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A phased luminosity upgrade of the CESR electron-positron storage ring is in

progress. The upgrade program calls for the installation of superconducting radio-

frequency (RF) cavities with strongly damped higher-order modes (HOMs). The

cavity is designed to allow all HOMs to propagate into the beam pipe, where they

are damped by a layer of microwave-absorbing ferrite. RF measurements with a

copper cavity and loads made of a nickel-zinc ferrite indicate that the design gives

adequate HOM damping. Because the absorbing layer is on the beam pipe, there is

a direct parasitic interaction with the beam. To quantify this parasitic interaction,

the complex permeability and complex permittivity of the ferrite were measured as

a function of frequency. These results were used to predict the beam coupling im-

pedance of the ferrite loads via numerical and analytic techniques. The predictive

methods were checked using the pulse-on-a-wire method for measuring the coupling

impedance. Beam stability predictions based on the calculated impedance indicate

that there should be no beam instabilities due to the direct interaction between the

beam and the ferrite layer for a 183-bunch beam with a total current of 2 A per beam.

The average power dissipation in the ferrite, including both direct and indirect power

transfer from the beam, is predicted to be 82 W/cm2 with 2 A per beam. To test the

predictions, beam measurements were done in CESR on a ferrite load of magnified

coupling impedance. The beam-induced power dissipation in the ferrite layer was

within a factor of 2 of the predicted value. It was difficult to see an effect on the

beam due to the presence of the ferrite, a result that is consistent with our present

understanding.
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Chapter 1

Introduction

1.1 The Subject

Consider a collection of charged particles travelling at a speed v slightly smaller
than the speed of light c. The particles carry an electric field (being charged) and
a magnetic field (being in motion) with them; as v → c, both fields become purely
transverse. If they are in free space, the particles will continue to travel at the same
speed indefinitely. The same can be said if the particles are travelling through a tube
of uniform cross-section with perfectly conducting walls (see Figure 1.1a); a surface
charge and surface current are induced on the walls of the tube, but there is no energy
dissipation. On the other hand, if the tube’s cross-section varies or if its walls are not
perfectly conducting, the beam of particles will lose energy to its surroundings, and
its momentum will decrease.

A classic example is the case of a beam travelling through a cavity discontinuity
in a tube. A time-domain simulation of the interaction between a bunched beam
and a cavity is shown in Figure 1.1. The calculation was done using the program
ABCI [1], which solves the Maxwell Equations in the time domain, given the passing
beam’s charge distribution as a source term. As can be seen, the passing bunch
leaves behind electromagnetic energy in the cavity. Another well-known example,
which can be worked out analytically, is the case of a metallic tube with a good
but imperfect conductivity, the “resistive wall” problem. Our interest will focus on a
generalisation of the latter, the case of a conducting tube with a layer (of finite length)
of material inside it. Being a discontinuity, the layer can store electromagnetic energy
like a cavity; moreover, the material can be an absorber of electromagnetic energy,
converting the beam’s electromagnetic field into heat, like the resistive wall.

If we bend our conducting beam tube into a hollow ring and apply a static mag-
netic field to make our beam follow a circular path, we obtain a storage ring. With
each revolution of the beam, energy will be stored or dissipated whenever the tube
departs from an ideal conductor of uniform cross-section. Electromagnetic energy left
behind by a bunch—the bunch’s wake field—will act back on the charged particles in
the bunch. The wake field can produce a significant force on individual particles in
the bunch; generally speaking, the force will depend on the particle’s position relative
to the centroid of the bunch. This effect produces a current-dependent distortion of
the bunch’s charge distribution. If the wake fields left behind by the bunch are stored
in a cavity with sufficiently low dissipation, there will be a force left to act on the

1
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(a)

(b)

(c)

(d)

(e)

Figure 1.1. A numerical simulation of the wake fields produced as a bunch passes
through a cavity. The beam passes along the dashed line, about which the cavity is
axisymmetric. Electric field lines are shown above the dashed line; the longitudinal
charge distribution of the bunch is indicated below the line. The walls of the beam
tube and cavity are assumed to be perfectly conducting.
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bunch upon its next passage. Similarly, if more than one bunch is circulating, the
wake left behind from one bunch can produce a force on the next bunch. The force
on an individual particle is proportional to the charge per bunch, so, given enough
charge per bunch, multi-turn and multi-bunch forces can produce instabilities in the
beam’s motion. The wake fields produced by a layer of material on the inside of a
beam tube; the resulting power dissipation, static distortion, and instabilities of a
bunched beam in a storage ring bearing a section of material-lined tube: these are
the topics that will be covered in this thesis. Before going into more detail, we will
first discuss the motivation for studying this subject.

1.2 High-Current Accelerators

In elementary particle physics, the demand has been mostly for increasing beam en-
ergy, in the effort to discover particles of increasingly higher mass. In recent years,
however, there has been growing interest in higher luminosity machines, with which
rare processes can be studied. The luminosity of a colliding-beam machine is a mea-
sure of the number of collisions per unit time. A high luminosity is crucial in the
study of particles which are produced infrequently. The primary aim of the CESR
upgrade program [2], as well as the PEP-II [3] and KEK-B [4] projects, is to study CP
violation in the decay of the B meson (a B meson, according to theory, is composed
of a b quark and either a u or a d quark). The hope is that a better understand-
ing of CP violation will yield new insight into fundamental questions (for example,
it might help explain the observed disparity between matter and anti-matter in our
universe). Since B mesons are produced infrequently to begin with (in typical CESR
operation, about 107 bunch collisions are required to produce a single B meson), a
high luminosity is crucial to a study of rare B decays. It is estimated that a meaning-
ful measurement could be made with a luminosity of about 3(1037) m−2s−1, which is
about a factor of 10 higher than the CESR luminosity in 1995. There is also interest
in building high-luminosity machines at other energies for the study of particles such
as the φ meson and the τ lepton.

For all of the aforementioned projects, it is envisaged that the higher luminosity
will be obtained mostly by an increase in the beam current. Higher currents are also
being sought in accelerators for use as x-ray sources, such as SOLEIL [5]. The higher
beam current can be obtained by increasing the current per bunch or the number of
bunches; the latter scheme is favoured over the former, mostly because the beam-beam
interaction is expected to be too disruptive in collisions between bunches of higher
charge. With more bunches, however, the spacing between successive bunches must
decrease; hence there is less time available for the wake fields produced by one bunch’s
passage through the cavities and other elements to dissipate before the arrival of the
next bunch: the problem of multi-bunch beam instabilities becomes more severe.

There are several cures for these multi-bunch instabilities. One cure is to find
a combination of conditions such that the net wake force is stabilising, rather than
destabilising. Typically, this is done by adjusting the frequencies of the parasitic
cavity resonances relative to the revolution frequency. Another cure is a feedback
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system, which must basically provide an external electromagnetic force on the beam
that cancels out the net destabilising force of the wake field. A third cure is to hasten
the decay of the wake fields and thereby lessen the wake force experienced by a bunch
due to the previous bunch’s passage. The latter approach has been adopted for the
CESR upgrade, although some feedback is also required due to the resistive wall wake
fields of the aluminum beam tube.

1.3 The CESR Upgrade Program

The Cornell Electron Storage Ring (CESR), depicted schematically in Figure 1.2, is an
electron-positron collider. The bunched electron and positron beams share the same
vacuum chamber, and collide at a single interaction point. Parasitic collisions are
avoided via a “pretzel” scheme—the beams are deflected into transversely oscillatory
orbits in such a way as to produce horizontal separation between the beams at all of
the parasitic bunch crossings.

In the upgrade program alluded to in the previous section, the CESR luminosity is
being increased via higher beam current, which, in turn, is being obtained with more
bunches. There will also be some increase in the transverse focussing at the interaction
point, which, supplemented by a decrease in the bunch length, will further increase
the luminosity. The spacing between bunches is being made non-uniform, because
parasitic collisions cannot be avoided with more than 9 uniformly spaced bunches
using the pretzel scheme (to got beyond 9 bunches would require the wavelength
of the transverse oscillation of the beam to be unrealistically short); instead, the
bunches are being grouped into trains. In the early 1990’s, CESR operated with
head-on collisions of 7 bunches of electrons with 7 bunches of positrons. In 1994, a
modified pretzel scheme was introduced in which the bunches collide with a slight
crossing angle, thereby allowing trains of closely spaced bunches to be stored without
parasitic collisions; in 1995, CESR operated with 9 trains and 2 bunches per train.
The short-term goal (“CESR-III”) is to increase the number of bunches per train to
5. In the longer term, separate vacuum chambers for the two beams might be built,
so that a larger number of uniformly-spaced bunches can be stored. More exotic
possibilities are being considered as well.

An increase in the number of bunches requires more power transfer to the beam
(since more particles are losing energy in the form of x-rays as they travel around
the ring). A decrease in the bunch length requires more cavity voltage (to provide
more longitudinal focussing). Because of the decrease in the bunch-to-bunch spacing,
fast dissipation of the wake fields is also necessary. It is planned to meet these
requirements by installing a new Radio Frequency (RF) system in CESR.

1.4 A Superconducting RF System for CESR

The RF cavities provide a standing-wave time-varying electromagnetic field. Particles
which pass through the cavities at the right time are accelerated by the longitudi-
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Figure 1.2. A schematic representation of CESR and its injector. The storage ring’s
diameter is about 245 m. The pretzel orbits for 7-bunch operation with head-on
collisions in the CLEO detector are also shown. When they follow these orbits, the
bunches are separated horizontally at each of the 13 parasitic crossing points, and col-
lide only in CLEO. The transverse displacement due to the pretzels is exaggerated—
the actual displacements are a few cm.
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nal electric field of the cavity’s fundamental mode. The cavities replace the energy
radiated by the beam as it travels through the bending magnets. Because the en-
ergy received depends on the time at which a particle travels through the cavity, the
cavities also provide a longitudinal restoring force; the net cavity voltage determines
the equilibrium bunch length. As was seen in Figure 1.1, the cavities represent a
significant disruption in the vacuum chamber, and are a major source of unwanted
wake fields.

The present RF system in CESR consists of four penta-cell normal conducting RF
cavities [6]. A new RF system, shown in Figure 1.3, has been designed for operation at
higher current [7]. The new cavities are superconducting, thereby allowing operation
at a higher voltage per cell (due to the reduced power dissipation in the walls of the
cavity). With a higher voltage per cell, fewer cells are required, which reduces the
wake force per turn. Because of the higher power transferred from the cavities to the
beam, single-cell cavities, each with a dedicated RF power input, are used (in the
present system, the power from one input line is shared by all 5 cells). Prototypes
for the new cavity [8], cryostat [9], tuner [10], input coupler [11], RF window [12, 13],
and loads have been tested. A fully-equipped single-cavity RF system was tested in
CESR in August 1994 [14].

In designing the new RF system, the goal was to avoid long-lived wake fields,
i.e. to have no dangerous parasitic resonances in the structure. To ensure a low
Q for all of the dangerous higher-order modes (HOMs) of the cavity, a large beam
tube diameter was chosen. With the addition of “flutes” to one of the tubes (see
Figure 1.3), all of the monopole and dipole HOMs were found to be above the cutoff
frequencies for propagation into the beam tube via waveguide modes. Even with all
the HOM frequencies above cutoff, there is the possibility of “trapped” HOMs that
couple poorly to the beam pipe [15, 16]; however, a search for trapped even monopole
modes found no modes with excessively low coupling into the beam tube for our
choice of cavity shape [17]. To produce a low Q in the propagating modes, a section
of beam tube with a layer of microwave-absorbing material is placed nearby. Because
of the large amount of power transferred from the beam to the cavity HOMs, the
absorbing material must be placed outside the cryostat. Our interest will focus on
the HOM loads, the sections of beam tube that bear the layer of lossy material. We
will see that, in addition to providing the desired damping of cavity HOMs, the lossy
layer will interact directly with the electromagnetic field of the beam, as described in
Section 1.1.

1.5 The Higher-Order Mode Loads for the Super-

conducting RF System

A nickel-zinc ferrite was tentatively chosen as the absorbing material for the loads. RF
measurements by V. Veshcherevich on a full-size copper model of the superconducting
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cavity with loads made of a particular variety of Ni-Zn ferrite, TT2-111R1, indicated
that reasonably strong damping of dangerous HOMs could be obtained [18]. Damping
predictions were also made [19, 20], based on the measured microwave properties of
TT2-111R, using two computer programs, SEAFISH [21] and CLANS [22].

In addition to providing adequately low Q’s for cavity HOMs, the loads must
satisfy several other requirements, including (i) ability to dissipate high power (tens
of kW per load) in continuous operation, (ii) compatibility with an ultra-high vacuum
environment, (iii) compatibility with a dust-free environment, and (iv) compatibility
with stray radiation from the beam. A development effort was necessary in order
to fabricate a device that satisfies all of these requirements simultaneously. The
prototype “Porcupine” load (so named because of the many small cooling tubes that
protrude from the load shell) is shown in Figures 1.4 and 1.5.

The Porcupine damping scheme is a departure from the better-established method
of damping HOMs by placing a coupling hole near the cavity to allow the HOMs to
propagate away via a waveguide or coaxial line, sending the HOM power through an
RF window, and dissipating it in a high-power termination. The Porcupine load has
the advantage of providing more damping over a larger band-width. The disadvan-
tages of the Porcupine scheme include the more stringent fabrication requirements
mentioned above. As indicated above, there is another disadvantage: because the mi-
crowave absorbing material is on the surface of the beam tube, it has the opportunity
to interact directly with the electromagnetic fields carried by the beam, in addition
to the indirect interaction via the cavity HOMs. This direct parasitic interaction will
be the subject of this thesis.

1.6 The Beam-Ferrite Interaction: Overview

The parasitic interaction between the HOM loads and the beam will produce addi-
tional power dissipation in the loads and, at sufficiently high beam currents, distortion
in the bunches and beam instabilities. The purpose of this thesis was to make pre-
dictions about the beam-induced power dissipation in the HOM loads and about the
influence of the HOM loads’ wake on the behaviour of the beam, and test these pre-
dictions via a dedicated beam test in CESR. The predictive portion is outlined in
Figure 1.6. The motivation was to find out whether the HOM load as designed could
be expected to function satisfactorily in future incarnations of CESR and find out
what improvements could be made in a redesign.

The first step was to measure the electromagnetic properties of the microwave-
absorbing material, to wit the complex permittivity ε and complex permeability µ
as a function of frequency. Measurements were done on several different materials; a
nickel-zinc ferrite was chosen for the fabrication of the first few load prototypes. The
measurements are discussed in Chapter 2.

The next step was to use the measured µ and ε of the material to make predic-
tions about the wake field produced by the passage of a bunch through an HOM

1A product of Trans-Tech, Inc.
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Figure 1.4. Drawing of the Porcupine HOM load. The tiles of microwave-absorbing ferrite are soldered to copper plates with
water cooling on the other side and assembled into a vacuum-tight shell.
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Figure 1.5. Photograph of a Porcupine HOM load.

load. The effect of the wake field on particles in the passing bunch and in subsequent
bunches can be expressed in terms of a frequency-dependent beam coupling imped-
ance. The coupling impedance predictions were made via both numerical simulation
and an analytic approximation. To supplement these predictions, some measurements
were made on load mock-ups using a “wire method” to simulate the beam. These
predictions and measurements are the subject of Chapter 3.

The last predictive step was to use the calculated coupling impedance of a Porcu-
pine load to make predictions about the direct power transfer to the HOM loads and
about the response of the beam to the HOM loads’ wake fields in an upgraded CESR.
These predictions are discussed in Chapter 4. Although predictions will be given only
for nickel-zinc ferrite, the models presented in Chapters 3 and 4 will be applicable to
any microwave-absorbing materials that can be characterised by a complex ε and µ.

A last experimental step was to install a ferrite load of magnified coupling imped-
ance in CESR and measure its effect on the beam, as a test of the predictive ability
of the coupling impedance and beam stability models. The measurements made in
and predictions done for this beam test are the subject of Chapter 5.
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Chapter 2

Measurements of Microwave
Properties

Several commercially-available materials were considered in the search for a microwave-
absorbing layer for the HOM loads. We measured the properties of some of the more
promising materials. A total of ten materials were measured [23, 24, 25]; the results
for four of these, listed in Table 2.1, will be discussed in this chapter. All four ma-
terials are ceramic ferrites. As mentioned in the previous chapter, RF measurements
showed that reasonably strong damping of cavity higher-order modes could be ob-
tained with TT2-111-series ferrite; measured HOM Q’s with Ferrite-50 were of the
same order [18]. As we will see, the properties of CMD10 and IB-004 are quite similar
to TT2-111-series ferrite, so they can be expected to provide reasonable HOM damp-
ing as well. In the absence of any large differences in HOM damping ability between
these four materials, TT2-111-series ferrite was chosen for fabrication of the first few
prototypes, primarily on the basis of more favourable mechanical properties [26]. The
positive experience with TT2-111-series ferrite in an ultra-high vacuum environment
[27] was also a factor.

Mechanisms which produce microwave absorption in ferrites include domain wall
motion, domain rotation, and electrical resistivity. In the absence of an applied
magnetic field, the magnetic domains (regions in which the magnetic dipole moments
are all aligned in a particular direction) in the ferrite are randomly oriented. When a
magnetic field is applied, the domains whose magnetisation is aligned with the field

Table 2.1. Characteristics of four absorbing materials. The DC resistivity values
were supplied by the manufacturers.

DC Resistivity

Material Manufacturer Type [Ωm]

Ferrite-50 Trans-Tech Nickel-zinc 0.25 +0.75
−0.15

TT2-111-series Trans-Tech Nickel-zinc 8 to 105

CMD10 Ceramic Magnetics Nickel-zinc 105

IB-004 TDK Manganese-zinc

12
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grow in size, while other domains shrink; in the case of a time-varying magnetic field,
the motion of the domain walls produces dissipation at low frequencies. At higher
frequencies, the domain walls are no longer able to respond to the field, but the
direction of the dipole moment inside individual domains rotates under the influence
of the applied field, also producing dissipation. Moreover, the electrical resistivity of
the ferrite produces Ohmic dissipation in the presence of a time-varying (or static)
electric field.

Because our purpose is to analyse the direct interaction between the bunched
beam and a layer of material, the relevant frequency range for microwave properties
measurements is determined by the frequency spectrum of the beam. The lowest
frequency present in the beam spectrum is the synchrotron frequency, (a few tens of
kHz for CESR). At high frequencies, the spectrum of a beam consisting of Gaussian
bunches in the time domain falls off as a Gaussian in the frequency domain; for the
present case (σz ≥ 10 mm), the standard deviation in the frequency domain is ≤ 4.8
GHz, so we would like to know the microwave properties up to frequencies well beyond
5 GHz. The largest practical frequency range, as set by our network analysers, was
from 300 kHz to 20 GHz, so this is the range that we used in our measurements.
Although the microwave properties of some of the materials of interest have been
measured by other researchers (as will be discussed further in Section 2.3), none of
the measurements on commercially-available ferrites have covered such an unusually
large frequency range (although measurements have been done over a suitably large
frequency range for nickel-zinc ferrites of various stoichiometries [28]).

The materials were assumed to be linear in their response to electric and magnetic
fields, homogeneous, and isotropic. Strictly speaking, none of these assumptions are
valid for ferrite materials, but they can be expected to give a reasonable description
of the materials’ behaviour on a macroscopic scale in the presence of electromagnetic
fields of moderate intensity. With these assumptions, the microwave properties may
be described by a complex magnetic permeability µ and a complex electric permit-
tivity ε. Since the materials are assumed isotropic, µ and ε are scalars, rather than
tensors. The permeability and permittivity were measured using the coaxial trans-
mission line technique. In this chapter, we will cover the main points of the theory of
the measurement (including an alternate approach to resolving some of the ambigu-
ities in the data reduction), experimental methods (including some techniques that
we found to be helpful for avoiding systematic errors), results, and a few interpreta-
tions. Details on the theory and techniques and a discussion of an improved analysis
procedure for materials with known µ or known ε may be found elsewhere [24].

2.1 Theory

Descriptions of the transmission line technique for measuring microwave properties
may be found in the literature [29, 30, 31]. As we will see, the basic strategy is to
fill part of a transmission line with the material, measure the complex reflection and
transmission coefficients at the frequencies of interest with a network analyser, and
calculate µ and ε from these coefficients.
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Consider a travelling wave propagating through a coaxial transmission line. Sup-
pose the voltage and current vary sinusoidally in time at angular frequency ω. We
assume that the actual voltage and current are the real parts of complex quantities.
When introducing complex quantities, we must choose a sign convention, so we will
suppose that the time dependence in the complex voltage and current is given by
eiωt (the convention used by our network analysers). Equivalently, we can consider
the Fourier transform in time of the voltage and current, with the Fourier transform
H(ω) of a time domain function h(t) given by

H(ω) =
∫ ∞
−∞

h(t)e−iωt dt . (2.1)

With this sign convention, we expect the imaginary parts of µ and ε to be negative
in a microwave-absorbing material.

