49, 1599 (1994)]
 in which they derive a transport matrix
- an alternate matrix theory developed by G. Hoffstaetter

I set out to

- compare the two matrices to each other
- compare the results of both matrix theories to actual particle motion

The Middle

How I spent my time

For the past several weeks, I have

- read the paper by Rosenzweig and Serafini
- learned how both derivations go
- written programs in Mathematica to
 - read in data about the cavity fields
 - numerically solve equations of motion
 - plot actual and matrix trajectories
- discovered needed adjustments and additions to Georg's theory

What I found

The Rosenzweig and Serafini matrix:

$$\begin{pmatrix} \cos\left(\frac{\sqrt{\eta/8}}{\cos(\Delta\varphi)}\ln\frac{\gamma_f}{\gamma_i}\right) & \frac{\cos(\Delta\varphi)}{\sqrt{\eta/8}}\frac{\gamma_i}{\gamma'}\sin\left(\frac{\sqrt{\eta/8}}{\cos(\Delta\varphi)}\ln\frac{\gamma_f}{\gamma_i}\right) \\ -\frac{\sqrt{\eta/8}}{\cos(\Delta\varphi)}\frac{\gamma'}{\gamma_f}\sin\left(\frac{\sqrt{\eta/8}}{\cos(\Delta\varphi)}\ln\frac{\gamma_f}{\gamma_i}\right) & \frac{\gamma_i}{\gamma_f}\cos\left(\frac{\sqrt{\eta/8}}{\cos(\Delta\varphi)}\ln\frac{\gamma_f}{\gamma_i}\right) \end{pmatrix}$$

The Hoffstaetter matrix:

$$\begin{pmatrix} \cos\left(\varepsilon\ln\frac{p_f}{p_i}\right) & \frac{1}{\varepsilon}\frac{p_i}{p'}\sin\left(\varepsilon\ln\frac{p_f}{p_i}\right) \\ -\varepsilon\frac{p'}{p_f}\sin\left(\varepsilon\ln\frac{p_f}{p_i}\right) & \frac{p_i}{p_f}\cos\left(\varepsilon\ln\frac{p_f}{p_i}\right) \end{pmatrix}$$

What I found

The Rosenzweig and Serafini matrix:

$$\begin{pmatrix} \cos\left(\frac{\sqrt{\eta/8}}{\cos(\Delta\varphi)}\ln\frac{\gamma_f}{\gamma_i}\right) & \frac{\cos(\Delta\varphi)}{\sqrt{\eta/8}}\frac{\gamma_i}{\gamma'}\sin\left(\frac{\sqrt{\eta/8}}{\cos(\Delta\varphi)}\ln\frac{\gamma_f}{\gamma_i}\right) \\ -\frac{\sqrt{\eta/8}}{\cos(\Delta\varphi)}\frac{\gamma'}{\gamma_f}\sin\left(\frac{\sqrt{\eta/8}}{\cos(\Delta\varphi)}\ln\frac{\gamma_f}{\gamma_i}\right) & \frac{\gamma_i}{\gamma_f}\cos\left(\frac{\sqrt{\eta/8}}{\cos(\Delta\varphi)}\ln\frac{\gamma_f}{\gamma_i}\right) \end{pmatrix}$$

The Hoffstaetter matrix:

$$\begin{pmatrix} \cos\left(\varepsilon\ln\frac{p_f}{p_i}\right) & \frac{1}{\varepsilon}\frac{p_i}{p'}\sin\left(\varepsilon\ln\frac{p_f}{p_i}\right) \\ -\varepsilon\frac{p'}{p_f}\sin\left(\varepsilon\ln\frac{p_f}{p_i}\right) & \frac{p_i}{p_f}\cos\left(\varepsilon\ln\frac{p_f}{p_i}\right) \end{pmatrix}$$

Are they the same?

- Does $\epsilon = \frac{\sqrt{\eta/8}}{\cos(\Lambda \phi)}$?
- Does $p = \gamma$?

