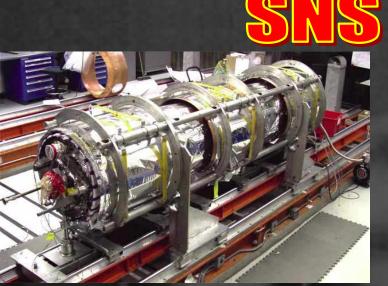


Cornell REU 2008 Project

Studying the High Field Q-Reduction in Superconducting RF Cavities

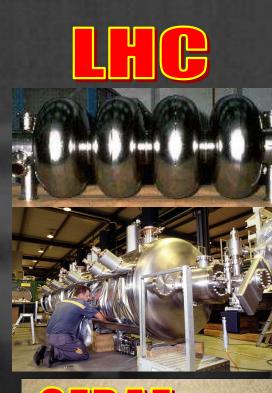
Student: Jordan Webster Mentor: Matthias Liepe

Superconducting RF around the World

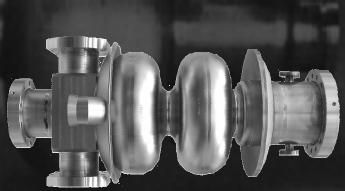


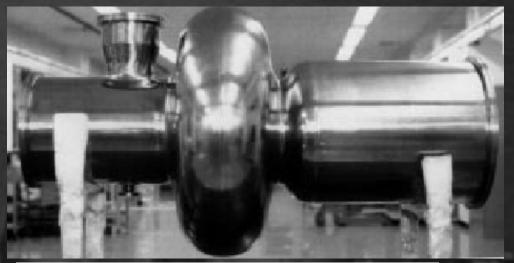
June 2, 2008

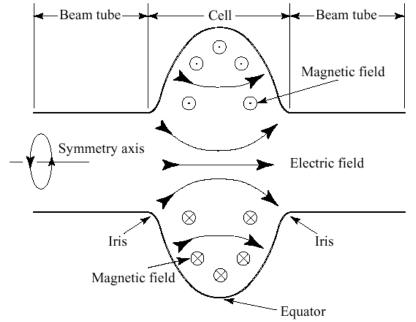
Matthias Liepe



Superconducting RF around the World






Matthias Liepe

June 2, 2008

Superconducting RF Cavities I

- Use EM fields (rf-fields) in cavities for acceleration.
- Conducting walls "trap" fields in cavity which resonate at well defined frequencies (modes)
- Lowest mode has a longitudinal electric field and circular magnetic field
 → use this for acceleration

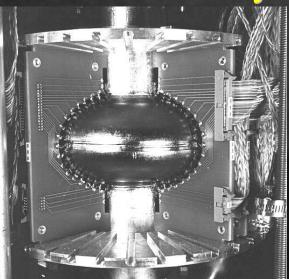
June 2, 2008

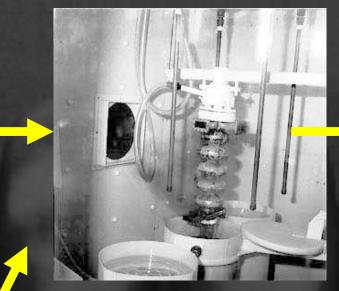
Superconducting RF Cavities II

- Material: Niobium; superconducting below 9.2 K!
- Operate cavities at 2 to 4 K
- Very small wall losses:
 - Quality factor of this oscillator: $Q > 10^{10}$!
 - \Rightarrow V=20MV \Rightarrow P_{SRF}=15W
 - $\Rightarrow \text{Normal-conducting: } Q_0 \approx 10^4 \Rightarrow P_{nc} = 15 \text{MW}$
- Goal: Achieve accelerating electric fields of 20 to 50 MV/m
- Trick is to get such high fields and low wall losses!

$$Q_0 = \frac{f}{bandwidth} \propto \frac{1}{R_S}$$

Matthias Liepe

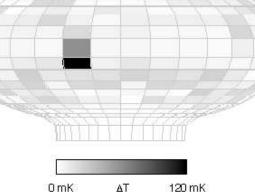

June 2, 2008



Jordan's Work this Summer...

Take a SRF Cavity

Prepare the Niobium surface (etch, clean, bake...)



Cool down and test the performance of the cavity

Matthias Liepe

Analyze results

AT

Jordan's Work Plan for this Summer

- High-pressure-rinse cavity
- Mount cavity on test stand
- Cool down cavity. Test cavity performance (test #1).
- Remove oxide layer on cavity inner surface (HF rinse)
- Cool down cavity. Test cavity performance (test #2).
- Bake cavity under vacuum at 400 C
- Cool down cavity. Test cavity performance (test #3).
- Expose cavity to 150 Torr sec of Nitrogen gas
- Cool down cavity. Test cavity performance (test #4).
- Expose cavity to 10⁷ Torr sec of Nitrogen gas
- Cool down cavity. Test cavity performance (test #5).
- Bake cavity under vacuum at 400 C
- Cool down cavity. Test cavity performance (test #6).
- Expose cavity to 150 Torr sec of Oxygen gas
- Cool down cavity. Test cavity performance (test #7).
- Expose cavity to 10⁷ Torr sec of Oxygen gas
- Cool down cavity. Test cavity performance (test #8).

Matthias Liepe