The permeability µ(ω) and the permittivity ε(ω) can be deduced from the complex
characteristic impedance Z of the line and the complex propagation wave-number kz:

µ =
kzZ

ω
(2.2)

ε =
kz
Zω

. (2.3)

The impedance and wave-number, in turn, can be deduced from “reduced” transmis-
sion and reflection coefficients T and Γ:

kz =
i

d
ln(T ) (2.4)

Z = Z0
1 + Γ

1− Γ
. (2.5)

In Equations (2.4) and (2.5), T is the complex ratio of the voltages (in a forward-
travelling wave propagating through an infinitely long line that is completely filled
with material) at two planes a distance d apart; Γ is the reflection coefficient at the
interface between a semi-infinite vacuum-filled line and a semi-infinite material-filled
line; Z0 is the characteristic impedance of the vacuum-filled line (vacuum and air are
indistinguishable at the level of precision of our measurements). T and Γ cannot be
measured directly, but they can be calculated from the transmission and reflection
coefficients S21 and S11 corresponding to the situation depicted in Figure 2.1. One
can show that

Γ = ζ ±
√

ζ2 − 1 (2.6)

T =
S11 + S21 − Γ

1− (S11 + S21)Γ
, (2.7)

where

ζ =
S2

11 − S2
21 + 1

2S11
. (2.8)
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Figure 2.1. A transmission line filled with a length d of material with vacuum on
both sides. A TEM wave with complex amplitude Vf is incident from the left; the
phases are measured relative to the reference planes (dashed lines).

Equations (2.2) through (2.8) allow us to deduce µ and ε from measured values of S11

and S21 for a sample of length d inserted into a coaxial air line.
A sign choice must be made in Equation (2.6). This choice determines the signs

of kz and Z (corresponding to two different directions of propagation). However,
because µ and ε depend only on kzZ and kz/Z, the final result is independent of
which sign we choose in Equation (2.6). We chose the sign to make |Γ| < 1, which
should give Re kz > 0.

A phase ambiguity also arises from the complex logarithm in Equation (2.4): the
imaginary part of ln(T ) is ambiguous by an integer multiple of 2π. This ambiguity
reflects the fact that Re kzd is the phase change for a wave travelling from z = 0 to
z = d; knowing only T , we cannot deduce the total phase change without knowing
the number of whole wavelengths that exist in the length d. We can write

kzd = 2πN + iLn(T ) , (2.9)

where Ln(T ) is the “principal value” of ln(T ), whose imaginary part is between 0
and −2π (so that Re iLn(T ) is between 0 and 2π), and N is an integer (equal to
the number of whole wavelengths that fit in the length d). We can calculate Ln(T )
directly from T , but we need to know N in order to get kzd. Two methods have
been used to resolve this dilemma. The first, introduced by W. Weir [29], is, in effect,
to determine N by comparing the phase velocity to the group velocity. Since this
approach only works for materials in which µε is constant, it is not so useful for our
materials, whose properties depend strongly on frequency. The other method, used
by W. Barry [31], is to make sure that the sample length is less than the wavelength
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in the material

λz =
2π

Re kz
(2.10)

over the entire frequency spectrum, in which case N = 0. In practice, this is a
reasonable solution because there are usually maxima in the measurement error near
frequencies at which d is an integer multiple of λz/2, so samples shorter than λz yield
better results. Nevertheless, because we were concerned about reproducibility and
needed to look at different sample lengths, we wanted to analyse data with d ≥ λz,
so we sought another method of determining N .

It is convenient to divide the problem into two parts: (i) What is the correct
value of N at the starting frequency in the spectrum? (ii) At what frequencies
must we change N as we sweep through the frequency spectrum? Question (ii) is
the more straightforward one. We can expect kzd to be a continuous function of
frequency. However, Re iLn(T ) will jump from about 2π to about 0 at frequencies
where N increases by 1. We found that the variation in iLn(T ) with frequency
allowed us to easily identify the frequencies at which we needed to change N under
most circumstances.

Question (i) is more complicated. We cannot deduce the starting value N0 of N
from measurements on a single sample, since we do not know a priori how many whole
wavelengths fit in a length d at the starting frequency. The only way to find N0 in
general is through repeated measurements with different sample lengths: if we choose
the N0’s correctly, we expect that kzd will depend on d but kz will not. We made
guesses for the N0’s and compared the resulting Re kz values for different samples.
The choice of N0 = 0 (at 300 kHz) gave consistent results in all cases. It is difficult to
rule out all the other possible values of N0 with this method. However, in the case of
Ferrite-50, whose microwave properties were measured at 2.4 GHz using the resonator
technique (which does not suffer from phase ambiguities) by our colleagues at Chalk
River [32], we have an independently determined value for Re kz which agrees with
our choice of N0 = 0.

2.2 Experimental Techniques

Samples of the material to be measured were machined into cylindrical “beads” using
diamond-coated tools (all the materials were ceramics). The samples were measured
in custom-made 7 mm coaxial air lines. Precision 7 mm connectors were used, as they
were found to give less systematic error than type N connectors. The S-parameters of
the air line with its material insert were measured from 300 kHz to 20 GHz using two
Hewlett-Packard network analysers, an 8753C and an 8720A. All four S-parameters
were measured. The analysers were interfaced to an HP 9816 computer; BASIC
programs were written to control the S-parameter measurements and analyse the
data [33, 34].

The network analysers were calibrated using the standard “full 2-port” procedure.
The reference planes were extended to the faces of the sample using the analysers’
port extension feature and the known lengths of the air line and sample. The sample
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location inside the air line could not be controlled very well because of the spring-
loaded centre conductor; to ensure that the reference planes coincided with the faces
of the sample, the phases of S11 and S22 were compared after extending the ports and
the port extensions were adjusted to eliminate any systematic phase differences. A
particular recipe for averaging during the calibration was found to give less noise in
subsequent measurements [24, 25].

In order to get reproducible results, we found it necessary to machine the samples
to relatively close tolerances and further improve the contact between the sample and
air line with a layer of liquid metal. We used a eutectic alloy of gallium and indium
with a melting point of 16◦C. Filling the gaps between the sample and the air line
without coating the faces of the sample with metal or leaving drops of liquid metal
in the air line proved to be a difficult technique to master, so we would not call this
an ideal solution.

To check the validity of our techniques, some dielectric materials were measured.
These measurements were done in commercially-made air lines without liquid metal.
The results suggest that our measurement techniques are valid, but sensitive to the
fit between the sample and air line, and susceptible to large errors for some combi-
nations of sample length and wavelength. Further measurements done by R. Chiang
indicate that our custom-made air lines give about the same accuracy for teflon as
the commercial air lines [25].

2.3 Results

Selected information on the four materials is given in Table 2.1 above. There is
significant variation in the DC resistivity of the TT2-111-series material, possibly
related to the interest in higher conductivity that we expressed to the manufacturer.
The TT2-111-series measurements presented herein were done on a batch with a
stated DC resistivity of 435 Ωm, which we designate “TT2-111V” (the manufacturer’s
designation for all varieties is TT2-111R). The variation in properties of Ferrite-50
batches we received was less extreme (stated DC resistivities ranged from 0.14 to
0.50 Ωm).

The µ and ε values were measured for two or more samples of different length
(ranging from 0.8 to 10.9 mm) for each material, with liquid metal filling the gaps. In
almost all cases, different samples of the same material were machined from the same
piece. We tried to choose the sample length d to minimise the error in our µ and ε
values. We followed the usual strategy for choosing d, a rationalisation for which can
be found elsewhere [30]. Briefly stated, the strategy is to (i) avoid having d close to
an integer multiple of λz/2 (which produces a minimum in S11 and a maximum in
S21) and (ii) avoid having λz � d. Constraint (i) is not as important in absorbing
materials as it is in low-loss materials. As a rule of thumb, we tried to satisfy the
following condition:

λz
8
≤ d ≤ 3λz

8
. (2.11)

The choice of λz/8 was rather arbitrary (and difficult to adhere to). We used (2.11)
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to choose the “best” sample length for each frequency in the spectrum, dividing the
spectrum into several ranges. Forward (from S11 and S21) and reverse (from S22

and S12) values were treated as independent in order to get some indication of the
accuracy.

Our results for Ferrite-50 are shown in Figures 2.2 and 2.3. Values measured at
2.4 GHz using the resonator method [32] are also shown. The resonator results agree
relatively well with ours. The measured values of Im ε are close to what one would
expect from the DC resistivity for purely Ohmic losses.

Results for TT2-111V, CMD10, and IB-004 are shown in Figures 2.4 and 2.5.
Both the real and imaginary parts of ε are quite a bit smaller than in Ferrite-50. In
TT2-111V, Im ε appears to be Ohmic at low frequencies. In CMD10 and IB-004, Im ε
is small enough to make it difficult to measure with this technique. For the ferrites
shown in Figures 2.4 and 2.5, we approach full transmission (S11 = 0 and S21 = 1) at
low frequencies, which amplifies the error in the results. The rapid increase in µ and
ε with decreasing frequency actually helps: λz varies more slowly with frequency, so
that we can get the same accuracy with a smaller set of sample lengths (relative to
materials with constant or slowly-varying µ and ε).

W. Barry [31] has measured the properties of NZ-51 material from Emerson &
Cuming (from 500 MHz to 5.5 GHz), which is said to be similar to the TT2-111-series
material. He used the transmission line technique with a strip-line arrangement. Our
results for TT2-111V are quite close to his. T. Tajima [35] has measured the properties
of IB-004 (from 30 MHz to 3 GHz) using the coaxial transmission line method; our
results agree well with his. R. Boni et al. [36] have measured the properties of TT2-
111-series ferrite (from 500 MHz to 2.5 GHz) using a shorted transmission line with
two different sample lengths. Their results are significantly different from ours. We
do not yet understand the reason for this discrepancy; their measured values for Im µ
and Im ε have opposite signs, which, when taken at face value, would seem to be
unphysical.

Our results for two other nickel-zinc-like ferrites, three other manganese-zinc fer-
rites, and an “artificial dielectric” material may be found elsewhere [23, 24, 25]. Fur-
ther measurements on different batches of TT2-111-series ferrite were also done, along
with an examination the effect of various thermal cycles (required for the fabrication
of the HOM loads) on the properties of TT2-111-series and IB-004 ferrite (the latter
in collaboration with our colleagues at KEK). The results of these studies are given
in a separate report by R. Chiang [25]. The batch-to-batch variation in Im ε was as
much as a factor of 20 for TT2-111-series ferrite; the corresponding variation in Re
ε was about a factor of 2 above 10 MHz, and larger at low frequencies. The batch-
to-batch variation in µ was small in comparison to the batch-to-batch variation in ε.
The significant variation in the ε values of the TT2-111-series ferrite actually does
not have a very large influence on the interaction with the beam, as will be discussed
in Section 5.6.
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Figure 2.2. Measured values of (a) the real part and (b) the imaginary part (times −1) of µ for Ferrite-50. Values measured
using the resonator method [32] are also shown.
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Figure 2.3. Measured values of (a) the real part and (b) the imaginary part (times −1) of ε for Ferrite-50. Values measured
using the resonator method [32] are also shown.
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Figure 2.4. Measured values of (a) the real part and (b) the imaginary part (times −1) of µ for TT2-111V, CMD10, and
IB-004 ferrites.
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Figure 2.5. Measured values of (a) the real part and (b) the imaginary part (times −1) of ε for TT2-111V, CMD10, and
IB-004 ferrites.
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2.4 Interpretations

The measured values of µ and ε show features that might be considered extreme:
significant variation with frequency, large values at low frequencies (µ/µ0 and ε/ε0

exceeding 100 and 104, respectively), and very small values at high frequencies in some
cases, with Re µ/µ0 sometimes less than 1. Nevertheless, all of these features have
been seen in previous measurements of nickel-zinc ferrites [28]. In all four ferrites,
there is a maximum in −Im µ between 106 and 108 Hz, accompanied by a rapid
decrease in Re µ as a function of frequency. This behaviour is characteristic of the
domain wall motion resonance [37].

The Influence of Air Gaps

Measurements were done on Ferrite-50 and TT2-111-series ferrite to evaluate the
effect of air gaps. Three cases were examined: (i) samples machined without tight
tolerances, which fit loosely inside the air line, (ii) samples with tighter tolerances,
which fit snugly inside the line, and (iii) samples with slightly relaxed tolerances, but
with the liquid metal present in the gap between the sample and air line. The ε values
changed dramatically between different cases in Ferrite-50 and less dramatically in
the TT2-111-series ferrite; the effect was most pronounced for the largest ε values.
The reproducibility of the ε results was found to improve in going from method (i)
to method (iii). Very little change in µ values was seen.

A simple DC analysis can provide a qualitative explanation for these observations.
In the static limit, kz and Z are determined by the inductance per unit length L′ and
the capacitance per unit length C ′. In the case of a coaxial line that is completely
filled with material, as assumed in the standard analysis, L′ and C ′ are proportional
to µ and ε, respectively. If there are air gaps between the material and the air line,
however, the proportionality is no longer exact: extra terms appear which depend
on the gap size. The correction term for µ is always small as long as the gaps are
small compared to the inner and outer conductor radii a and b and as long as µ is
not small compared to µ0. Thus we can expect that air gaps will not have a strong
influence on measured µ values under most circumstances. The correction term for
ε, on the other hand, is small if the gaps are small compared to a and b and ε is not
large compared to ε0. If ε/ε0 is an appreciable fraction of a (or b) divided by the gap
length, we can expect a significant correction due to the air gaps. These conclusions
are qualitatively consistent with our observations.

Reproducibility

There are small steps in the measured µ and ε values which occur when we switch from
one sample length to another. Differences between the results for different samples can
give us some clues about the reproducibility of the measurements. Of the materials
covered herein, the worst reproducibility in measured µ values was seen in CMD10
and IB-004. To illustrate, measured values of Re µ for two CMD10 samples are shown
in Figure 2.6a. Poor agreement can be seen near 1 GHz and at low frequencies. In
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the case of the longer sample, a spike can also be seen when d is equal to λz/2. Even
greater variation was seen in measurements on other manganese-zinc ferrites [23, 24].
Measured µ values for Ferrite-50 and TT2-111V were somewhat more reproducible,
as illustrated in Figure 2.6b. On the other hand, there was quite a bit of variation in
the measured Im ε values for TT2-111V.

To identify the source of this irreproducibility, three measurements on TT2-111V
were compared: (i) a first measurement on a short sample, (ii) a second measurement
on the same sample, done after removing and re-applying the liquid metal, and (iii) a
measurement on a second sample of about the same length. The µ results for the three
cases do not show much difference, but the two measurements of ε on the first sample
agreed significantly better with each other than they did with the measurement on
the second sample. Similar agreement between repeated measurements on a longer
sample was also seen. This suggests that the reproducibility problems stem mostly
from variation in the properties or the machining from one sample to another.

Kramers-Kronig Relations

The electric field and the electric polarisation must both be real-valued functions
in the time domain. With the additional requirement that the relationship between
these two quantities be causal, one can obtain constraints on the complex permittivity,
the so-called Kramers-Kronig relations (see [38], for example). In our notation, the
constraints require that

Re ε(ω) = 1− 1

π
PV

∫ ∞
−∞

Im ε(ω′)

ω′ − ω
dω′ , (2.12)

where PV denotes the principal value. A similar expression for Im ε in terms of an
integral involving Re ε can also be derived.

Equation (2.12) implies that we can deduce Re ε(ω) for any ω from a measurement
of Im ε(ω) for all ω. We have measured ε only over a finite frequency range, but if
Im ε is small outside of this range, we can expect to obtain a reasonable prediction
for Re ε from Im ε and Equation (2.12). The Kramers-Kronig relations hence allow
us to check our measured values of ε for consistency.

The magnetic field and the magnetisation must also be real-valued and causal;
consequently, the real and imaginary parts of µ must satisfy an equation of the same
form as (2.12). Thus, the above arguments apply to µ as well.

The measured values of Re µ for TT2-111V are compared to predicted values
obtained from Im µ via Equation (2.12) in Figure 2.7a. The agreement is quite good,
which suggests that our measured µ values are self-consistent. The analogous compar-
ison for ε is made in Figure 2.7b. In the case of ε, there is the complication that Im ε,
unlike Im µ, is not small at low frequencies (see Figures 2.4 and 2.5). In obtaining
the prediction shown in Figure 2.7b, we assumed Im ε(ω) to have resistive behaviour
for frequencies below the measured range. We chose the DC resistivity based on
the lowest measured values of Im ε. With this assumption for the low-frequency be-
haviour of Im ε, we see that the predicted Re ε has approximately the right frequency
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Figure 2.6. Measured values of the real part of µ, for (a) two CMD10 samples and (b) for three Ferrite-50 samples of different
length.
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dependence, but that there is a significant offset between the prediction and the mea-
surement. Such an offset would be expected if Im ε becomes large again above the
maximum frequency in our measurement (a high-frequency increase in Im ε cannot
be expected to have much impact on the problem at hand, because the beam power
spectrum is typically quite small above 20 GHz). Hence, our measured ε values are
not necessarily inconsistent.

2.5 Summary

We used the coaxial transmission line technique to measure the microwave properties
of absorbing materials between 300 kHz and 20 GHz. The method seems to be
adequate for the materials we have examined, if precautions are taken to eliminate
air gaps and no assumptions are made about dependence of the phase and group
velocities on frequency. We cannot accurately measure real or imaginary parts of µ
or ε that are close to zero with this method, however. The biggest problem with the
measurements has been the lack of reproducibility between different samples. Our
results are in reasonable agreement with the majority of the measurements we have
seen in the literature, for the frequency range of overlap.
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Figure 2.7. Comparison of (a) measured values of Re µ to values predicted from Im µ and (b) measured values of Re ε to
values predicted from Im ε for TT2-111V.



Chapter 3

Coupling Impedance Predictions

Predictions for the coupling impedance of the Porcupine load via numerical, semi-
numerical, and analytic techniques will be presented in this chapter. Predictions for
a load of magnified impedance, the “L3 load” (which was used for measurements with
the CESR beam, as will be discussed in Chapter 5), will also be given. Predictions
and wire measurements for two other cases will be discussed as well. We will con-
clude with a simplified model for the Porcupine impedance and some discussion of
the impedance’s dependence on the microwave properties of the material and the ge-
ometry of the load. To begin with, though, we will review some fundamentals about
the interaction of beam line devices with high-energy beams and introduce the basic
tools of the trade, namely the wake function and the coupling impedance.

3.1 The Beam Coupling Impedance and Its Im-

portance

There is an extensive literature on the general subject of wake fields, wake functions,
and coupling impedances; we mention a few of the many accelerator school and review
articles in the bibliography [39, 40, 41, 42]. The subject is also treated in a recent
book by A. Chao [43].

A Beam’s Interaction with its Surroundings in a Storage Ring

In Section 1.1, we argued that a bunched beam travelling through a storage ring
will exchange energy with its surroundings due to the imperfect conductivity of the
walls of the beam tube and because of variation in the beam tube’s cross-section.
We asserted that the wake fields produced as a bunch interacts with its surroundings
could act back on the particles in the bunch and produce a distortion in the bunch
shape or unstable motion of the bunch as a whole. We need to quantify the effect of
the wake fields produced by the passage of a bunch on the particles in the beam. In
the general case, the beam will consist of multiple bunches, so the wake force from
one bunch can act on particles in the same bunch or in other bunches.

In Section 1.1, we considered a beam travelling at a speed approaching the speed
of light c. This may seem unrealistic, but it is in fact a good approximation for our
purposes: an electron or positron beam with an energy of 5.3 GeV per particle (which

28



29

is typical of CESR) travels at a speed which differs from c by less than one part in 108.
As a consequence, in order to determine the force acting on the particles in a bunch
as they travel through a structure, we do not need to take into account the effect of
the wake force on the motion of the particles: the approximation that their velocity
remains unaffected is an excellent one. This will simplify the problem considerably,
because we will be able to treat the bunch’s trajectory as a known quantity, instead
of having to find a self-consistent solution to the Maxwell Equations with both the
electromagnetic field and the bunch’s trajectory as unknown quantities.