What I found

The Rosenzweig and Serafini matrix:

$$\begin{pmatrix} \cos\left(\frac{\sqrt{\eta/8}}{\cos(\Delta\varphi)}\ln\frac{\gamma_f}{\gamma_i}\right) & \frac{\cos(\Delta\varphi)}{\sqrt{\eta/8}}\frac{\gamma_i}{\gamma'}\sin\left(\frac{\sqrt{\eta/8}}{\cos(\Delta\varphi)}\ln\frac{\gamma_f}{\gamma_i}\right) \\ -\frac{\sqrt{\eta/8}}{\cos(\Delta\varphi)}\frac{\gamma'}{\gamma_f}\sin\left(\frac{\sqrt{\eta/8}}{\cos(\Delta\varphi)}\ln\frac{\gamma_f}{\gamma_i}\right) & \frac{\gamma_i}{\gamma_f}\cos\left(\frac{\sqrt{\eta/8}}{\cos(\Delta\varphi)}\ln\frac{\gamma_f}{\gamma_i}\right) \end{pmatrix}$$

The Hoffstaetter matrix:

$$\begin{pmatrix} \cos\left(\varepsilon\ln\frac{p_f}{p_i}\right) & \frac{1}{\varepsilon}\frac{p_i}{p'}\sin\left(\varepsilon\ln\frac{p_f}{p_i}\right) \\ -\varepsilon\frac{p'}{p_f}\sin\left(\varepsilon\ln\frac{p_f}{p_i}\right) & \frac{p_i}{p_f}\cos\left(\varepsilon\ln\frac{p_f}{p_i}\right) \end{pmatrix}$$

Are they the same?

- Does $\epsilon = \frac{\sqrt{\eta/8}}{\cos(\Delta \phi)}$? Yes
- Does $p = \gamma$?

What I found

The Rosenzweig and Serafini matrix:

$$\begin{pmatrix} \cos\left(\frac{\sqrt{\eta/8}}{\cos(\Delta\varphi)}\ln\frac{\gamma_f}{\gamma_i}\right) & \frac{\cos(\Delta\varphi)}{\sqrt{\eta/8}}\frac{\gamma_i}{\gamma'}\sin\left(\frac{\sqrt{\eta/8}}{\cos(\Delta\varphi)}\ln\frac{\gamma_f}{\gamma_i}\right) \\ -\frac{\sqrt{\eta/8}}{\cos(\Delta\varphi)}\frac{\gamma'}{\gamma_f}\sin\left(\frac{\sqrt{\eta/8}}{\cos(\Delta\varphi)}\ln\frac{\gamma_f}{\gamma_i}\right) & \frac{\gamma_i}{\gamma_f}\cos\left(\frac{\sqrt{\eta/8}}{\cos(\Delta\varphi)}\ln\frac{\gamma_f}{\gamma_i}\right) \end{pmatrix}$$

The Hoffstaetter matrix:

$$\begin{pmatrix} \cos\left(\varepsilon\ln\frac{p_f}{p_i}\right) & \frac{1}{\varepsilon}\frac{p_i}{p'}\sin\left(\varepsilon\ln\frac{p_f}{p_i}\right) \\ -\varepsilon\frac{p'}{p_f}\sin\left(\varepsilon\ln\frac{p_f}{p_i}\right) & \frac{p_i}{p_f}\cos\left(\varepsilon\ln\frac{p_f}{p_i}\right) \end{pmatrix}$$

Are they the same?

- Does $\epsilon = \frac{\sqrt{\eta/8}}{\cos(\Delta \phi)}$? Yes
- Does $p = \gamma$? No, but they are proportional $p = \gamma m \nu$

The Future

What comes next?

That's not the end of the story!

It is the central matrices that are the same, but you also need edge matrices for the cavity entrance and exit

- · Georg's theory did not originally include this
- we don't have it fully worked out yet

Possibilities for the future

- find better way to deal with the cavity entrance/exit
- ullet see where the high γ approximation breaks down
 - improve by including $\frac{1}{\gamma^2}$ terms?
- check with ERL injector parameters
 - and compare to real-life measurements

Acknowledgments

I would like to thank

- Professor Georg Hoffstaetter
- The Cornell Laboratory for Elementary-Particle Physics
- The National Science Foundation