The Wake Function

The most intuitive picture for the beam-environment interaction can be found in
the time domain. Suppose we wish to characterise a beam’s interaction with some
beam line device (a cavity, a section of beam pipe with a material layer, or some
other disruptive element). Let us assume that the beam pipe and device are both
axisymmetric, and use cylindrical coordinates (r, z, φ). Let us send a bunch with a
given charge distribution through this device at velocity cẑ. After a time t, let us send
a small witness charge qw through, also at velocity cẑ. The witness particle experiences
no change in its velocity, but it does experience a change ∆~p(t) in its momentum.
∆~p(t) depends on qw, the transverse position (r, φ) of the witness charge, and the
bunch’s charge distribution. Thus, ∆~p(t) is difficult to calculate in general. If most
of the bunch’s charge distribution is close to the z axis, however, it is useful to do a
multipole expansion of the bunch’s transverse charge distribution. The result is

∆~p(t) = −qw
c

∞∑
m=0

[
rmẑΦtW‖

m(t) + mrm−1
(
r̂Φt + φ̂Ψt

)
W⊥

m(t)
]

. (3.1)

In Equation (3.1), W‖
m(t) and W⊥

m(t) are the longitudinal and transverse wake func-
tions (also known as wake potentials), respectively. W‖

m(t), W⊥
m(t), Φ, and Ψ are 2

by 1 matrices, with

Φ ≡
[

cos(mφ)

sin(mφ)

]
(3.2)

Ψ ≡
[
− sin(mφ)

cos(mφ)

]
. (3.3)

Φt denotes the transpose of Φ. W‖
m(t) and W⊥

m(t) depend on the characteristics of
the beam line device and on the bunch’s charge distribution. The first two terms in
the sum are usually the most important, in which case

∆~p(t) ≈ −qw
c

[
ẑΦtW‖

0(t) +
(
r̂Φt + φ̂Ψt

)
W⊥

1 (t)
]

. (3.4)

W‖
m(t) and W⊥

m(t) are related to the wake functions w‖m(t) and w⊥m(t) engen-
dered by a single particle with a pure multipole moment oriented so that the charge
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distribution goes as cos(mφ):

W‖,⊥
m (t) =

∫ ∞
−∞

Pm(t′)w‖,⊥m (t− t′) dt′ , (3.5)

where Pm(t) is obtained through a multipole expansion of the bunch’s transverse
charge distribution:

Pm(t) ≡ c
∫ ∞
−∞

∫ 2π

0
Φrmρ(r, z, φ, t + z/c)r dφ dr , (3.6)

where ρ(r, z, φ, t) is the bunch’s charge density (since ρ depends only on ct − z, the
above integral is independent of z). Pm(t) gives the longitudinal distribution of the
mth multipole moment of the bunch. The single-particle wake functions w‖m(t) and
w⊥m(t) depend only on the characteristics of the device. Mathematically, w‖m(t) and
w⊥m(t) are Green functions.

The Beam Coupling Impedance

A less intuitive but equally valid description of the beam-environment interaction can
be found in the frequency domain. The time and frequency domain descriptions are
two sides of the same coin, each with its virtues. The frequency domain quantity
analogous to the wake function is the beam coupling impedance, which is a measure
of the strength of the interaction of the device with a sinusoidal beam. The wake
function and the coupling impedance form a Fourier transform pair. We follow the
sign convention for Fourier transforms given in Equation (2.1) in Section 2.1. Several
authors use the opposite sign convention, in which case their impedance is the complex
conjugates of ours. A. Chao [43] uses the same Fourier transform convention, but he
defines the wake function with the opposite sign in its argument, so his impedance is
the complex conjugate of ours as well.

The Fourier transforms of w‖m(t) and 1
i
w⊥m(t) are the longitudinal and transverse

coupling impedances, Z‖m(ω) and Z⊥m(ω), respectively (the factor of i is used by con-
vention). It can be shown that Z‖m(ω) = ω

c
Z⊥m(ω). Z‖0(ω) and Z⊥1 (ω) are sometimes

simply called the longitudinal and transverse impedances (note that, according to
Equation (3.1), W⊥

0 (t) does not produce any momentum change, so Z⊥0 (ω) can be
ignored). The Fourier transforms of W ‖

m(t) and 1
i
W⊥
m(t) are equal to the product of

the Fourier transform of Pm(t) with Z‖m(ω) and Z⊥m(ω), respectively.
Knowledge of either the wake function or the coupling impedance gives us complete

information about the interaction of the device with a beam; all of the information we
need to predict instabilities can be obtained from either of these quantities. Further-
more, the integral of W‖

0(t) or Z‖0(ω) with the appropriate bunch charge distribution
gives the total energy U lost by the bunch, and hence the power transferred to the
device. The energy loss is usually computed in terms of the loss factor

k‖ ≡ 1

q2
b

U, (3.7)
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where qb is the total charge of the bunch. The loss factor depends on the device and
the bunch’s charge distribution. The dominant terms are the monopole and dipole
loss factors, k‖0 and k‖1. In the single-pass case, k‖0 and k‖1 can be obtained from Z‖0
and Z‖1 via

k‖m (σz) =
1

2π

∫ ∞
−∞

dωZ‖m(ω) exp

(
−ω2σ2

z

c2

)
(3.8)

in the case of a Gaussian bunch with standard deviation σz . For the problem at
hand, the single-pass loss factor is adequate to determine the power dissipation in the
multi-turn case, a point which we will return to in Section 4.2.

3.2 Methods for Predicting the Coupling Imped-

ance

We will now discuss five methods for predicting the coupling impedance or, equiv-
alently, the wake function. The first two rely on a bench RF measurement of the
device, while the last three involve modelling the device.

Wire Method—Time Domain

The fields engendered by a bunch travelling through a device at speed c are approxi-
mately the same as those of a pulse travelling down a small-diameter wire, provided
the longitudinal distribution of surface charges on the wire is approximately the same
as the longitudinal distribution of charge in the bunch. By comparing the pulse
transmitted through a beam line device to a reference pulse transmitted through the
same length of “ideal” beam pipe, one can estimate the wake function. A single pulse
travelling down a single wire gives W‖

0(t); pulses of opposite voltage travelling down
a pair of wires give W⊥

1 (t). The appropriate integral of W‖
0(t) gives the loss factor.

The apparatus and methods we used for this measurement are described elsewhere
[44].

Wire Method—Frequency Domain

By using a sinusoidal wave with angular frequency ω instead of a pulse, one can
measure the coupling impedance approximately. By comparing the amplitude and
phase of a wave transmitted through the beam line device to those of a reference
wave, one can estimate Z‖0(ω) (with one wire) or Z⊥1 (ω) (with two wires carrying
waves that are 180◦ out of phase). The techniques are discussed in a separate paper
[45].

Numerical Simulation

Programs such as TBCI [46] and ABCI [1] have been used extensively to model
wake effects for geometrical devices (cavities, cross-sectional changes, etc). AMOS
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[47] is a program similar in spirit to TBCI and ABCI, but able to model devices
containing dispersive materials. AMOS solves the Maxwell equations in the time
domain on a finite-difference rectangular mesh. The device must be axisymmetric,
but the beam need not be, so that both the longitudinal and transverse impedances
can be calculated. Materials with complex frequency-dependent permeability µ and
permittivity ε are fitted to simplified models. For the calculations discussed herein,
we used a “relaxation” model for µ with up to 3 terms:

µ(ω)

µ0
= 1 +

∑
j

αj
2

(
1

βj − γj − iω
− 1

βj + γj − iω

)
, (3.9)

where αj, βj, and γj are real. For ε, we used the relaxation model or the “con-
stant/conductivity” model in which Re ε is assumed to be constant and Im ε is
assumed equal to −σe/ω, where σe is the (frequency-independent) electrical conduc-
tivity. As we will see, the relaxation model does not fit our measured µ and ε values
very well over the entire frequency range, but it approximates µ quite well over sev-
eral decades; the main advantage of the model is that the numerical solution of the
Maxwell Equations in the time domain is particularly simple.

Analytic Calculation

In simple situations, the coupling impedance can be calculated analytically. The
best-known analytic calculation is probably the resistive wall impedance, a thorough
overview of which has been presented recently [39]. The longitudinal impedance of
some more complicated cases involving multiple layers of various materials have also
been derived [48, 49]. We used the same general approach to derive formulae for the
longitudinal and transverse impedance per unit length of an infinitely long, perfectly
conducting beam pipe with a layer of material with complex permeability µ and
complex permittivity ε. The coupling impedance of a beam pipe section of finite
length is obtained by multiplying by its length. The result is only approximate, since
the effects associated with the finite length of the material lining are not taken into
account.

The approach is to solve the Maxwell equations twice, first in the vacuum region
and then in the material region. One assumes a known charge density and current
density distribution in the vacuum region, which yields a solution for the electro-
magnetic field containing terms with various powers of r. In the material region, the
general solution involves linear combinations of Bessel functions. The appropriate
boundary conditions at r = ro and the appropriate continuity conditions at r = rx
(see Figure 3.1 below) must be satisfied. This yields formulae for the electromagnetic
field as a function of the assumed charge and current density, from which the coupling
impedance can be derived. The longitudinal impedance for m = 0 is

Z‖0(ω) =
−i

2π

√
µ0

ε0

L

rx

[
krx
2

+
k

k̄r

ε

ε0

b0(k̄rro, k̄rrx)

]−1

(3.10)
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and the transverse impedance for m > 0 is

Z⊥m(ω) =
−i

π

√
µ0

ε0

L

kr2m+1
x

{
krx

m + 1
− m

krx
+

k

k̄r

[
ε

ε0
bm(k̄rro, k̄rrx)

+
µ

µ0

b′m(k̄rro, k̄rrx)−
2m

k̄rrx

]}−1

. (3.11)

L is the length of the material-lined section, k ≡ ω/c, k̄r ≡ ω
√

µε− µ0ε0, and

bm(y, x) ≡ Nm(y)J ′m(x)− Jm(y)N ′m(x)

Nm(y)Jm(x)− Jm(y)Nm(x)
(3.12)

b′m(y, x) ≡ N ′m(y)J ′m(x)− J ′m(y)N ′m(x)

N ′m(y)Jm(x)− J ′m(y)Nm(x)
. (3.13)

Jm(x) and Nm(x) are the Bessel functions of the first and second kind of order m,
respectively, while J ′m(x) and N ′m(x) are their first derivatives. It is worth noting that
for |x| � 1 and |y| � 1,

bm(y, x) ≈ − cot(y − x) (3.14)

b′m(y, x) ≈ tan(y − x) . (3.15)

The above approximations were used in circumstances in which the imaginary parts
of k̄rrx and k̄rro were large enough in magnitude to make it impractical to calculate
bm and b′m via the exact formulae.

Equations (3.10) and (3.11) reduce to the familiar resistive wall formulae in the
appropriate limit. Equation (3.10) also agrees with the formula for a resistive wall
with a dielectric layer [45]. It can also be shown that the coupling impedance goes to
infinity when the phase velocity for a waveguide mode of propagation (with the same
azimuthal dependence in the fields) is equal to c.

It is possible to obtain (3.10) by solving for the modes of propagation in a pipe
with a material layer and an inner conductor, using the wire method to predict Z‖0,
and taking the limit in which the radius of the inner conductor goes to zero.

The Akasaka Field Matching Method

Consider the case of a layer of material of finite length imbedded in a perfecting
conducting pipe (see Figure 3.1 below). One can write down the general monopole
solution to the Maxwell Equations in the vacuum region (r < rx); the same can
be done in the material region (rx < r < ro and 0 < z < L). The constraint
that the appropriate fields be continuous at the interface (r = rx) yields a matrix
equation. After solving this matrix equation for a particular ω, one can deduce
Z‖0(ω). Strictly speaking, the dimensions of the matrices are infinite; however, an
approximate numerical solution can be obtained by including only a finite number of
terms. The field matching approach was first applied to the special case of µ = µ0

and ε = ε0 (i.e. a pillbox cavity with beam tubes, but without a material layer)—the
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Figure 3.1. Assumed load geometry.

technique is described in a recent review article [42]. The approach was generalised
to the case of arbitrary but real µ and ε by K. Yokoya, and to the case of complex µ
and ε by N. Akasaka [50].

As we will see, the Akasaka method complements the purely analytic approxi-
mation and the purely numerical approach taken by AMOS. The Akasaka method
has the advantage of accounting for the finite length of the material layer, while still
providing a more direct solution than the time domain simulation done by AMOS (in
particular, it does not require an approximate fit to the frequency dependence of µ
and ε, and it generally can be expected to give better accuracy with much less com-
putation time). On the other hand, the purely numerical approach used by AMOS
can be used to solve more complicated geometries, while the analytic approach offers
a simpler (i.e. closed-form) solution. Only the monopole field matching solution has
been worked out for complex µ and ε, although the dipole solution for the case of
µ = µ0 and ε = ε0 is known [51].

3.3 Coupling Impedance Predictions

The methods described above were used to predict the coupling impedance for the
full-size Porcupine load (see Figures 1.4 and 1.5) and the L3 load (see Figures 5.1 and
5.2). Additional predictions and wire measurements were done on a small Ferrite-50
model and a large TT2-111V load mock-up to check the predictive methods. A generic
load geometry is depicted in Figure 3.1; the dimensions used in the calculations are
given in Table 3.1. In reality, only the small Ferrite-50 model is actually axisymmetric;
the rest of the loads were made by attaching ferrite tiles to the inside of a shell.

We will predict the coupling impedance of the Porcupine load alone, although,
strictly speaking, it would be preferable to predict the coupling impedance of the en-
tire RF system assembly, including the cavity cell, tapers, and flutes, along with the
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Table 3.1. Assumed load dimensions.

L rx ro
Type [mm] [mm] [mm]

Porcupine 101.6 114.1 117.3

L3 600.0 42.9 46.0

Small model 31.0 22.8 25.9

Full-size mock-up 152.4 119.3 122.6

two Porcupine loads (see Figure 1.3). However, calculating the impedance of such a
complicated structure would be rather difficult. Instead, we will invoke the “composi-
tion rule” [52], which states that the total impedance of a structure is approximately
equal to the sum of the impedances of each of its elements. We will return to this
point in Section 5.8.

TT2-111-Series Porcupine Load

We predicted the coupling impedance of a Porcupine load made of TT2-111V material
using AMOS, the analytic formulae, and (in the monopole case) the Akasaka field
matching method. A three-term relaxation model and a constant/conductivity model
were used to input the µ and ε, respectively, of TT2-111V into AMOS. The measured
values are compared to the fits in Figures 3.2 and 3.3. The fitted parameters are given
in Appendix A.

The monopole and dipole impedance predicted for one Porcupine load are com-
pared in Figures 3.4 and 3.5. All three calculated Z‖0 values agree reasonably well
for frequencies below about 1 GHz; the AMOS and Akasaka predictions agree quite
well up to about 12 GHz. The large dip in the AMOS and Akasaka predictions at
1 GHz occurs at the cutoff frequency for the first monopole waveguide mode in the
metal beam pipe. Above 1 GHz, the finite length of the ferrite lining has the effect
of significantly increasing the impedance. A likely explanation for this difference is
that the localised fields produce about the same amount of coupling in both cases,
but that the net effect ends up being close to zero at most frequencies in the infinitely
long structure because of cancellation. It can be shown that Z‖0 →∞ according to the
analytic formula if the phase velocity for propagation of a monopole waveguide mode
in the ferrite-lined pipe is equal to c. This presumably accounts for the spike in the
analytically-predicted impedance at 17.4 GHz1. In contrast, when the finite length is
accounted for, the impedance is nearly constant over a large frequency range.

The behaviour predicted above 12 GHz is probably not accurate in any of the three

1The result that Z‖0 → ∞ might seem unphysical, but it is no more unphysical than the claim
that Q → ∞ for a cavity with perfectly conducting walls; both can occur only at discrete set of
frequencies, and neither limit is ever reached if losses are present.
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Figure 3.2. Measured and fitted values of (a) the real part and (b) the imaginary part (times −1) of µ for TT2-111V used in
the coupling impedance predictions.
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Figure 3.3. Measured and fitted values of (a) the real part and (b) the imaginary part (times −1) of ε for TT2-111V used in
the coupling impedance predictions.
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Figure 3.4. Predicted (a) real part and (b) imaginary part of the monopole coupling
impedance of the Porcupine load. The complex conjugates of the AMOS values are
shown, since the opposite sign convention is used in AMOS.
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Figure 3.5. Predicted (a) real part and (b) imaginary part of the dipole coupling
impedance of the Porcupine load. The complex conjugates of the AMOS values are
shown.
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cases, because the imaginary parts of µ and ε are close to zero, and the relative error is
the measurement is quite large. As a result, the AMOS prediction may be the closest
to reality for frequencies above 12 GHz, because it is based on fitted values of µ and ε
whose behaviour is at least plausible at high frequencies. The agreement between the
Akasaka and AMOS predictions remains quite good over the entire frequency range
if we use the fitted µ and ε values for as input to the field matching calculation.

The calculated Z‖1 values follow the same pattern as Z‖0, at least qualitatively. The
analytic and AMOS predictions are within a factor of 2 below 1 GHz, but, as with Z‖0,
they disagree by a factor of 10 or more at high frequencies. There is a less pronounced
dip at the cutoff frequency for the first dipole waveguide mode (0.77 GHz).

Monopole and dipole loss factors for a Gaussian bunch of standard deviation σz
were obtained from Z‖0 and Z‖1 via Equation (3.8). The results are shown in Figure 3.6.
All calculated k‖0 values agree quite well for long bunches, but the analytic results
increase less rapidly as the bunch length decreases, because of the smaller impedance
predicted at high frequencies. The k‖1 values follow a similar pattern, although the
agreement between the two predictions is not as good for long bunches.

TT2-111-Series L3 Load

We applied the same methods and µ and ε values (Figures 3.2 and 3.3) as used for
the Porcupine load to predict the coupling impedance of the L3 load. The results
are shown in Figures 3.7 and 3.8; the corresponding loss factors are shown in Figure
3.9. The AMOS and analytic predictions agree quite well. The better agreement
between the two predictions relative to the Porcupine case is presumably due to the
fact that the structure is significantly longer, making the effects associated with the
finite length less important. Because of the increase in length and the decrease in
radius, a large number of terms must be included in order to get the same accuracy
in the Akasaka calculation—more than ten times the number of terms used in the
Porcupine case. For expedience, we included fewer terms than would be needed to
ensure reasonable accuracy, which probably accounts for the fact that the Akasaka
impedance falls rapidly near 10 GHz and remains close to zero thereafter. Even so,
all three predictions for the monopole loss factor agree quite well.

The predicted monopole coupling impedance of the L3 load is about 16 times
that of the Porcupine load; the predicted dipole impedance of the L3 load is about
80 times that of the Porcupine. In other words, the predictions indicate that the L3
load has about twice the monopole impedance and 10 times the dipole impedance of
the eight Porcupine loads that are to be installed in the first step of the CESR RF
system upgrade.

In the predictions described above, we have not taken into account the fact the
the actual load for the L3 test was split into three units. We will return to this point
in Section 5.6.
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Figure 3.6. Predicted (a) monopole and (b) dipole loss factor for the Porcupine
load.
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Figure 3.7. Predicted (a) real part and (b) imaginary part of the monopole coupling
impedance of the L3 load. The complex conjugates of the AMOS values are shown.
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Figure 3.8. Predicted (a) real part and (b) imaginary part of the dipole coupling
impedance of the L3 load. The complex conjugates of the AMOS values are shown.
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Figure 3.9. Predicted (a) monopole and (b) dipole loss factor for the L3 load.
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Small Ferrite-50 Model

Wire measurements were done by L. Walling on a small load model made of Ferrite-50
as a check of the correctness of our predictive methods. Two-term relaxation models
were used to input the µ and ε of Ferrite-50 into AMOS. The measured µ and ε and
the fitted values are compared in Appendix A; the fitted parameters are also given in
Appendix A. The calculated coupling impedances for the small model are compared
to the wire result in Figures 3.10 and 3.11. A Z‖0 value calculated via numerical
simulation of the wire method using the HFSS program1 is also shown.

The Z‖0 values measured with the wire method are somewhat larger in magnitude
than the calculated values. This disagreement may be due in part to batch-to-batch
variation in the ferrite properties. The agreement improves significantly if we pos-
tulate that −Im ε is smaller than measured by a factor of 2.5. This is still within
the tolerances specified for the conductivity of the material, although we have not
measured the batch-to-batch variation in the microwave properties of Ferrite-50. The
calculated values of Z‖0 agree reasonably well up to about 15 GHz. The cutoff fre-
quency for the first monopole waveguide mode of propagation in the metal beam
pipe is 5 GHz; dips in Z‖0 are predicted by AMOS and the Akasaka method near this
frequency. These dips become less pronounced as L increases.

The measured Z⊥1 values are also somewhat larger in magnitude than the calcu-
lated values, except at very low frequencies. Again, the agreement improves if we
divide Im ε by 2.5. The agreement between the calculated Z⊥1 values is not quite as
good as for Z‖0.

TT2-111-Series Full-Size Mock-up

Wire measurements were also done in the time domain on a full-size load mock-up.
The mock-up’s dimensions were about the same as the Porcupine load, except that
the mock-up was 1.5 times longer. In the wire measurement, the monopole loss factor
for an approximately Gaussian pulse with σz ≈ 23 mm was measured. This result
is compared to predictions in Figure 3.12. As in the Porcupine case, the analytic k‖0
values are smaller than the AMOS and Akasaka predictions for short bunch lengths.
The measured value is about 25% smaller than the predictions which account for the
finite length of the ferrite layer; the discrepancy may be due to the gaps between the
tiles, which are not accounted for in the predictions (see also Section 5.6).

Edge Effects

So far, we have assumed that the ferrite layer is imbedded in the metal pipe, as shown
in Figure 3.1. While this is a good assumption in the case of the small Ferrite-50 load,
it is not strictly true for the Porcupine load (Figure 1.4) or the L3 load (Figure 5.1),
since the ferrite layer protrudes inward toward the beam, as shown schematically in
Figure 3.13a. The analytic approximation does not take the finite length into account

1HFSS is a product of the Hewlett-Packard Corporation.
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Figure 3.10. Predicted (a) real part and (b) imaginary part of the monopole coupling
impedance of the small Ferrite-50 model. The complex conjugates of the AMOS values
are shown. The uncertainty in the values measured with the wire method is about
(±1± i6) Ω.
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Figure 3.11. Predicted (a) real part and (b) imaginary part of the dipole coupling
impedance of the small Ferrite-50 model. The complex conjugates of the AMOS
values are shown.
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Figure 3.12. Predicted monopole loss factor for a full-size TT2-111-series load mock-
up. The measured value is for TT2-111C ferrite, while the calculated values are based
on the measured properties of TT2-111V. The reproducibility in the measured value
is about ±0.003 pF−1, but the systematic error is probably larger.

at all, so it gives the same answer for Figures 3.1 and 3.13a; the field matching solution
is applicable only to the geometry of Figure 3.1. The inwardly-protruding layer can
be modelled with AMOS, however, but only after adding tapers to ensure that the
end pipes’ diameter is less than or equal to the inner diameter of the ferrite, as shown
in Figure 3.13b.2

The impedance of a Porcupine load with the geometry of Figure 3.13b was calcu-
lated with AMOS. The values of ro, rx, and L were the same as before (Table 3.1);
a taper angle of 1.2◦ was used. At low frequencies, the predicted impedance was
the same as for the geometry of Figure 3.1. Above the cutoff frequency, the more
realistic edge condition produced an increase in Re Z‖0 and a decrease in |Im Z‖0|. For
σz = 10 mm, the predicted monopole loss factor increased by 6.8% with the more
realistic geometry. The additional impedance due to the tapers is a small fraction of
the latter (we estimate the tapers’ loss factor to be 0.4% of the total). An increase of
6.4 to 6.8% is small enough that we may consider the less realistic treatment of edge
effects for the Porcupine case to be adequate for our purposes. The same can be said
for the L3 load, a point which we will return to in Section 5.6.

2These are methods for modelling the geometry of Figure 3.13a more directly, but none of them
are available with AMOS yet.
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Figure 3.13. An HOM load with the ferrite layer protruding inward, (a) with a
straight beam pipe and (b) with a tapered beam pipe. In (b), the inner diameter of
the ferrite is the same as that of the end pipes.

3.4 A Highly Simplified Impedance Model

� A striking feature of the predicted coupling impedance for the Porcupine load is
the peak in the real part near 0.5 GHz, which can be seen in both the monopole

case (Figure 3.4) and the dipole case (Figure 3.5). As Re Z‖m goes through its max-
imum, Im Z‖m goes through zero. For Z‖0, all three calculations predict the same
behaviour near 0.5 GHz, but there is some discrepancy between the AMOS and ana-
lytic predictions for Z‖1. Even with our analytic formulae for the coupling impedance,
it is not obvious that there should be resonant behaviour near 0.5 GHz. As we will
now see, this feature can be understood via a simplified coupling impedance model,
which we will derive in this section. We will apply the model to the case of a TT2-
111V Porcupine load in this section, and to other cases in the next two sections. Our
simple model will be no substitute for more rigorous calculations, so we will not use
it in subsequent chapters. On the other hand, rigorous calculations are no substitute
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Table 3.2. Parameters determining the validity of the simplified impedance model
for four different ferrites. Values of µ and ε are taken at 0.5 GHz; values of rx and ro
for the Porcupine load were used.

Material

∣∣∣∣∣ µε

µ0ε0

∣∣∣∣∣ ∣∣∣k̄rrx∣∣∣ ∣∣∣k̄r(ro − rx)
∣∣∣

TT2-111V 309.4 21.0 0.58

CMD10 378.0 23.2 0.65

IB-004 289.8 20.3 0.57

Ferrite-50 4470.7 80.0 2.22

for a simple model.
We will use the analytic formulae, i.e. Equations (3.10) and (3.11), as our starting

point. Let us consider a limited frequency range (in the Porcupine case, frequencies
near 0.5 GHz). Let us assume that |k̄rrx| � 1 and |k̄rro| � 1, so that the trigonomet-
ric approximations given in Equations (3.14) and (3.15) apply. Let us further assume
that |µε| � µ0ε0 and |k̄r(ro − rx)| � 1. The latter implies that the electromagnetic
field does not vary significantly as a function of depth in the material layer. As can
be seen in Table 3.2, for the Porcupine geometry, these conditions are satisfied for
TT2-111V, as well as CMD10 and IB-004, although the |k̄r(ro − rx)| values are not
all that small compared to 1. Ferrite-50, on the other hand, has |k̄r(ro − rx)| > 1, so
our simplified model will not apply to a Ferrite-50 Porcupine load.

The above assumptions yield an approximate expression for Z‖m(ω) which, inter-
estingly enough, is independent of ε(ω). To proceed further, we need an explicit
expression for the frequency dependence of µ, or more conveniently, that of 1/µ. In
the case of TT2-111V, as shown in Figure 3.14, Re (1/µ) is approximately constant
and Im (1/µ) is approximately proportional to ω in the vicinity of 0.5 GHz. As can be
seen in Figure 3.14, the same is true for the other ferrites. Hence, let us approximate
µ(ω) via

1

µ(ω)
≈ 1

µ0

(
κ + i

ω

ψ

)
, (3.16)

where κ and ψ are real constants. In the case of the dipole impedance, let us also
assume that κ2 � ω2/ψ2.

With the above assumptions, the analytic formulae for the monopole and dipole
impedance both reduce to the familiar form of a resonator impedance:

Z‖m(ω) ≈ Rs

1 + iQ
(
ω
ωR
− ωR

ω

) . (3.17)

In the above formula, Rs, ωR, and Q are the shunt impedance (non-linac definition),
resonant angular frequency, and quality factor, respectively, of the resonator. In the



51

0 0.5 1

Frequency [GHz]

0.
1

0.
08

0.
06

0.
04

0.
02

0

Im
 µ

0/
µ

TT2-111V
CMD-10
IB-004
Ferrite-50

N
I
Z
N
_
M
U
_
I
N
V
 
2
 
2
1
-
M
A
R
-
9
6

(b)

0 0.5 1

Frequency [GHz]

0.
1

0.
08

0.
06

0.
04

0.
02

0

R
e 

µ 0/
µ

TT2-111V
CMD-10
IB-004
Ferrite-50

N
I
Z
N
_
M
U
_
I
N
V
 
1
 
2
1
-
M
A
R
-
9
6

(a)

Figure 3.14. Measured values of (a) the real part and (b) the imaginary part of 1/µ for four different ferrites.
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monopole case,

Rs =
1

2π

√
µ0

ε0

L

rx
(ro − rx)

ψ

c
(3.18)

ωR = c

√
2κ

rx(ro − rx)
(3.19)

Q =
ψ

c

√
κrx(ro − rx)

2
= −Re µ(ωR)

Im µ(ωR)
. (3.20)

In the dipole case,

Rs =
1

π

√
µ0

ε0

L

r3
x

[
1

ro − rx

c

ψ
+ (ro − rx)

ψ

c

]−1

(3.21)

ωR = c

√√√√ 2

rx

[
1

rx
+

κ

ro − rx
− κ(ro − rx)

ψ2

c2

]
(3.22)

Q =
ωR
c

rx
2

[
1

ro − rx

c

ψ
+ (ro − rx)

ψ

c

]−1

. (3.23)

Note that, in both cases, Rs depends on Re (1/µ) but not on Im (1/µ); likewise, in
the monopole case, ωR depends on Im (1/µ) but not on Re (1/µ), and 1/Q is equal
to the material’s magnetic loss tangent evaluated at ωR.

For the case of a TT2-111V Porcupine load, we obtain the following monopole
impedance parameters: Rs = 40.4 Ω, ωR/(2π) = 0.469 GHz, and Q = 0.425. The real
part of the corresponding resonator impedance is compared to the analytic prediction
in Figure 3.15. Our highly simplified resonator model actually agrees quite well
with the analytic prediction at ωR, although it overestimates Re Z‖0 somewhat for
ω ≥ ωR; it underestimates Re Z‖0 somewhat (and overestimates Im Z‖0) below ωR.
The corresponding dipole impedance parameters are Rs = 3.95 kΩ/m2, ωR/(2π) =
0.666 GHz, and Q = 0.383. The agreement with the analytic dipole impedance is
slightly better than for the monopole case. Of course, our simple model does not
reproduce the increase in the impedance above the cutoff frequency due to the finite
length of the ferrite layer.

Our resonator model allows us to write down a closed-form expression for the
monopole and dipole loss factors. The familiar formula for k‖0 in the high-Q limit
is not a good approximation for the problem at hand. There is a more general
expression, however:

k‖m(σz) =
ωR
4

Rs

Q

b+w(ib+x)− b−w(ib−x)√(
1

2Q

)2
− 1

, (3.24)
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Figure 3.15. Comparison of the real part of the monopole coupling impedance
predicted by the analytic formula and by the resonator model for the case of the
Porcupine load.

where

b± ≡ 1

2Q
±

√√√√( 1

2Q

)2

− 1 (3.25)

x ≡ ωRσz
c

(3.26)

w(y) ≡ e−y
2

erfc(−iy) , (3.27)

and erfc(y) is the (complex) complementary error function [53]. If Q = 1
2
, the above

expression is ill-defined, but k‖m can be obtained as a limit or via a separate derivation.
The result given in Equation (3.24) was derived in [54], although a different parameter
was used for the normalised power loss.

�� Because of the transcendental functions in the above expressions for k‖m, the
dependence on Rs, ωR, and Q is not transparent. An approximate expression

for k‖0, can be obtained, however:

k‖m(σz) ≈
ωR
2

Rs

Q

(
1− 2x√

πQ
+

x2

2Q2

)
exp

[
−x2

(
1− 1

2Q2

)]
. (3.28)

When Q is of order 1
2
, the above expression is valid for x � 1. For arbitrary Q, the
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Table 3.3. Monopole resonator parameters for Porcupine loads made of different
materials. A resonance near 0.5 GHz was assumed when choosing κ and ψ values for
each material.

Rs ωR/(2π) Q

Material [Ω] [GHz]

TT2-111V 40.4 0.469 0.425

CMD10 49.0 0.226 0.248

IB-004 41.3 0.411 0.381

Ferrite-50 42.3 0.497 0.471

condition for validity is a bit more complicated.

3.5 Predicted Dependence on Material Properties

Our goal in this section will be to see how the material’s microwave properties affect
the coupling impedance of a material-lined pipe. To keep the scope of the discussion
finite, we will consider only the four ferrite materials discussed in Chapter 2, we
will consider only the Porcupine geometry, and we will examine only the monopole
impedance.

Predicted values for the real part of the monopole impedance for loads of different
materials are compared in Figure 3.16. For all four materials, the analytic values,
which do not account for the finite length of the layer, disagree with the Akasaka
results near and above 1 GHz, but the two methods agree quite well at low frequen-
cies. The predicted impedance of IB-004 is very close to that of TT2-111V; CMD10 is
predicted to have a peak impedance about 20% higher than TT2-111V; the predicted
Ferrite-50 impedance is more than a factor of 2 smaller than TT2-111V at low fre-
quencies, and it remains significantly lower at high frequencies when the finite-length
effects are included (Figure 3.16b). The corresponding k‖0 for Ferrite-50 is about 2/3
that of TT2-111V for σz = 10 mm. The TT2-111V, IB-004, and CMD10 loss factors
are equal within a few percent at this bunch length.

The simplified model from the previous section is adequate to explain the be-
haviour of CMD10 and IB-004 (and, as we already saw, TT2-111V) below 1 GHz.
The resonator parameters obtained with this model for the four materials are com-
pared in Table 3.3. As can be seen, the parameters for IB-004 are very close to those
of TT2-111V; a higher Rs and a lower resonant frequency are predicted for CMD10
(due mostly to its smaller κ), which is in agreement with Figure 3.16. The smaller Q
predicted for CMD10 also agrees with Figure 3.16, since the width of the resonance
is about the same as for TT2-111V and the resonant frequency is smaller.

We saw in the previous section that our simplified model is not valid for a Ferrite-
50 Porcupine load. The resonator parameters for Ferrite-50 do indeed disagree with
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Figure 3.16. Real part of the monopole coupling impedance predicted by (a) the
analytic formula and (b) the Akasaka field matching method for Porcupine loads made
of various materials.
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Figure 3.16, and fail to explain the significantly lower impedance relative to the other
materials. With some different assumptions that are better suited to the µ and ε
of Ferrite-50 near 0.5 GHz, one can obtain an alternate model for the monopole
impedance of Ferrite-50, in which

Z‖0(ω) ≈ 1

2π

L

rx

√
µ

ε
. (3.29)

In contrast to our resonator model, ε matters but the layer thickness does not (in this
case, we assume that the electromagnetic penetration depth is small compared to the
layer thickness). The above equation gives about the right answer for the Ferrite-50
Porcupine impedance, at least at 0.5 GHz.

3.6 Predicted Dependence on Load Geometry

We will now examine the coupling impedance’s dependence on the geometry of the
material-lined tube. To again keep the scope of the discussion finite, we will con-
sider only TT2-111V ferrite, we will consider only simple variations on the Porcupine
geometry, and we will discuss only the monopole loss factor for the special case of
σz = 10 mm.

As can be seen in Equation (3.10), the analytic formula predicts a simple propor-
tionality between Z‖0(ω) and the length L of the ferrite layer, and hence also between
k‖0(σz) and L. The same is true of the resonator model. Predicted k‖0 values for a
Porcupine load as a function of L are given in Figure 3.17. The Akasaka method
and AMOS predict a consistently higher loss factor due to finite-length effects. The
absolute difference between the Akasaka and analytic predictions is approximately
constant for large L, but it decreases to 0 as L → 0. Fortuitously, the resonator
model (which we obtained as an approximation to the analytic formula) agrees better
with the Akasaka method near L = 600 mm.

For all of our models, the dependence of k‖0 on the inner radius rx of the material
layer is non-trivial. According to the approximate expression for the resonator k‖0
given in Equation (3.28), however, k‖0 is proportional to r−2

x to lowest order in ωRσz/c.
Predicted k‖0 values for a Porcupine load as a function of rx are given in Figure 3.18.
As before, the Akasaka method and AMOS predict a consistently higher loss factor.
The difference between the Akasaka and analytic predictions decrease as rx decreases.
The resonator model, on the other hand, better approximates the analytic result when
rx is large. The analytic and Akasaka k‖0 vary more slowly with rx than our crude
estimate of r−2

x : the analytic k‖0 does not follow a power law very closely, but it varies
roughly as r−1.7

x ; the Akasaka k‖0 follows a proportionality to r−1
x quite closely over

the range of values shown in Figure 3.18.
The dependence of k‖0 on the thickness of the material layer is also non-trivial

in all of the models. According to the approximate resonator expression, k‖0 is inde-
pendent of thickness to lowest order in ωRσz/c; the first-order term is negative and
proportional to (ro − rx)

−1. Predicted k‖0 values for a Porcupine load as a function
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Figure 3.17. Comparison of predicted monopole loss factors as a function of the
length of a TT2-111V Porcupine load. In the resonator case, the exact formula for
k‖0 was used.

of thickness, with ro held constant, are given in Figure 3.19. As was the case for
L, the Akasaka and analytic predictions agree as the thickness goes to zero. The
resonator approximation falls between the analytic and Akasaka predictions. The be-
haviour agrees qualitatively with our expectation, in that k‖0 varies more slowly with
thickness as the thickness increases.

3.7 Summary

Coupling impedance predictions for the TT2-111-series Porcupine load agree reason-
ably well at low frequencies; near and above the cutoff frequency, the finite length
of the ferrite becomes important, producing an impedance significantly larger than
expected from the analytic approximation at high frequencies. The coupling imped-
ances for the L3 load and the Ferrite-50 model predicted by the various calculational
methods agree reasonably well, although the latter differ somewhat from the imped-
ance predicted via wire measurements. It is possible to account for the resonator-like
behaviour of the Porcupine impedance near 0.5 GHz with a simple model, although
finite-length effects are not included.
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Figure 3.18. Comparison of predicted monopole loss factors as a function of the
inner radius of a TT2-111V Porcupine load. The exact formula for the resonator k‖0
was used.
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Figure 3.19. Comparison of predicted monopole loss factors as a function of the
ferrite layer thickness of a TT2-111V Porcupine load. The exact formula for the
resonator k‖0 was used.



Chapter 4

Power Transfer and Beam
Instability Predictions

As discussed in the previous chapter, wake fields are produced as the beam interacts
with its surroundings, and a wake force acts back on the particles in the beam. As
the beam current is increased, the wake fields, being proportional to current, will
eventually produce enough positive feedback to disrupt the charge distribution in the
beam or excite coherent oscillations of the bunches. In this chapter, the effect of the
Porcupine HOM load impedance on beam stability will be predicted for a hypothetical
future storage ring, which we will call CESR-V. Predictions for the beam-induced
power dissipation in the ferrite loads will also be given. For the latter, we will consider
two cases: the CESR-V machine parameters and another set of design parameters
(which we will call CESR-III.5) for the near-term upgrade of CESR that is in progress.

To construct theoretical models for beam instabilities, one can approximate the
beam as a continuous distribution of charge in phase space. The time evolution of
the distribution under the influence of the electromagnetic forces (from the ring’s
guide field and the wake field) is then described by the Vlasov equation. To make
the problem tractable, the wake force is treated as a small perturbation relative to
the guide field. We will see that the approximate stability criteria obtained with this
approach can be expressed in terms of functionals of the coupling impedance and the
frequency spectrum of the bunch. The wake field affects both the time-independent
solution to the Vlasov equation and the time-dependent solutions. The former topic
is the subject of Section 4.4; the latter is the subject of Sections 4.5 through 4.7. In
these sections, we will consider only the single-turn and multi-turn wake produced by
a single bunch—multi-bunch effects are discussed in Section 4.8. First, we describe the
machine parameters that will be used, introduce the effective elastance (a functional
whose usefulness will become obvious as we proceed), and consider the beam-induced
power dissipation.

Most of the analysis covered herein is based on the “perturbation formalism” given
in Chapter 6 of A. Chao’s book [43]. Following Chao, we will consider a smooth
accelerator (i.e. an accelerator in which the guide field is independent of position) in
formulating the Vlasov equation, and incorporate the transverse betatron function on
an ad hoc basis only. Likewise, we will assume that the accelerator is not operating
near a coupling resonance, so that the longitudinal, horizontal, and vertical degrees
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of freedom of the beam are independent.1 Our equations will have a form slightly
different from Chao’s, because of our different sign convention for impedance (see
Section 3.1) and our formulation in terms of elastance. We will also use alternate
approaches to the analysis of some of the collective effects. The present approach
will be somewhat different from the preliminary beam stability estimates for the
HOM loads [55], which were based mostly on the bunched-beam instability program
ZAP [56], with the HOM loads’ coupling impedance parameterised by several low-Q
resonators; the present analysis will not require such a parameterisation. The machine
parameters have also evolved a bit since the early estimates with ZAP were made.

4.1 Machine Parameters

Selected machine parameters for CESR-III.5 and CESR-V are given in Table 4.1.
Since no optical lattice has been designed for CESR-V yet, several of the CESR-V
parameters are assumed to be the same as for CESR-III.5. For the convenience of
the reader, some additional derived parameters are given in Table 4.2.

CESR-III.5 is a more mature incarnation of CESR-III [2]: the two machines have
the same RF system, but the cavities operate at a higher field level in CESR-III.5,
thereby producing a smaller bunch length. The decrease in bunch length increases the
power dissipation in the ferrite loads. In CESR-III.5, as in CESR-III, the bunches are
grouped into trains of 5 bunches spaced 7 buckets (4.2 metres) apart. Because of the
pretzel orbits, the beams have a transverse displacement as they travel through the
HOM loads. CESR-V is a hypothetical machine with even higher luminosity (more
than four times the CESR-III.5 luminosity, one would hope): the charge per bunch
is about the same, but the bunches are spaced 7 buckets apart throughout the entire
circumference. CESR-V has a somewhat shorter bunch length and more cavities (and
hence more ferrite loads). In CESR-V, the beams travel through separate vacuum
chambers, but they share a common RF system; the beams’ transverse displacement
in the HOM loads is larger than in the CESR-III.5 case. Of the three machines,
CESR-V has the largest number of bunches, so it can be expected to be the least
stable; we will therefore focus on CESR-V in our beam stability analysis.

No wigglers are assumed present in the parameter sets; the addition of wigglers will
tend to increase the momentum spread, energy radiated per turn, radiation damping
rates, and bunch length (the increase in the latter would presumably be compensated
for via a higher RF voltage), which can be expected to enhance the beam stability
slightly.

The chromaticity ξ is included in Table 4.1 because a non-zero chromaticity pro-
duces a single-bunch transverse instability. Several definitions of chromaticity are in
use; we will take

ξ ≡ 1

ω0

dωβ
dδ

, (4.1)

1with one exception: we will include synchro-betatron coupling explicitly in our discussion of the
bananer effect in Section 4.4.
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Table 4.1. Selected CESR-III.5 and CESR-V machine parameters.

Parameter CESR-III.5 CESR-V

Ring circumference C 768.43 m

Energy per particle qeE0 5.289 GeV

Current per bunch Ib 11.11 mA 10.93 mA

Bunches per beam M 45 183

Bunch fill pattern 9 trainsa uniform

Longitudinal bunch size σz (bunch “length”) 11.95 mm 10 mm

Relative momentum spreadb σδ 6.115 · 10−4

Momentum compaction 0.0118

RF Frequency 499.8 MHz

Horizontal betatron frequency 4105.64 kHz

Vertical betatron frequency 3744.22 kHz

Horizontal chromaticity 1

Vertical chromaticity 1

Energy radiated per turnb U0 1.029 MeV

Longitudinal radiation damping rateb 76.72 s−1

Horizontal radiation damping rateb 37.09 s−1

Vertical radiation damping rateb 37.94 s−1

Number of HOM loads 8 20

Maximum beam displacement near the cavities x⊥ 20 mm 41 mm

Maximum transverse β-function near the cavities βZ 40 m

abunches within a train are 7 buckets apart
bwithout wigglers
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Table 4.2. Some derived parameters for CESR-III.5 and CESR-V.

Parameter CESR-III.5 CESR-V

Revolution frequency f0 = ω0/(2π) 390.14 kHz

Current per beam 0.5 A 2 A

Charge per bunch qb 28.48 nC 28.01 nC

1.778 · 1011 e 1.748 · 1011 e

Slippage factor η 0.0118

Harmonic number 1281

Peak RF voltage 12 MV 17.12 MV

Synchrotron frequency ωs0/(2π) 28.82 kHz 34.43 kHz

Synchrotron tune 0.07388 0.08826

Horizontal betatron tune 10.5236

Vertical betatron tune 9.5972

Number of RF cavities 4 10

where ω0 is the revolution angular frequency, ωβ is the betatron angular frequency,
and δ is the relative difference in the energy of the particle. Note that this definition
is different from Chao’s.

4.2 The Effective Elastance

Definitions

In anticipation of the discussion to follow, it will be useful to introduce a functional
of the impedance and the charge distribution of the bunch. Its dimensions will be
inverse capacitance in the monopole case and inverse capacitance per unit length in
the dipole case, so we will call it the effective elastance.2 We will consider the case
of a Gaussian distribution only. We define the effective monopole elastance of order
j as follows:

Ξ0,j (σz; ω0, ∆ω) ≡ 1

2πi

cω0

σz

∞∑
p=−∞

Z‖0 (ωp)

ωp

(
ωpσz√

2c

)j
exp

(
−

ω2
pσ

2
z

c2

)
, (4.2)

where
ωp ≡ pω0 + ∆ω . (4.3)

2For readers who are unfamiliar with the less common derived quantities in electromagnetism,
elastance is indeed defined as the reciprocal of capacitance.
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The arguments are the bunch length σz, the angular frequency of revolution ω0, and
an angular frequency shift ∆ω. The latter will either be 0 or an integer multiple of the
synchrotron frequency, depending on the context. Our analysis of the longitudinal
motion of the beam will involve the monopole elastance.

If the monopole wake function has a short range (i.e. if W ‖
0 (t) has decayed to 0

for t ≥ one revolution), then Z‖0(ω) varies slowly between ω = ωp and ω = ωp+1,
and, in the limit, the sum in Equation (4.2) reduces to an integral obtained via the
substitutions ∞∑

p=−∞
→
∫ ∞
−∞

dω

ω0

; ωp → ω . (4.4)

The result is

Ξ0,j (σz; ω0, ∆ω) = Ξ0,j (σz) =
1

2πi

c

σz

∫ ∞
−∞

dω
Z‖0 (ω)

ω

(
ωσz√

2c

)j
exp

(
−ω2σ2

z

c2

)
. (4.5)

In other words, Equations (4.2) and (4.5) are equivalent when the impedance is broad-
banded enough so that there are no multi-turn effects. As indicated, when the integral
formulation of Equation (4.5) is applicable, Ξ0,j is independent of ω0 and ∆ω; it
depends solely on σz (we placed a semi-colon in front of ω0 and ∆ω in the arguments
to Ξ0,j to underscore this distinction).

In the general case, Ξ0,j is complex. If Equation (4.5) applies, however, the sym-
metry in Z‖0(ω) requires Ξ0,j to be either purely real or purely imaginary: when j is
even, Ξ0,j is real, and is a functional of the imaginary part of Z‖0(ω) only; when j is
odd, Ξ0,j is imaginary, and is a functional of the real part of Z‖0(ω) only.

We define the effective dipole elastance of order j to be

Θj (σz, ωξ; ω0, ∆ω) ≡ 1

2πi
cω0

∞∑
p=−∞

Z‖1 (ωp)

ωp

[
(ωp − ωξ)σz√

2c

]j
exp

[
−(ωp − ωξ)

2 σ2
z

c2

]
,

(4.6)
with ωp again given by Equation (4.3). In the dipole case, we have a fourth argument,
the chromatic angular frequency ωξ:

ωξ ≡
ξω0

η
=

1

η

dωβ
dδ

, (4.7)

where η is the slippage factor. The angular frequency shift ∆ω will either be 0 or
ωβ + lωs0. Our analysis of the transverse motion of the beam will involve the dipole
elastance.

As in the monopole case, if the dipole wake function has a short range, the sum
reduces to an integral:

Θj (σz, ωξ; ω0, ∆ω) = Θj (σz , ωξ)

=
1

2πi
c
∫ ∞
−∞

dω
Z‖1 (ω)

ω

[
(ω − ωξ)σz√

2c

]j
exp

[
−(ω − ωξ)

2 σ2
z

c2

]
. (4.8)
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When the integral formulation applies in the transverse case, Θj depends on σz and
ωξ, but not on ω0 or ∆ω (as indicated again by the semi-colon).

As before, Θj is complex in general. However, if ξ = 0 and Equation (4.8) applies,
Θj is purely real for even j’s and purely imaginary for odd j’s. The chromaticity
dependence presents a significant conceptual complication. For the sake of conceptual
insight, it is useful to note that the dipole elastance of order j can be expressed
approximately in terms of achromatic dipole elastances of like orders:

Θj (σz , ωξ; ω0, ∆ω) ≈ Ξ1,j (σz ; ω0, ∆ω)

+ χ
[
Ξ1,j+1 (σz; ω0, ∆ω)− j

4
Ξ1,j−1 (σz; ω0, ∆ω)

]
, (4.9)

where χ is the so-called head-tail phase:

χ ≡ 2
√

2
ωξσz

c
= 2
√

2
ξω0σz

ηc
. (4.10)

The achromatic dipole elastance is a close analog of the monopole elastance, and is
defined as

Ξ1,j (σz ; ω0, ∆ω) ≡ 1

2πi
cω0

∞∑
p=−∞

Z‖1 (ωp)

ωp

(
ωpσz√

2c

)j
exp

(
−

ω2
pσ

2
z

c2

)
. (4.11)

Equation (4.9) is valid to linear order in ωξ. If this approximation and the integral
formulation are both applicable, Θj has a real part that is independent of ωξ and an
imaginary part that is proportional to ωξ when j is even. We will see later that the
imaginary part will produce a growth rate proportional to ωξ. Although the linear-
order approximation of Equation (4.9) would probably be accurate enough for our
purposes, we will use the more exact formula for our instability predictions, since
there is no significant calculational advantage in the approximation.

The sum formulation of the monopole and dipole elastance includes multi-turn
effects, and provides a convenient formalism for including multiple turns in the loss
factor. By defining

k‖0 = −1

i

√
2Ξ0,1 (σz; ω0, 0) (4.12)

k‖1 = −1

i

√
2

1

σz
Θ1 (σz, ωξ; ω0, 0) , (4.13)

we can account for the effect of constructive or destructive interference in the multi-
turn wake fields on the power dissipation. In the case of a short-range wake, the
integral formulation for elastance can be used, in which case the above formulae
reduce to Equation (3.8). By symmetry, k‖0 and k‖1 remain real in the multi-turn case,
at least for ξ = 0. The effect of chromaticity on the dipole loss factor is a subtlety
that need not concern us here.
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The Predicted Effective Elastance of the Porcupine Load

We have two formulae for calculating the monopole elastance, Equation (4.2), an
infinite-sum formulation which includes multi-turn effects, and Equation (4.5), an
integral formulation which does not. The monopole elastances of order 0 through 8
obtained via the two formulae are compared in Figure 4.1 for the case of the coupling
impedance predicted by AMOS for the Porcupine load. In both cases, we have as-
sumed σz = 10 mm, as appropriate for CESR-V. For the multi-turn summations, we
have set ∆ω = jωs0/2 for even j’s and ∆ω = (j − 1)ωs0/2 for odd j’s and have used
the CESR-V values for ω0 and ωs0. The elastance values obtained via the two different
methods agree quite well. The same observation can be made for the monopole elas-
tances obtained from the analytically-predicted Porcupine impedance. We conclude
that the Porcupine’s monopole wake function has a range that is short compared to
the CESR-V revolution period. The integral formulation will hence be adequate for
most of our subsequent analysis. In particular, the single-pass loss factor will be ad-
equate for power loss calculations. Note that, as expected, Ξ0,j is very close to being
real for even j’s and imaginary for odd j’s.

The monopole elastances obtained from the analytic coupling impedance pre-
diction for the Porcupine load are compared to AMOS values (using the integral
formulation for both) in Appendix B. The magnitude of the AMOS Ξj,0 is consis-
tently greater than or equal to the magnitude of the corresponding analytic value.
Since, as will be demonstrated in subsequent sections, the elastance is a measure of
the disruptive effect on the beam caused by the impedance, the AMOS values can
be expected to give us more pessimistic beam stability predictions. For the sake of
conservatism, we will use the AMOS values for subsequent predictions, except when
indicated otherwise. Since the agreement between the summation results and the
integral results is good enough for our purposes, we will use the integral formulation
of Equation (4.5), except when indicated otherwise.

The dipole elastances of order 0 through 8 obtained via the summation of Equation
(4.6) and the integral of Equation (4.8) are compared in Figure 4.2 for the AMOS
Porcupine impedance. We used CESR-V parameters (σz = 10 mm, ωξ/(2π) = 33.1
MHz, . . . ), and set ∆ω = ωβ + jωs0/2 or ωβ + (j − 1)ωs0/2 in the summation. As
in the monopole case, the elastances obtained via the two different approaches agree
reasonably well for the AMOS case, as well as the analytic case (although the latter
are not shown). Thus, the Porcupine’s dipole wake function also has a short range
for our purposes. Note that, because ξ is not zero, Θj has a non-zero imaginary part
for both even j’s and odd j’s.

The analytic dipole elastances are compared to the AMOS values (with both
obtained via the integral formulation) in Appendix B. The AMOS values are again
greater than or equal to their analytic counterparts. We will use the AMOS dipole
elastance values based on the integral formulation in future sections, except when
indicated otherwise.

Because they depend on Z‖m(ω)/ω, Ξ0,0 and Θ0 are sensitive to the low-frequency
behaviour of Z‖m(ω). As a result, we can expect a significant error in the calculated
values of Ξ0,0 and Θ0 based on AMOS, although this is not obvious in Figures 4.1
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Figure 4.1. Comparison of summed and integrated values of (a) the real part and (b) the imaginary part of the effective
monopole elastance for one Porcupine load, based on the coupling impedance from AMOS, with σz = 10 mm.
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Figure 4.2. Comparison of summed and integrated values of (a) the real part and (b) the imaginary part of the effective
dipole elastance for one Porcupine load, based on the coupling impedance from AMOS, with σz = 10 mm and ξ = 1.
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and 4.2. We will return to this point in Sections 4.7 and 4.8.

4.3 Beam-Induced Power Dissipation

Direct Power Transfer

The direct power transfer from the beam to the ferrite loads can be estimated in a
straightforward manner from the loss factor. In the case of two beams, each with
multiple bunches travelling through the structure once per revolution, Equation (3.7)
becomes

Pd =
2Mk‖I2

b

f0
, (4.14)

where Pd is the power lost by the beam (averaged over time), M is the number of
bunches per beam, Ib is the current per bunch, f0 is the revolution frequency, and k‖

is the total longitudinal loss factor. If the beam is travelling on axis, k‖ = k‖0; if the
beam is travelling off axis, there is a multipole contribution to the total dissipation,
and

k‖ = k‖0 + k‖1x
2
⊥ , (4.15)

where x⊥ is the transverse displacement of the beam from the axis of the vacuum
chamber. We have included only the two lowest-order terms in Equation (4.15), i.e.
monopole and dipole, since the higher moments of the beam can usually be neglected.
As we saw in the previous section, the wake fields have a short enough range so that
we can use the single-pass loss factor instead of having to consider multiple turns.

Predictions for the direct power transfer from the beam to Porcupine loads made of
TT2-111V ferrite are given in Table 4.3. The calculations are based on the monopole
and dipole loss factors predicted by AMOS.

The average power dissipation per unit area can be obtained from the total power
in the obvious way. However, when the beam is off axis, the azimuthal distribution
of the power density is in general non-uniform. In general, several field components
may contribute to the dissipation. For TT2-111V ferrite, however, the dissipation
is associated mostly with the azimuthal component of the magnetic field, so we will
make the (conservative) assumption that all of the dissipation is due to a single field
component as we consider the power density distribution.

In general, there may be partial or complete interference between the monopole
and dipole fields (for example, the interference is complete for the resistive wall im-
pedance). In the CESR-III.5 and CESR-V cases, however, we have two equally-filled
beams with equal and opposite displacements in the HOM loads, in which case the
contributions from the interference terms to the power density cancel out.3 Even with-

3There is obviously no cancellation of interference terms if the machine is operated with a single
beam. If there is full interference between the monopole and dipole wake fields, a single beam with
a displaced orbit may produce significantly less uniform power dissipation. However, the maximum
power density in the single-beam case is less than or equal to the maximum power density in the
corresponding 2-beam case with the same current per beam.
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Table 4.3. Predictions for direct power transfer from the beam to the loads for
CESR-III.5 and CESR-V. The AMOS results were used.

CESR-III.5

Quantity Beam on axis x⊥ = 20 mm

k‖ per load [pF−1] 0.130 0.138

Power per load [kW] 3.71 3.94

Average power per unit area [W/cm2] 5.10 5.41

Maximum power per unit area [W/cm2] ≥ 5.10 ≥ 5.72

CESR-V

Quantity Beam on axis x⊥ = 41 mm

k‖ per load [pF−1] 0.144 0.181

Power per load [kW] 16.1 20.3

Average power per unit area [W/cm2] 22.2 27.9

Maximum power per unit area [W/cm2] ≥ 22.2 ≥ 33.5

out an interference term from the dipole fields, the power density is non-uniform.4

The maximum power density is

pmax = 〈p0〉+ 2 〈p1〉 , (4.16)

where 〈p0〉 and 〈p1〉 are the average power densities induced by beams with a pure
monopole distribution and a pure dipole distribution, respectively. As indicated in
Equation (4.16), the monopole and dipole contributions add algebraically, but the
maximum dipole power density is twice the average. The maximum power densities
obtained via Equation (4.16) are also given in Table 4.3.

We have not taken into account the longitudinal distribution in the power density
in this analysis (although, according to the analytic approximation for the load im-
pedance, the dissipation is uniform in z). As a result, the values given in Table 4.3
are lower bounds for the maximum power density. According to the AMOS imped-
ance prediction, 14% of the monopole beam power intercepted by a Porcupine load
is above the cutoff frequency for the CESR beam pipe when σz = 10 mm.

Indirect Power Transfer

In addition to the direct power transfer from the beam, the ferrite loads absorb power
transferred from the beam into higher-order modes of the cavity and other nearby

4Depending on the relative times at which the bunches pass through the HOM loads, there might
be some destructive interference between the dipole wake fields of the two beams. Such interference
would tend to further reduce the non-uniformity in the power density.
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structures. We will estimate the indirect power transfer using the composition rule
(see Section 3.3), which implies that the total loss factor of a structure is approxi-
mately equal to the sum of the loss factors of each of its elements.

Predictions for the indirect power transfer to the Porcupine loads are given in
Table 4.4. The values are based on loss factor calculations done with ABCI [1, 57]
and MAFIA [58] for the “BB1-2” cavity module. The cavity module includes the
cavity cell, tapered beam tube transitions, and a large-bore sliding joint. For σz = 10
mm, about 3/4 of the indirect power transfer is due to the tapered transitions. The
contribution from the flutes in the beam tube (see Figure 1.3) was included via the
composition rule; a three-dimensional loss factor calculation of the flutes’ loss factor
was done by S. Belomestnykh using MAFIA. Details on the loss factor calculations
for the BB1-2 module are given in a separate report [59]. In Table 4.4, we assume
that the power is split equally between the two HOM loads in the module.

Estimates of the maximum power per unit area deposited in the ferrite are also
given in Table 4.4. The azimuthal dependence is taken into account via Equation
(4.16). An estimate of the longitudinal distribution in the power density also was
included in the values of Table 4.4, although only the monopole wake was accounted
for. The estimate is based on frequency-domain calculations of the resonant modes
of the module, with the ferrite loads present [20, 60], using the computer program
CLANS [22]. All of the monopole modes below the cutoff frequency were included
(with the exception of some low-Q “ferrite modes”). The distribution in the net power
dissipation was obtained using the predicted field distribution in the ferrite and the
loss factor for each mode. The ratios of the maximum power density to the average
power density were 1.945 and 1.893 for σz = 10 and 12 mm, respectively. The maxima
in the power density were predicted to occur along the edges of the loads. The radial
distribution in the power per unit volume was predicted to be uniform, at least up
to a few percent. It should be noted that the modes below cutoff accounted only for
about half of the total loss factor. Some fraction of the beam power intercepted by
modes above cutoff may propagate into the beam tube instead of being dissipated in
the ferrite. It should also be noted that the structure used in the CLANS calculations
was somewhat different from the BB1-2 module that was input to ABCI.

Total Power Transfer

Predictions for the total power transfer to the HOM loads are given in Table 4.5.
Ultimately, it is envisaged that two or more cavities will share one pair of tapers,
which will reduce the loss factor per cavity. However, it is not clear that the beam
power intercepted by the tapers will be shared equally between all of the loads; in
the worst case, the loads adjacent to tapers might intercept all of the extra power.
The power values given in Table 4.5 would apply to the loads adjacent to the tapers
(and the others would dissipate less power) in this scenario, as well as in the case of
a single cavity module.
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Table 4.4. Predictions for indirect power transfer from the beam to the loads for
CESR-III.5 and CESR-V. The loss factors given include only parasitic effects.

CESR-III.5

Quantity Beam on axis x⊥ = 20 mm

k‖ per module [pF−1] 0.325 0.361

Power per load [kW] 4.62 5.14

Average power per unit area [W/cm2] 6.64 7.38

Maximum power per unit area [W/cm2] 12.56 14.06

CESR-V

Quantity Beam on axis x⊥ = 41 mm

k‖ per module [pF−1] 0.458 0.679

Power per load [kW] 25.7 38.0

Average power per unit area [W/cm2] 36.8 54.6

Maximum power per unit area [W/cm2] 71.6 107.2

Table 4.5. Predictions for the total power transfer from the beam to the loads for
CESR-III.5 and CESR-V. The AMOS results were used for the direct power transfer
calculation. The loss factors given include only parasitic effects.

CESR-III.5

Quantity Beam on axis x⊥ = 20 mm

k‖ per module [pF−1] 0.586 0.638

Power per load [kW] 8.34 9.09

Average power per unit area [W/cm2] 11.7 12.8

Maximum power per unit area [W/cm2] ≥ 17.7 ≥ 19.8

CESR-V

Quantity Beam on axis x⊥ = 41 mm

k‖ per module [pF−1] 0.746 1.041

Power per load [kW] 41.8 58.3

Average power per unit area [W/cm2] 59.0 82.5

Maximum power per unit area [W/cm2] ≥ 93.8 ≥ 140.7
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4.4 Static Effects

Longitudinal: Potential Well Distortion

The longitudinal wake field produces a current-dependent distortion in the time-
independent phase space distribution of the beam. The non-linearity in the RF volt-
age, exacerbated by the phase shift required to compensate for synchrotron radiation,
also contributes to the distortion. In electron-positron machines, in the absence of
wake effects and non-linearity in the RF voltage, the distributions in δ and z are both
Gaussian, with standard deviations σδ and σz0, respectively; the particles oscillate at
angular frequency ωs0.

The distorted distribution that results from a wake force and/or a non-linear RF
voltage is a time-independent solution to the Vlasov equation. It can be shown via a
more general analysis that the δ-distribution remains Gaussian. The z-distribution,
however, does not remain Gaussian in general; it must satisfy an integral equation,
sometimes referred to as the Häıssinski Equation. This equation does not have a
closed-form solution for an arbitrary wake function. If the wake force is of the same
order as the force due to the RF voltage, or if the particles in the bunch stray a signif-
icant distance from the zero crossing of the RF voltage, the distorted z-distribution
can be expected to be quite different from the undistorted one, and the full integral
equation must be solved in order to understand the beam’s behaviour. On the other
hand, if the wake voltage is small compared to the RF voltage and the bunch remains
close to the zero crossing, the distortion can be treated as a small perturbation, and
approximate solutions to the integral equation may be sought. We will presume the
latter, and see whether we end up with a self-consistent result.

One way to obtain an approximate solution to the Häıssinski Equation is to do
a second-order Taylor Series expansion of the bunch’s wake function W ‖

0 (z). This
approach is discussed by A. Chao in his section on potential well distortion [43]. B.
Zotter [61] obtained the same end results via a different approach. The omission of
the higher-order terms in the expansion yields a Gaussian distribution, albeit with
a shifted mean z̄ and a standard deviation σz different from σz0. Two equations
are obtained via this analysis, one from the first-order term and the other from the
second-order term, from which σz and z̄ can be deduced. The Taylor approach can be
expected to give good results if W ‖

0 (z) can be well-approximated by a linear function
of z over distances of order σz.

There is an alternative to the Taylor expansion of W ‖
0 (z): differentiating the

Häıssinski Equation directly. By taking the first and second derivatives, one can
obtain two exact equations analogous to the two approximate equations obtained
with the Taylor approach. This approach is discussed in a separate report [62].

In both of these approaches, the two equations are transcendental and coupled.
However, if we neglect the non-linearity in the RF voltage, the Taylor-expansion
equations become more tractable. Making the same idealisation in the differentiation
approach, with the further assumption that the z-distribution is still approximately
Gaussian (again, with mean z̄ and standard deviation σz), we can obtain an alternate
pair of equations analogous to the first two.
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Dispersive Tendency

With the approximations given above, the equations obtained from the second-order
term in the Taylor expansion or the second derivative of the Häıssinski Equation can
be written in a common form:(

σz
σz0

)2

= 1 +
Ib

σ2
δηE0

Xs , (4.17)

where qeE0 is the energy per particle. In Equation (4.17), Xs is a functional of the
impedance and the bunch’s frequency distribution which can be thought of as an
effective reactance. In terms of the effective elastance introduced in Section 4.2,

Xs = 2
√

2
σz
c

Ξ0,2

(
σz√

2
; ω0, 0

)
(4.18)

in the Taylor method and

Xs = 2
σz
c

Ξ0,2 (σz; ω0, 0) (4.19)

in the differentiation method. Because the frequency shift in the elastance is 0, it fol-
lows from the symmetry in Z‖0(ω) that Xs is real, and dependent only on the imaginary
part of Z‖0(ω). As indicated above, the Taylor approach yields a good approximation
only when the wake function varies slowly across the bunch’s z-distribution. In terms
of frequency domain quantities, the impedance must be confined to frequencies that
are small compared to c/σz. If so, the exponential term in Equation (4.2) can be
replaced by 1, and Ξ0,2(σz; ω0, 0) will be proportional to σz, so that Equations (4.18)
and (4.19) should give the same Xs. In the present case, the impedance is not negli-
gible at frequencies of order c/σz, so the two approaches do not give the same results.
The differentiation method might give a somewhat better prediction, since it requires
fewer assumptions.

Note that Xs is a function of σz in both cases, so that, strictly speaking, Equation
(4.17) is transcendental when we consider σz0 to be known and σz to be unknown.
An easy way to side-step this complication is to treat σz as an independent parameter
and solve for σz0, or, equivalently, σz/σz0.

Calculated values of Xs as a function of σz for the Porcupine load impedance
predicted by AMOS are shown in Figure 4.3a. Note that the predicted values of
Xs are negative, which means, according to Equation (4.17), that the wake function
tends to reduce the bunch length. The corresponding values of σz/σz0 as a function of
σz0 (obtained parametrically for a range of σz values) for the CESR-V case are shown
in Figure 4.3b. Note that the Taylor method predicts a more dramatic change in
bunch length. The relevant régime is σz0 ≈ 10 mm, in which case the Taylor method
predicts σz ≈ 0.987σz0, i.e. a slight decrease in the bunch length due to the wake
function. The result is consistent with our premise that the distortion can be treated
as a small perturbation. We will ignore the distinction between σz and σz0 in the rest
of this chapter.
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Figure 4.3. Comparison of (a) Xs values and (b) σz/σz0 values based on the Taylor
method and the differentiation method. The integral formulation for elastance was
used in both cases.
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Central Tendency

The approximate form of the equation obtained from the first-order term in the Taylor
expansion is

z̄ =
U0σ

2
z

ηCE0σ2
δ

+
Ib

σ2
δηE0

σ2
z

c
k‖0

(
σz√

2

)
, (4.20)

where U0 is the energy loss per particle per turn due to synchrotron radiation and C
is the machine circumference. The analogous equation from the first derivative of the
Häıssinski Equation is

z̄ =
U0σ

2
z

ηCE0σ
2
δ

+
Ib

σ2
δηE0

σ2
z

c
k‖0 (σz) . (4.21)

In both cases, k‖0 is the loss factor introduced previously. The first term in both
equations represents the z shift due to synchrotron radiation; the second term gives
the z shift due to the longitudinal wake.

In this case, it is clear that the differentiation method is more general: Equation
(4.21) can be obtained from the requirement that the total momentum of the bunch
remain constant, which is obviously necessary for a stationary distribution. In the
Taylor method, this requirement is only satisfied approximately; as discussed above,
the Taylor approach provides a good approximation only when the impedance is
confined to frequencies that are small compared to c/σz. If so, k‖0(σz) ≈ k‖0(σz/

√
2) ≈

k‖0(0), and Equations (4.20) and (4.21) should give the same answer. In the present
case, the Taylor formula for z̄ is not a good approximation.

With the CESR-V parameters and the AMOS value of k‖0 for the Porcupine load
(for σz = 10 mm), Equation (4.21) gives us z̄ = 6.19 mm, with 5.74 mm due to the
synchrotron radiation term and 0.45 mm due to the wake term. The contribution
from the wake field is thus small compared to the radiation term, and both shifts are
small compared to the RF wavelength of 600 mm. Thus, the result is consistent with
our premise that the distortion can be treated as a small perturbation, and we were
justified in ignoring the non-linearity in the RF voltage. Since the shift produced
by the wake field is small compared to σz, “thermodynamic” bunch lengthening [63]
should not be expected.

Transverse: The “Bananer Effect”

As was pointed out by A. Chao [43], there is a transverse analog to potential well
distortion if the beam’s closed orbit is such that it does not pass through the axis of
symmetry of the surrounding vacuum chamber. This is the case for CESR-V, since
the beams are displaced transversely as they travel through the Porcupine loads. We
will now estimate the effect on the beam of this displaced orbit in the loads.

The transverse wake of the displaced bunch produces an additional displacement
of the bunch’s centre and a “tilt” in the distribution of particles [64]. The latter
is due to the larger transverse kick experienced by particles in the tail of the bunch
relative to particles in the head. A tilted distribution is the result when the transverse
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damping rate is large compared to the synchrotron frequency. In the present case,
however, the opposite is true. We expect, therefore, that individual particles will
never reach an equilibrium closed orbit; instead, they will experience a transverse
kick that is modulated by their longitudinal oscillation at the synchrotron frequency,
which will cause them to oscillate about a shifted closed orbit in the transverse plane.
In other words, the longitudinal and transverse motion of the particles are coupled
through the dependence of the transverse wake force on the longitudinal position
of the particle. Because the transverse oscillations are incoherent, as a whole, the
transverse distribution of particles remains a static one. Since the transverse beam
size is typically small compared to the longitudinal beam size, coupling of longitudinal
motion into transverse motion could adversely affect the luminosity. The closed orbit
shift, on the other hand, is probably not as serious, since it can presumably be
corrected by adjusting the guide field as the current increases.

To quantify the effects described above, we can do a two-term Taylor series ap-
proximation of the transverse wake function. We will ignore chromaticity effects for
simplicity. The result is that the normal modes for single-particle motion are no
longer purely longitudinal or purely transverse: the betatron motion acquires a small
longitudinal component, while the synchrotron motion acquires a small transverse
component. Moreover, there is a shift in the mean values of x⊥ and z. In terms of
the unperturbed displacement x⊥0, the displacement in the presence of the transverse
wake is

x⊥ =

(
1− β2

ZY0

1 + β2
ZY0

)
x⊥0 . (4.22)

In the absence of other effects, the ratio of the transverse and longitudinal amplitudes
for the synchrotron motion determines the transverse beam size corresponding to a
given longitudinal distribution. For our beam with its Gaussian distribution in the
longitudinal plane, we can expect a Gaussian distribution in the transverse plane with
standard deviation σx, where

σx
σz

=

∣∣∣∣∣∣
[

1

β2
Z

−
(

ωs
c

)2
]−1

Y1x⊥

∣∣∣∣∣∣ . (4.23)

In the above formulae, Y0 and Y1 are related to the transverse elastance:

Y0 ≡
−Ib
cE0

Θ0

(
σz√
2
, 0; ω0, 0

)
(4.24)

Y1 ≡
2

i

Ib
cσzE0

Θ1

(
σz√

2
, 0; ω0, 0

)
(4.25)

The above results are applicable when[(
ωβ
c

)2

−
(

ωs
c

)2
]2

� 4|η| (Y1x⊥)2 (4.26)
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Table 4.6. Predictions for the wake-induced transverse orbit shift and transverse
beam size for Porcupine loads in CESR-V.

Quantity AMOS Analytic

x⊥ − x⊥0 [µm] 2.24 1.08

σx [µm] 2.39 1.32

and (
ωs
c

)2
[(

ωβ
c

)2

−
(

ωs
c

)2
]
� |η| (Y1x⊥)2 , (4.27)

both of which are good approximations in the present case. The derivation of the
formulae is given in a separate report [62]. Note that σz/

√
2 appears in the elastance

arguments, as was the case for the Taylor approach used in the longitudinal case.
Note also that, in a realistic machine, x⊥ and σx will both vary with position along
the ring according to the betatron function (although the effect is still a static one in
the sense that x⊥ and σx depend on position but not on time); the above formulae
give the worst-case values, since we are assuming the maximum betatron function to
be at the loads’ location and we are calculating x⊥ and σx at the same spot.

Applying the above formulae to the case of Porcupine loads in CESR-V, we can
estimate the shift in transverse position of the beam due to the Porcupine wake and
the transverse beam size produced by coupling through the Porcupine wake. The
results are given in Table 4.6. As mentioned previously, AMOS values for Θ0 are not
reliable because of the sensitivity to the impedance at low frequencies. The AMOS
value for the closed orbit shift is therefore suspect, so we have included predictions
from the analytic Porcupine impedance in Table 4.6, in addition to the AMOS values.
In both cases, however, the shift in x⊥ is small enough compared to our unperturbed
value of 41 mm to be negligible for our purposes. Likewise, since σx is typically of the
order of 0.3 mm when the betatron function is at its minimum, we do not expect the
incoherent transverse oscillations produced by the Porcupine loads to be a significant
problem.

4.5 Modes of Oscillation to Linear Order

Longitudinal

In the absence of wake effects, time-dependent solutions of the longitudinal Vlasov
equation correspond to normal-mode sinusoidal oscillations of the beam in the lon-
gitudinal direction. The angular frequencies of the unperturbed normal modes are
lωs0 for integer l, i.e. the normal mode frequencies are integer multiples of the unper-
turbed synchrotron frequency. The index l describes the azimuthal dependence (or, in
action-angle terminology, the angular dependence) of the time-varying disturbance in
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longitudinal phase space; the normal modes are sometimes called “azimuthal modes.”
The unperturbed normal-mode frequencies do not depend on the radial (action) dis-
tribution of the disturbance.

The longitudinal wake produces a current-dependent shift in the frequency of each
azimuthal mode; the perturbed motion may have an exponentially growing or decay-
ing amplitude. A time-dependent amplitude can be represented in terms of a complex
frequency, whose imaginary part gives the damping rate (with a negative damping
rate denoting growth). The wake function splits the radial (action) degeneracy of the
unperturbed modes: each azimuthal mode becomes a family of “radial modes,” with
a different radial structure in phase space for each family member. By neglecting the
coupling between radial modes, an approximate expression can be obtained for the
perturbed complex angular frequency Ωn,l of the nth radial mode (for n = 0, 1, 2, . . .)
in the lth family:

Ωn,l = lωs0 +
Ib

σδE0

lΞ0,2|l|+4n (σz0; ω0, lωs0)

n!(|l|+ n)!
− Ib

σδE0
lΞ0,2 (σz0; ω0, 0) . (4.28)

The real part of Ωn,l is the perturbed angular frequency, while the imaginary part is
the damping rate (the growth rate is −Im Ωn,l). In Equation (4.28), the second term
is due to the wake field produced by the time-dependent disturbance in the charge
distribution. The third term is due to the wake field produced by the stationary,
time-independent part of the charge distribution, which is responsible for the static
longitudinal effects discussed previously. The latter is usually omitted from the fre-
quency shift analysis; a derivation which excludes the last term is given by A. Chao
[43]. A derivation which includes the last term is given in a separate report [62].
We have included only the leading-order contribution from the stationary wake in
Equation (4.28); the exact expression is a bit more complicated.

Let us ignore the third term for a moment. As a rule of thumb, both the real
and imaginary parts of the second term tend to decrease in magnitude as n increases,
because of the presence of n in the denominator and because of the general decrease
in the magnitude of Re Ξ0,j and Im Ξ0,j as j increases (as can be seen in Figure 4.1
and B.1, however, this decrease with j is not always monotonic). So, in the absence
of the stationary wake term, we expect Ωn,l to be between Ω0,l and lωs0. This defines
a range of frequencies and growth rates within which the family of radial modes for a
given l should lie. The frequency ranges obtained via this prescription for the case of
Porcupine loads in CESR-V are shown as a function of current in Figure 4.4a. When
we include the stationary wake term, the difference is significant, as can be seen in
Figure 4.4b. With the third term included, there is no net shift in the frequency of
the l = 1, n = 0 mode, as expected in the case of a short-range wake. The l = 0 mode
is a trivial solution whose frequency remains zero even in the presence of the wake
field. In the present case (i.e. longitudinal), the shifts for the −l and +l families are
equal in magnitude and opposite in sign.

As we have seen, Ξ0,j is real for a short-range wake when j is even, in which case
the growth rates obtained via Equation (4.28) are zero. If the wake is not exactly zero
after one turn, however, the growth rates will not be exactly zero either. In this case,
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Figure 4.4. Predicted longitudinal mode frequencies for CESR-V with Porcupine loads, (a) without and (b) with the stationary
wake term. Each shaded area corresponds to one family of radial modes; the n = 0 mode of each family is labelled with the
family’s l value on the right side. The AMOS coupling impedance and the integral elastance formulation were used.
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the number of bunches present (or, more precisely, the spacing between successive
bunches) becomes an important consideration. We will hence defer our discussion of
longitudinal growth rates until Section 4.8. Note that, because Ξ0,2 (σz ; ω0, 0) is real,
the growth rates are not affected by the stationary wake term.

Transverse

The analysis of the transverse motion of the beam is quite similar to the longitudinal
analysis. In the absence of wake effects, time-dependent solutions of the Vlasov equa-
tion correspond to dipole oscillations of the beam in the transverse directions. There
are normal modes whose angular frequencies are ωβ+ lωs0, where l again describes the
azimuthal dependence of the time-varying disturbance in longitudinal phase space.
The major difference is that it is a dipole disturbance in the transverse plane whose
longitudinal structure is being described. Again, the unperturbed azimuthal modes
frequencies do not depend on the radial (action) distribution of the disturbance in
longitudinal phase space.

The transverse wake splits each azimuthal mode into a family of radial modes, and
produces a complex frequency shift in each radial mode. In the absence of coupling
between radial modes, the angular frequency of the nth radial mode in the lth family
is approximately

Ωn,l = ωβ+lωs0−
βZIb
2E0

Θ2|l|+4n (σz0, ωξ; ω0, ωβ + lωs0)

n!(|l|+ n)!
− Ib

σδE0

lΞ0,2 (σz0; ω0, 0) , (4.29)

where βZ is the value of the betatron function at the impedance’s location in the case
of a localised coupling impedance. The third term is due to the dipole wake produced
by the time-dependent disturbance in the dipole moment of the distribution. The
fourth term, as before, is the leading-order contribution from the monopole wake
produced by the stationary distribution, which is usually omitted from the analysis.
Equation (4.29) is derived without the last term by A. Chao [43] and with the last
term in a separate report [62].

If we ignore the last term and, as before, assume the radial modes in the lth family
fall between ωβ + lωs0 and Ω0,l, we obtain the result shown in Figure 4.5a for the case
of Porcupine loads in CESR-V. When the last term is included, there is a significant
shift in all mode families except for the l = 0 family, as can be seen in Figure 4.5b. In
contrast to the longitudinal case, the l = 0 family is no longer a trivial solution. The
−l and +l families are still degenerate in the case of a short-range wake, although
this is no longer true in the case of a long-range wake (Equation (4.29) has been
generalised to apply for both l > 0 and l < 0). The predictions shown in Figure 4.5
are for motion in the horizontal plane—since we assume the same βZ and ξ in both
planes, the predictions for the vertical plane are the same, except for an overall
frequency shift due to the difference between the horizontal and vertical betatron
frequencies. Note that we are assuming a worst-case βZ for both planes, i.e. βZ equal
to the largest value in the machine (excluding the interaction region).

Unlike the longitudinal case, the growth rate can be non-zero even in the case of
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Figure 4.5. Predicted transverse mode frequencies for CESR-V with Porcupine loads, (a) without and (b) with the stationary
wake term. Each shaded area corresponds to one family of radial modes; the n = 0 mode of each family is labelled with the
family’s l value on the right side. The AMOS coupling impedance and the integral elastance formulation were used.
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Figure 4.6. Predicted transverse mode growth rates for CESR-V with Porcupine
loads. The AMOS coupling impedance and the integral elastance formulation were
used.

a short-range wake, provided ωξ is non-zero. The growth or damping due to ωξ is
sometimes called the transverse head-tail effect. The growth rates for the Porcupine
load in CESR-V are shown in Figure 4.6 (note the different horizontal scale relative
to Figure 4.5). The positive chromaticity produces damping for the l = 0 mode,
which is the most affected one, and growth for the rest of the modes. These trends
would be reversed in the case of negative ξ. The dashed line in Figure 4.6 shows the
level at which the growth rate is equal to the horizontal radiation damping rate: we
can expect a horizontal head-tail instability for the l = 1 mode when the current per
bunch reaches about 400 mA. The same behaviour can be expected in the vertical
plane (albeit at a slightly higher current, because of the slightly larger radiation
damping rate). As in the longitudinal case, the stationary wake term does not affect
the predicted growth rates.

As mentioned in Section 4.2, Θ0 is sensitive to the low-frequency behaviour of
Z‖1(ω), and our Θ0 value from AMOS is therefore of dubious validity. We will obtain
a better estimate for the frequency shift and growth rate for the l = 0 mode in
Section 4.8.
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4.6 Mode Coupling

Longitudinal

In the previous section, we ignored the coupling between modes in different azimuthal
families, and obtained complex frequency shifts that increased linearly with the bunch
current. If the frequencies of two modes with different l’s get close enough to each
other, we can expect the coupling between the modes to become important, in which
case the shifts will become non-linear. To simplify the discussion, we will ignore the
contribution from the stationary wake. The uncoupled frequency shifts are then as
shown in Figure 4.4a in the previous section. We see that the n = 0 modes in the l = 1
and l = −1 families are the first to converge, so we can hope to get an approximate
picture of the effect of mode coupling by considering the coupling between these two
modes only (the l = 0 mode does not couple to any other families). As discussed
by A. Chao [43], if we consider only the n = 0 mode in each family, but include
coupling between different l’s, the mode frequencies are the solutions to the following
determinant equation: ∣∣∣∣( Ω

ωs0
− l
)

I−K

∣∣∣∣ = 0 , (4.30)

where I is the identity matrix and K is a matrix whose elements are given by

Kl,l′ =
Ib

ωs0σδE0

l(−1)li|l|+|l
′|Ξ0,|l|+|l′| (σz0; ω0, lωs0)√
|l|!|l′|!

. (4.31)

In general, I and K have an infinite number of elements. If we consider only the
coupling between two azimuthal modes, l and l′, however, there are only two non-
zero off-diagonal elements, and Equation (4.31) reduces to a 2 by 2 determinant,
which is easily solved for the two possible values of the mode frequency Ω:

Ω

ωs0
=

(l + Kl,l) + (l′ + Kl′,l′)

2
±

√√√√[(l + Kl,l)− (l′ + Kl′,l′)

2

]2

+ Kl,l′Kl′,l . (4.32)

If we set l = 1 and l′ = −1, and make use of the fact that Kl,−l′ = Kl,l′ = −K−l,l′,
our solutions can be written as

Ω

ωs0
= ±

√
1 +

2Ib
ωs0σδE0

Ξ0,2 (σz0; ω0, ωs0) , (4.33)

which reduces to the correct result to linear order as Ib → 0.
The frequencies and growth rates obtained via Equation (4.33) for the n = 0,

l = ±1 modes in the case of the Porcupine load in CESR-V are shown as a function
of current in Figure 4.7. At low current, the predictions are consistent with the
linear frequency shifts of Figure 4.4a; as the modes get closer together, the frequency
shift increases non-linearly. The coupling causes the frequencies to converge at a
current half as large as the current at which they crossed in the uncoupled case.
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As soon as the frequencies are equal, the growth rate of one mode increases rapidly
with current (while the damping rate of the other mode increases commensurably).
Figure 4.8 shows a close-up of the growth rate as the modes converge. As can be
seen, the growth rate of the unstable mode rapidly exceeds the radiation damping
rate (indicated by the dashed line) once the frequencies have converged. Thus, we
expect a longitudinal mode coupling instability for the l = 1 mode when the current
per bunch reaches about 750 mA.

So far, we have ignored the contribution from the stationary wake. When the
latter is included, none of the first few modes cross in the uncoupled case, as can be
seen in Figure 4.4b. We can speculate that the mode coupling instability will tend
to be inhibited by the stationary wake term. A quantitative analysis would be more
difficult: although a determinant equation that includes the stationary contribution
can be derived, the coupling elements tend to vanish to leading order, so that a
meaningful calculation would probably require a more rigorous treatment of radial
modes, i.e. the inclusion of more than one radial mode and of coupling between radial
modes.

Transverse

The analogy between longitudinal and transverse mode coupling is quite close. If we
ignore the stationary wake term, the uncoupled transverse mode frequency shifts are
as shown in Figure 4.5a in Section 4.5. The n = 0 modes in the l = 0 and l = −1
families are the first to converge, so we want to estimate the effect by considering
the coupling between this pair of modes. If we consider only the n = 0 mode in each
family, the coupled mode frequencies are given via [43]∣∣∣∣(Ω− ωβ

ωs0
− l
)

I−K

∣∣∣∣ = 0 . (4.34)

In the present case, the matrix K has elements

Kl,l′ = −
IbβZ

2ωs0E0

(−1)li|l|+|l
′|Θ|l|+|l′| (σz0, ωξ; ω0, ωβ + lωs0)√

|l|!|l′|!
. (4.35)

If we consider only the coupling between two azimuthal modes, l and l′, we can solve
for the two possible frequencies:

Ω− ωβ
ωs0

=
(l + Kl,l) + (l′ + Kl′,l′)

2
±

√√√√[(l + Kl,l)− (l′ + Kl′,l′)

2

]2

+ Kl,l′Kl′,l . (4.36)

We want to set l = 0 and l′ = −1. Equation (4.36) does not reduce to the simplicity
of Equation (4.33), but it is still easily evaluated. Like its longitudinal counterpart,
Equation (4.36) reduces to the correct result to linear order for small Ib.

The frequencies and growth rates obtained via Equation (4.36) for the l = 0 and
l = −1 modes in the case of the Porcupine load in CESR-V are shown in Figure 4.9.
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Figure 4.7. Predicted (a) frequencies and (b) growth rates for the longitudinal l = ±1 modes, with coupling, for CESR-V
with Porcupine loads. The AMOS coupling impedance and the integral elastance formulation were used.
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Figure 4.8. Detail of the predicted growth rates for the longitudinal l = ±1 modes,
with coupling.

At low current, the predictions are consistent with Figures 4.5a and 4.6. As the
current increases, the behaviour is qualitatively similar to the longitudinal case: the
frequencies converge faster than in the uncoupled case, and the growth rate of the
unstable mode increases rapidly once the frequencies have converged. Again, the
modes converge at a current about half as large as in the linear case. The chromaticity,
as discussed previously, produces a linearly increasing growth rate in one mode (and
a linearly increasing damping rate in the other mode) below currents at which the
coupling dominates. As can be seen in the close-up in Figure 4.10, the unstable
mode exceeds the radiation damping rate at about the same current as it did in the
uncoupled case (Figure 4.6). Thus, for our choice of ξ, the head-tail effect produces
an instability long before the transverse mode coupling becomes important. The
chromaticity also produces a slight frequency split between the modes above the
mode coupling threshold, as the observant reader may notice in Figure 4.9a.

Again, when we include the stationary wake, none of the first few modes cross
in the uncoupled case, as is evident from Figure 4.5b. As in the longitudinal case, a
quantitative analysis that includes the stationary wake would be more difficult.
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Figure 4.9. Predicted (a) frequencies and (b) growth rates for the transverse l = 0 and l = −1 modes, with coupling, for
CESR-V with Porcupine loads. The AMOS coupling impedance and the integral elastance formulation were used.
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Figure 4.10. Detail of the predicted growth rates for the transverse l = 0 and l = −1
modes, with coupling.

4.7 Microwave Instability

Mode coupling, as discussed in the previous section, is one model for instabilities
due to non-linear effects at high beam currents. There is, however, an alternate
approach, the “microwave instability” model. The original inspiration for this model
came from the instability in unbunched beams that carries the same name. The
analogy between between bunched-beam instabilities and the microwave instability in
unbunched beams was first made by D. Boussard [65]. The mode coupling instability
and the microwave instability should probably not be considered to be two different
instability mechanisms; it is more likely that they are two different models for the same
instability mechanism, each model having its own idealisations and approximations.
Because the approaches are different, the two models can be expected to complement
each other to some degree. As we will see, the microwave instability model will give
us a sufficient condition for stability, without a guarantee that the beam is unstable
when that condition is not satisfied.

The analysis of the microwave instability begins, as usual, with the Vlasov equa-
tion. The longitudinal and transverse cases have been worked out by J. Wang &
C. Pellegrini [66] and R. Ruth & J. Wang [67], respectively. Instead of expanding
the Vlasov equation in azimuthal and radial modes and treating the impedance as a
perturbation which produces a complex frequency shift for each mode, one postulates
that an unstable solution to the Vlasov equation exists, and that this unstable solu-
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tion has a growth rate that is of order ωs or larger. One then derives a self-consistency
condition: if the self-consistency condition is satisfied, the unstable solution exists;
otherwise, the beam is stable. As in the analysis of mode coupling, the contribution
from the stationary wake is ignored.

The exact self-consistency condition is transcendental. A simpler inequality can
be derived from it, however, with the disadvantage that the result is a sufficient
condition for stability, as opposed to a necessary and sufficient one.

At this point, it is customary to specialise to the case of a Q = 1 resonator
impedance and consider frequencies above the resonant frequency (usually referred
to as the cutoff frequency, for reasons that we need not get into), in order to further
simplify the inequality. This is the approach followed by Wang and his colleagues
[66, 67]. However, by making use of the Hadamard Theorem [68], it is possible to
obtain an analogous result that is applicable to an arbitrary impedance. In either
case, the result is a sufficient condition for stability which takes the form

Ib ≤ Ith , (4.37)

where Ith is the threshold current for the microwave instability.
The threshold current is a functional of the coupling impedance and the bunch’s

frequency spectrum. In this complementary model, the functional takes a form that is
somewhat different from the effective elastance. Let us introduce effective microwave
impedances:

Λ0 (σz, ω∆; ω0) ≡
1

2π
ω0

∞∑
p=−∞

∣∣∣∣∣Z
‖
0 (pω0 − ω∆)

pω0 − ω∆

∣∣∣∣∣ exp

(
−p2ω2

0σ
2
z

2c2

)
(4.38)

Λ1 (σz, ω∆; ω0) ≡
1

2π
σzω0

∞∑
p=−∞

∣∣∣∣∣Z
‖
1 (pω0 − ω∆)

pω0 − ω∆

∣∣∣∣∣ exp

(
−p2ω2

0σ
2
z

2c2

)
. (4.39)

We have ignored chromatic effects in formulating Equation (4.39). The dimensions
are impedance for Λ0 and impedance per unit length for Λ1. Note that Λ0 and Λ1

are functionals of the bunch’s frequency spectrum, while the elastance depends on
its square. Because of the division by pω0 − ω∆, the effective microwave impedance
tends to be dominated by the low-frequency behaviour of Z‖0(ω) and Z‖1(ω), which is
usually inductive (which motivates us to use the symbol Λ). As with the elastance, an
integral formulation of Equations (4.38) and (4.39) is possible when the wake function
has a short range, in which case Λ0 and Λ1 are independent of ω0 (indicated by the
semi-colon in the arguments list).

The threshold current can be expressed in terms of the effective microwave im-
pedances:

Ith =
ησ2

δE0

Λ0 (σz, jω0; ω0)
(4.40)

Ith =
ησδE0

βZΛ1 (σz, jω0 − ωβ; ω0)
. (4.41)
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Equations (4.40) and (4.41), along with (4.38) and (4.39), give us approximate
longitudinal and transverse current thresholds for the microwave instability. They
are derived in a separate report [62]. In Equations (4.40) and (4.41), j can be any
integer; the value of j that minimises Ith is the one that is relevant for our needs. We
will be content to find the values of ω∆ that maximise Λ0 and Λ1.

The problem is most straightforward in the integral formulation: we need to
maximise the integral of the product of two functions of ω. The functions in question
are shown in Figure 4.11 for the case of a Porcupine load in in CESR-V. As can be
seen,

∣∣∣Z‖0(ω)/ω
∣∣∣ and

∣∣∣Z‖1(ω)/ω
∣∣∣ have sharp peaks at ω = 0, while the bunch spectrum

has a broad peak there. The analytically predicted coupling impedance is shown
in Figure 4.11; in the AMOS calculation, the frequency step is 24.4 MHz, which,
as can be judged from the close-ups of Figure 4.12, is not small enough for a good
representation of the sharp peak (in the analytic calculation, a step size of 0.1 MHz
was used for the lowest frequency range, to wit from 0.3 MHz to 20 MHz). We
will hence make an exception in the case of the microwave instability, and use the
analytically-calculated impedance instead of the AMOS impedance. Note that the
same argument applies to Ξ0,0 and Θ0.

In light of Figure 4.11, we expect a broad maximum in Λ0 and Λ1 for ω∆ near
0. And, as can be seen in Figure 4.13, this is indeed what we find for Λ0. Although
it is easier to predict the dependence on ω∆ under the integral formulation, the sum
formulation gives the same dependence, as evident in Figure 4.13. The same state-
ments apply to Λ1. We conclude that ω∆ = 0 is the right choice in the Porcupine
case. The corresponding threshold currents are given in Table 4.7. The sum and
integral formulations give reasonably consistent answers. The thresholds are signif-
icantly lower than what we expect from the mode coupling model. However, since
Ib ≤ Ith is merely a sufficient condition for stability, the two models do not necessarily
contradict each other.

A different formula for the longitudinal microwave instability threshold has been
given by M. Zisman [69]. His threshold current can be expressed in terms of the
effective monopole elastance we introduced in Section 4.2:

Ith =
ησ2

δE0√
2σz
c
|Ξ0,0 (σz; ω0; 0)|

. (4.42)

As was the case for Λ0, Ξ0,0 is sensitive to the low-frequency behaviour of Z‖0(ω),
so we must use the analytically-predicted coupling impedance instead of the AMOS
impedance. Threshold currents obtained from the Zisman formula are also given in
Table 4.7. They are significantly higher than the thresholds obtained via Λ0. Again,
since Λ0 only gives a sufficient condition, a contradiction cannot be inferred.

4.8 Multi-Bunch Effects

So far, we have considered only the effect of a bunch’s wake on itself. In this section,
we will examine multi-bunch effects, and we will see that, in the absence of head-
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Figure 4.11. (a) Frequency spectrum for a bunch with σz = 10 mm. (b) Dependence

of
∣∣∣Z‖0(ω)/ω

∣∣∣ and
∣∣∣Z‖1(ω)/ω

∣∣∣ on frequency in the case of the analytic Porcupine imped-

ance; the dipole impedance is normalised by multiplying by (2rx)
2 (see Table 3.1).
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Figure 4.12. Detail of the dependence of
∣∣∣Z‖0(ω)/ω

∣∣∣ and
∣∣∣Z‖1(ω)/ω

∣∣∣ on frequency.

Table 4.7. Predicted microwave instability threshold currents due to Porcupine loads
in CESR-V. The values given are based on the analytically-calculated Porcupine
impedance with ω∆ = 0.

Ith [mA]

Direction Source sum integral

longitudinal Λ0 27.09 27.06

transverse Λ1 1228.7 1228.3

longitudinal Zisman formula 234.9 232.8
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Figure 4.13. Dependence of the effective monopole microwave impedance of the
Porcupine load on the frequency shift (f∆ ≡ ω∆/(2π)). Effective impedances obtained
via both a summation and an integral of the analytic coupling impedance are shown.

tail effects, the multi-bunch effects determine the growth rates of modes of beam
oscillation.

We saw in Section 4.5 that the longitudinal growth rates are zero in the single-
bunch case if the wake function decays to zero within one turn. In practice, we can
expect the wake fields to decay very rapidly in a low-Q device, but we should not
expect them to be exactly zero after one turn, or by the time the next bunch arrives.
In such a situation, the time between the arrival of successive bunches determines
the growth rates, and we must account for the effect of one bunch’s wake field on the
next bunch.

The above arguments also apply to the transverse growth rates if ξ = 0. With a
non-zero chromaticity, however, the single-pass growth rates are non-zero due to the
transverse head-tail effect.5 We will see that the latter dominates the picture in the
case of l > 0. As mentioned previously, however, for l = 0, the strong dependence
of Z‖1(ω)/ω on ω near ω = 0 requires more careful attention; as we will see, this
will affect the growth rate of the l = 0 mode significantly. From a time domain

5The same can be said in the longitudinal case if the “longitudinal chromaticity,” i.e. the depen-
dence of η on energy, is included. However, longitudinal chromaticity generally has a much smaller
effect on the beam’s motion, so we will not include it in our analysis. It is presumably the dominant
growth mechanism in the short-range wake limit, however.
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point of view, this result is due to the contribution to the wake function from very
low frequencies (note that, for a resonance of given Q, the decay time of the field
increases as the frequency decreases).

The inclusion of multiple bunches into the complex frequency shift analysis is
discussed by A. Chao [43]. We will consider the case of M bunches, with uniform
spacing between bunches and the same charge per bunch for each. With M bunches,
each single-bunch mode of beam oscillation splits into a family of M multi-bunch
modes. Each mode in the family can be characterised by an integer s; the phase shift
between successive bunches is 2πs/M . To avoid ambiguity, we will require 0 ≤ s ≤
M − 1. One mode of oscillation is now identified by three indices: n, l, and s. In the
longitudinal case, we get the complex angular frequency shift Ωn,l,s for a multi-bunch
mode by replacing Ξ0,j (σz0; ω0, lωs0) with Ξ0,j (σz0; Mω0, lωs0 + sω0) in the formulae
of Section 4.5. In the transverse case, likewise, we replace Θj (σz0, ωξ; ω0, lωs0) with
Θj (σz0, ωξ; Mω0, lωs0 + sω0). In this section, we will consider only the n = 0 radial
mode. If the wake has a short range, the effective elastances are independent of s in
the limit, and are the same for the multi-bunch, single-bunch, and single-pass cases.
If the wake has a long range, on the other hand, the frequency shift and growth rates
will generally differ for the single-pass case, and depend on s.

Figure 4.14 shows the imaginary part of Ξ0,j (σz0; Mω0, lωs0 + sω0) for a Porcupine
load as a function of s for the first few even j’s, which determines the growth rates
for the first few longitudinal modes. We have used the AMOS Porcupine impedance
and the CESR-V values for σz0, ω0, and ωs0 and have set l = j/2. Although s is an
integer, we can consider it to be a continuously varying parameter as we interpret
Figure 4.14. The symmetry with respect to ω of the real and imaginary parts of
Z‖0(ω) accounts for some of the features: since the multi-bunch elastance is a sum
over harmonics of Mω0 with a shift of lωs0 + sω0, we should have Im Ξ0,j = 0 for
j even when lωs0 + sω0 = 0. Because lωs0/ω0 < 1, we expect Im Ξ0,j = 0 between
s = 0 and s = 1. We also expect the same values for s → M as for s = 0. These
expectations are consistent with Figure 4.14. In addition, the symmetry requires Im
Ξ0,j = 0 for j even when lωs0 + sω0 = M/2, with opposite signs on either side of
this crossing point, which accounts for the zeros near s = 92. The transverse case is
similar, although the additional betatron frequency shift in the revolution harmonics
shifts the zeros by ωβ/ω0, i.e. by about 10 in our case. Moreover, the head-tail effect
shifts the average value of Θj .

There is a family of multi-bunch growth rates for each l. The maximum and
minimum growth rates per unit current for each longitudinal family are given in
Table 4.8 for the case of AMOS Porcupine loads in CESR-V. As expected from
Figure 4.14, the minima and maxima are opposite in sign and approximately equal
in magnitude. The fastest growth occurs for the l = 1 mode; the corresponding
growth rate for Ib = 10.93 mA is 0.73 s−1, which is about a factor of 100 smaller than
the longitudinal radiation damping rate. The corresponding multi-bunch frequency
shifts are not very different from the single-pass frequency shifts calculated previously
(Figure 4.4): they differ by 0.1% or less.

In the transverse case, the l = 0 mode can be significantly influenced by multi-



96

0 50 100 150 200

s

16
8

0
−8

−1
6

Im
 Ξ

0,
j [

µ F
− 1

]

j = 2
j = 4
j = 6
j = 8

V
P
0
A
_
S
U
M
M
0
_
1
0
S
_
A
L
L
 
2
 
2
8
-
M
A
R
-
9
6

Figure 4.14. The imaginary part of the effective multi-bunch monopole elastance as
a function of the multi-bunch mode index s for a few even values of j. The values are
based on the AMOS prediction for the monopole Porcupine impedance with M = 183.

bunch effects because of the low-frequency behaviour of Z⊥1 (ω). (Note, however,
that the predicted Porcupine Z⊥1 (ω) remains finite as ω → 0. This is in contrast
to the resistive wall Z⊥1 (ω) for a wall of infinite thickness, but is consistent with
the case of a resistive wall of finite thickness [43].) As mentioned in the previous
section, AMOS does not provide a good prediction of the impedance at low frequencies
because of the large step size; to get a meaningful result, we must use the analytically-
calculated impedance. The single-pass and multi-bunch predictions based on the
analytic Porcupine impedance for the l = 0 mode are compared in Table 4.9. As
can be seen, the multi-bunch frequency shifts split at the 2% level. The splitting in
growth rates is more significant: while the single-pass growth rate is negative (i.e. the
mode is damped), the maximum multi-bunch growth rate is positive. For Ib = 10.93
mA, the maximum growth rate is 0.56 s−1, which is about a factor of 65 smaller
than the transverse radiation damping rate. Note that the positive chromaticity still
provides a reduction in the growth rates, although the largest growth rate is positive
when the multi-bunch effects are included. There is also a multi-bunch correction to
the single-pass frequency shifts and growth rates for l > 0 (Figures 4.5 and 4.6); the
multi-bunch frequency shifts differ by up to 0.2%, while the multi-bunch growth rates
differ by up to 4% (using AMOS results for both cases).

The multi-bunch correction to the frequency shifts and growth rates is due to
incomplete cancellation between the impedance at positive and negative ω’s. Multi-
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Table 4.8. Predicted multi-bunch longitudinal growth rates per unit current per
bunch for Porcupine loads in CESR-V. The AMOS impedance was used.

(Growth rate)/Ib
[s−1 A−1]

l minimum maximum

1 −66.64 66.84

2 −17.53 17.54

3 −8.90 8.91

4 −2.24 2.24

Table 4.9. Predicted multi-bunch transverse l = 0 frequency shifts and growth rates
per unit current per bunch for Porcupine loads in CESR-V. The analytic impedance
was used.

Multi-bunch

Item Single-pass minimum maximum

(Frequency shift)/Ib [kHz/A] −1.902 −1.871 −1.935

(Growth rate)/Ib [s−1 A−1] −140 −331 51
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Table 4.10. Predicted values of the current per bunch at the threshold for various
instabilities produced by Porcupine loads in CESR-V.

Ib at threshold

Instability [mA]

Single-bunch transverse oscillation 440

Longitudinal mode coupling 750

Transverse mode coupling ∼ 4000

Longitudinal microwave ≥ 27

Transverse microwave ≥ 1230

Multi-bunch longitudinal oscillation 1150

Multi-bunch transverse oscillation 730

bunch effects thus depend sensitively on the detailed dependence of Z‖m(ω) on ω.
As a result, it is difficult to calculate the required sums correctly without an exact
expression for the impedance as a function of frequency (something which we do not
have even in the analytic case, since we have measured µ and ε only for a finite set of
frequencies). Hence, the error in the results given in this section can be expected to
be significant; it is likely that we have overestimated the importance of multi-bunch
effects due to the Porcupine loads.

4.9 Summary

Alternate formulae were derived for potential well distortion effects, the bananer
effect, complex frequency shifts, and the microwave instability. Most of the collective
effects formulae were expressed in terms of the “effective elastance,” a functional of
the coupling impedance and the bunch’s frequency spectrum.

For the CESR-V case, the direct and indirect power transfer from the beam to the
HOM loads is predicted to produce an average power dissipation per unit area of 82.5
W/cm2 in the Porcupine loads, with the maximum power density being at least 1.7
times larger. For the CESR-III.5 case, the predicted power density is 12.8 W/cm2 on
average, with a maximum at least 1.5 times higher. Since the highest average power
density reached so far with a prototype Porcupine load was about 21 W/cm2 (see
Section 5.1), the power dissipation requirements for CESR-V will probably require
some design changes.

Potential well distortion is predicted to shorten the bunch length by 1.3% or
less. Static effects in the transverse plane are predicted to have no significant effect
on the transverse size of the bunch. The predicted thresholds for various dynamic
phenomena are summarised in Table 4.10. All of the instability thresholds are above
the design current per bunch by more than a factor of 2.



Chapter 5

A Beam Test of a Ferrite-Lined
Chamber

To test our ability to make correct predictions about the beam-ferrite interaction,
beam measurements were done in CESR in December 1994 on a ferrite load of mag-
nified coupling impedance. This beam test and the fabrication of the test structure
for it are described in this chapter.

5.1 Load Fabrication

The design and construction of a test ferrite structure (and of Porcupine loads) able
to handle power densities of 10 to 20 W/cm2 was a development effort. When it
became clear that the first generation HOM load [19] was not a complete success
in terms of power-handling capability, a number of small-scale bonding tests were
done, with the aim of improving the thermal contact between the ferrite tiles on the
inside of the beam tube and the cooling water outside, without compromising the
compatibility with ultra-high vacuum. In the recipe that was eventually chosen, a
layer of nickel is sputtered onto the back side of the ferrite tiles (after the tiles are
radiused, cleaned, and fired in air) and the tiles are soldered to a copper substrate.
A cooling tube is brazed to the copper substrate before soldering. The soldering is
done by clamping the tile and substrate together with a foil of silver-tin solder (10%
Ag by mass) sandwiched between them, and heating the assembly to about 320◦C
under an inert atmosphere (N2 gas). This recipe was chosen after a number of “bond-
and-peel” tests with metal foils and some small-scale high power density RF tests.
It was found to produce relatively good (but certainly not perfect) wetting of the
two surfaces by the solder; the joint was found to be able to handle a power density
of about 16 W/cm2. This bonding scheme was used for the fabrication of both the
ferrite test structure and the Porcupine loads [70], although the two designs ended
up being somewhat different. The bond development effort was led by D. Moffat.

The test structure, which we named the “L3 load” after the site it occupied in the
storage ring, had a beam tube diameter 2.5 times smaller and a ferrite-bearing length
6 times larger than the Porcupine load. As was discussed in Chapter 3, the predicted
coupling impedance of this test structure is ∼ 16 times the predicted monopole im-
pedance and ∼ 80 times the predicted dipole impedance of one Porcupine load. The

99
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L3 load was split into three units, with sections of straight beam tube (with pumping
ports) between them.

Each ferrite unit in the structure consisted of a copper tube with 40 tiles of TT2-
111-series ferrite soldered to the inside and a water cooling tube wrapped around the
outside, as shown in Figures 5.1 and 5.2. The steps in fabricating one unit were to
(i) braze stainless steel collars to the ends of the copper shell, (ii) braze the copper
refrigeration tube to the outside of the shell, (iii) weld vacuum flanges to the collars,
and (iv) solder the tiles to the inside of the copper shell (see Figure 5.3). The brazing
was done in a vacuum furnace; the welds were of the tungsten-inert gas type.

A total of four units were fabricated. Three of these were assembled into a vacuum-
tight module with four ion-getter vacuum pumps, baked out, and installed in CESR.
The assembled module is shown in Figure 5.4.

A prototype unit with only 10 tiles was made first for evaluation in a high power
density RF test with a 500 MHz klystron. In this test, the ferrite-lined tube became
the outer conductor of a coaxial line, with an RF short placed to produce relatively
uniform dissipation in the ferrite. An average surface power density of 15 W/cm2

was reached without visible damage to any of the tiles. The maximum measured
tile surface temperature was 96◦C with a cooling water flow rate of 130 mL/s (the
tiles were not in a vacuum). A power density of about 21 W/cm2 was reached in
another high-power test of a Porcupine load, with the surface temperature of the
ferrite exceeding 150◦C at a serial flow rate of 27 mL/s.

5.2 Overview of the Beam Test

The beam measurements on the ferrite section were done over several days, interleaved
with machine start-up activities following a down period. Measurements were done
with 1, 2 and 9 bunches. Positrons were used almost exclusively, because we did not
have complete masking for direct synchrotron radiation from the electron beam. Two
different optical lattices with slightly different beam energies were used in the course
of the test, one at the centre of mass energy of the Υ(2s) particle and the other at
the Υ(1s) energy. Selected CESR machine parameters are given in Table 5.1. Several
parameters were varied in the course of the test and are not listed.

Most of the predictions presented in this chapter are based on the impedance
calculations discussed in Chapter 3, in which we assumed an axisymmetric geometry
with a 3.175 mm layer of ferrite, and did not split the ferrite into three sections. As we
saw in Section 3.3, the analytic formulae agree quite well with the AMOS predictions
in the case of the L3 load; the analytically-calculated impedance was therefore used
in the instability predictions except when indicated otherwise. Some refinements in
the impedance calculations will be discussed in Section 5.6.

Potential well distortion predictions indicate that the ferrite impedance should
produce bunch shortening at the 5 or 10% level (depending on the model—see Sec-
tion 4.4) for the maximum single-bunch current (40 mA). This could be extenuated or
aggravated by other impedances in the storage ring, although past experiments have
found no bunch lengthening or shortening in CESR for single bunches. In the latter,
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Figure 5.1. One unit of the ferrite structure. The inner diameter of the Cu tube is 92.1 mm; the ferrite tiles are 50.8 mm by
25.4 mm by 3.175 mm before radiusing.
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(a)

(b)

Figure 5.2. (a) Through view and (b) side view of one completed unit of the ferrite
structure.
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Table 5.1. Selected CESR machine parameters. The values listed do not account
for the effect of the wigglers, as they were kept open during the measurements.

Fundamental Parameters

Parameter 2s optics 1s optics

Ring circumference C 768.43 m

Energy per particle qeE0 5.0 GeV 4.7 GeV

Relative momentum spread σδ 5.782 · 10−4 5.433 · 10−4

Momentum compaction 0.0112 0.0115

RF Frequency 499.8 MHz

Energy radiated per turn U0 0.822 MeV 0.642 MeV

Longitudinal radiation damping rate 64.80 s−1 53.86 s−1

Horizontal radiation damping rate 31.36 s−1 26.00 s−1

Vertical radiation damping rate 32.05 s−1 26.62 s−1

Horizontal β-function in L3 0.821 m 0.822 m

Vertical β-function in L3 6.933 m 6.930 m

Derived Parameters

Revolution frequency f0 = ω0/(2π) 390.14 kHz

Slippage factor η 0.0112 0.0115

Harmonic number 1281
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Figure 5.3. Tiles being soldered to one unit of the ferrite structure. The upper-most
of four “Mini-Tribendis Wheels” (used to clamp the tiles in place while they are being
soldered) is visible.

a current of up to 26 mA was reached with σz = 20 mm [71] and a current of 20 mA
was obtained with σz = 15 mm [72]. Unfortunately, we did not have the means to
measure the bunch length in this test. However, a theoretical bunch length can be
obtained from the synchrotron frequency fs or the RF voltage. We used fs to get the
bunch length, although it is not necessarily the best indicator (according to models,
the bunch length is correlated with the incoherent synchrotron frequency, which is
generally different from the coherent synchrotron frequency that we measure). As
will be seen below, we infer significant bunch lengthening with 9 bunches on the basis
of fs, but only a slight change in the bunch length on the basis of the RF voltage.

The longitudinal microwave instability threshold (see Section 4.7) predicted for
the ferrite is about 25 mA per bunch, depending on σz. However, since the threshold
gives only a sufficient condition for stability, we cannot conclude that the beam should
be unstable (i.e. that the bunch length and momentum spread should increase “tur-
bulently,” as predicted by the models) at the maximum current per bunch of 40 mA.
No evidence of an instability was seen, but we might not have been able to see it with-
out a direct measurement of the bunch length or the momentum spread (although
one could argue that there would be indirect evidence that we would have noticed).
According to the Zisman formula, we remained below the longitudinal microwave
instability threshold by a factor of about 2. The predicted transverse microwave
instability thresholds are higher than the latter by order of magnitude.
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Figure 5.4. (a) Drawing of the assembled ferrite structure. (b) Photograph of the
assembly being installed in CESR.
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5.3 Calorimetric Measurements

The power dissipation in each unit was obtained calorimetrically via the flow rate,
inlet temperature, and outlet temperature of the cooling water. Water temperatures
were obtained via sheathed thermocouples protruding into the inlet and outlet tubes;
the flow rate was measured using a paddle-wheel gauge. The volume flow rate of
water was ∼ 50 mL/s per unit for most of the test. The total power dissipation of the
ferrite is the sum of the power dissipation in each of the three units. The measured
power dissipation was found to be about the same in each unit.

Monopole Loss Factor Measurements

The monopole loss factor k‖0 of the ferrite units can be obtained directly from the
total power dissipation Pd and total beam current I. The measured k‖0 as a function
of I is shown in Figure 5.5a for a single bunch. The noise in the data at low I is due
to the poor resolution of the small ∆T values. At higher I, a slight decrease in the
measured k‖0 as function of I is visible. Possible explanations for this effect include
(i) systematic error in the calorimetry, (ii) non-linearity in the ferrite response to the
beam’s electromagnetic fields, or (iii) the temperature dependence in the microwave
properties of the ferrite.

Figure 5.5b shows the single-bunch data plotted as a function of the longitudinal
bunch size σz, calculated from the measured synchrotron frequency (see Section 5.5),
along with the predicted k‖0. It can be seen that, inasmuch as fs is a reliable indicator
of the bunch length, the decrease in k‖0 with I cannot be explained as being due to
changes in σz as a function of I. There is no sign of the bunch shortening expected
due to the ferrite.

As can be seen in Figure 5.6, the 9-bunch results are consistent with the single-
bunch results, except for a slight decrease in the loss factor for the shortest bunch
length. The latter effect is not understood, as the predicted loss factor is the same for
the single-pass, single-bunch, and 9-bunch cases; one possibility is that it is result of
bunch lengthening produced by the medium-range wake of other elements in the ring.
The change in σz with current obtained from fs is larger in the 9-bunch case, but it
still does not account for the decrease in k‖0 with current. As we will see in Section 5.5,
the change in σz expected from the dependence of the RF voltage on beam current is
much smaller. In both the single-bunch and 9-bunch cases, the measured k‖0 is smaller
than predicted by about a factor of 2; the likely explanation for this discrepancy will
be given in Section 5.6.

Sampling the Wake Function

We used the Temnykh method [73] to sample the wake field: with two bunches of
equal charge (Ib = current per bunch = 20 mA for each), we measured the power
dissipation in the ferrite as a function of the spacing ∆z between the bunches. In
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Figure 5.5. Calorimetrically measured single-bunch loss factor (summed over all 3
units) of the ferrite section as a function of (a) beam current, and (b) bunch length
(with predictions). The RF voltage was adjusted to vary the bunch length. Noisy
low-current points (I < 20 mA) are omitted in (b).
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Figure 5.6. Calorimetrically measured 9-bunch loss factor (summed over all 3 units)
of the ferrite section as a function of (a) beam current, and (b) bunch length (with
predictions). The RF voltage was adjusted to vary the bunch length. Noisy low-
current points (I < 60 mA) are omitted in (b).
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Figure 5.7. Calorimetrically measured and predicted 2-bunch power loss factor of
the ferrite as a function of spacing, with σz = 14 mm (from fs). Because the RF
frequency is 500 MHz, the smallest measurable ∆z is 0.6 m.

terms of a power loss factor

P ‖0 ≡
Pdf0

MI2
b

, (5.1)

where M = number of bunches and f0 = revolution frequency, we should have P ‖0 = k‖0
if the wake fields have vanished by the time the second bunch arrives and P ‖0 → 2k‖0
as ∆z → 0. The results are shown in Figure 5.7, along with a prediction obtained
by integrating the calculated coupling impedance with the appropriate form factor.
The measurement suggests that the ferrite section’s wake fields endure longer than
predicted; for ∆z > one RF bucket (i.e. 0.6 m), however, the measurements and
predictions seem to agree that the wake field has decayed to zero. There may be
another explanation for the anomalously loss power dissipation when the bunches are
one bucket apart, as will be discussed in Section 5.8.

Dipole Loss Factor Measurements

We used magnetic and electrostatic elements near the ferrite chamber’s location in the
storage ring to produce a transverse displacement of the beam in the ferrite chamber.
The measured calorimetric single-bunch loss factor as a function of displacement is
shown in Figure 5.8, along with predictions based on the calculated monopole and
dipole loss factors. Though the measurement suggests that there is some dependence
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on displacement, the signal-to-noise ratio is not very favourable.

5.4 RF Power Measurements

It is possible to infer the total loss factor of a storage ring by applying the appropriate
book-keeping methods to the cavity RF power and synchrotron radiation power [74].
One obtains the parasitic power lost by the beam by measuring the forward power
supplied to each cavity and subtracting off the power reflected back from the cavity
input coupler, the power dissipated in the cavity walls, and the power lost by the
beam due to synchrotron radiation. We applied this technique with and without the
ferrite in order to get an independent measure of the power loss due to the L3 ferrite
load. The results are compared in Figure 5.9. The predicted k‖0 of CESR shown in
Figure 5.9 was obtained from scaling laws for various machine elements [75]. The
scaling laws were updated to account for recent modifications to the storage ring,
as discussed in Appendix C. The total k‖0 measurement gave less accuracy than the
calorimetric measurement—the power loss in the ferrite is close to the noise level in
the RF measurement—but the RF and calorimetric results do not overtly contradict
each other. As in the calorimetric measurement, the 9-bunch results show a slight
decrease in the loss factor for the shortest bunch length. Because the results are
sensitive to power offsets, it is difficult to say whether the total loss factor of the ring
depends on the beam current (as was seen for the calorimetric measurements).

5.5 Frequency Shift and Damping Rate Measure-

ments

As was discussed in Chapter 4, the total ring impedance produces shifts in the fre-
quencies and damping rates of the oscillatory modes of the beam; in the absence of
coupling, the shift in the frequency f and damping rate α should be proportional to
I. We used established techniques [76] to measure the lowest-order frequencies and
corresponding α’s as a function of I, with and without ferrite. We did the damp-
ing rate measurements with the CESR distributed ion pumps turned off, in order to
eliminate anomalous growth effects [77].

Longitudinal

Single-bunch and 9-bunch measurements of the synchrotron frequency fs (i.e. the lon-
gitudinal l = 1 azimuthal mode, with s = 0 in the multi-bunch case) as a function of
current were done for three different RF voltages. In the single-bunch measurements,
the fs frequency domain resonance curve often had a double peak, which complicated
matters a bit. The results are shown in Figure 5.10. These are some obvious offsets
(possibly due to imperfect matching of machine parameters between the measure-
ments with and without the ferrite), but the differences in slope due to the ferrite are
probably below the reproducibility threshold of the measurement.
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Figure 5.8. Calorimetrically measured and predicted loss factor of the ferrite section
as a function of the vertical displacement of the beam, with (a) σz = 14 mm and (b)
σz = 16 mm (from fs).
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Figure 5.9. Measured and predicted (a) single-bunch and (b) 9-bunch loss factor of
CESR, with and without ferrite present.
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Recall that, when we included the stationary wake in our analysis, we predicted
that there would be no shift in the fs mode to linear order due to the Porcupine load’s
impedance. The same holds true for the L3 load, a prediction which is consistent with
Figure 5.10. The predicted mode coupling threshold due to the ferrite (in the absence
of the stationary wake) is about a factor of 10 higher than the maximum current per
bunch achieved in the test. (In hindsight, it would have been better to measure a
different azimuthal mode, and we probably would have if I had understood the effect
of the stationary wake at the time of the test.)

Interestingly, the frequency shifts are quite a bit larger with 9 bunches than with
a single bunch, even though more than twice the current per bunch was reached in
the single-bunch case. As has been hinted at already, a decrease (or, in one out of
six cases, an increase) in the RF voltage as a function of current was observed in the
test.1 The voltage changes were indeed larger with 9 bunches, but the corresponding
frequency shift one would expect is small. This is also illustrated via the solid and
dashed lines in Figure 5.10, which are predictions based on the measured dependence
of the RF voltage on beam current. The combined effect of the non-linearity in the RF
voltage and the shift in the bunch’s longitudinal position as a function of current due
to the total loss factor of the ring are also included in the prediction. The increase in
the predicted loss factor of the ring due to the ferrite accounts for the slight difference
in slope between the predictions with and without the ferrite, although this effect is
below the noise level in the measurements.

In the single-bunch case, there is no systematic difference between the measure-
ments and the predictions (the measured slopes are sometimes the same, sometimes
smaller, and sometimes larger than predicted). In the 9-bunch case, on the other
hand, the measured frequency shifts are much larger than predicted. The measured
dependence of fs on frequency with 9 bunches can be accounted for via a model
which includes the coupling impedance of the fundamental mode of the cavities and
the shift in the fundamental mode frequency as a function of current [78]. This de-
tuning of the fundamental mode frequency with current (done to compensate for the
beam-induced voltage in the cavity) accounts for the non-linear dependence of fs on
I. The shift due to the fundamental impedance is a coherent one, so our assumption
that the bunch length is inversely proportional to fs is perhaps not the best one for
the 9-bunch case—a direct measurement of σz would certainly be much better.

Single-bunch measurements of the damping rate of the fs mode were attempted,
but the results were not deemed meaningful, because of the non-exponential decay in
the signal (seen both with and without the ferrite).

Transverse

The single-bunch horizontal and vertical betatron frequencies and associated damping
rates were measured for two different RF voltages. The results for one case are shown

1This change in the RF voltage with current was diagnosed to be mismatch between cavity pairs in
which one cavity’s voltage decreased (or increased) when the other’s was held constant via a control
loop—the inter-cavity phase has since been adjusted in an attempt to eliminate this problem.
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Figure 5.10. Comparison of (a) single-bunch and (b) 9-bunch synchrotron frequency measurements with and without ferrite.
The three families of points correspond to three different RF voltages. Predictions are also shown (solid and dashed lines).
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Table 5.2. Comparison of measured and predicted single-bunch transverse frequency
shift and damping rate slopes. The values given are the differences in slope due to
the ferrite. The integral and sum formulations for the complex frequency shift agree
for the number of digits given.

σz ∆f ′ [kHz/A] ∆α′ [(ms A)−1]

Plane ξ [mm] measured predicted measured predicted

Horizontal 2.2 16 ∼ 0 −0.456 −3.7 0.1030

Vertical 2.0 16 ∼ 13 −3.9 −5.8 0.791

Horizontal 4.7 14 ∼ 5 −0.462 2.9 0.195

Vertical 1.8 14 ∼ 0 −3.90 −5.7 0.630

in Figure 5.11. For the most part, the frequency shifts and damping rates grow
quite linearly with frequency, as expected in the absence of coupling (the predicted
horizontal and vertical mode coupling thresholds are of the order of 20 A per bunch
and 2.5 A per bunch, respectively, not accounting for the stationary wake); in two
cases, there were anomalies in the damping rate’s behaviour between 5 and 15 mA
per bunch. In three out of four cases, there were offsets in the betatron frequency
between the measurements with and without ferrite—our attempts to return to the
same machine conditions were not completely successful. The measurements are
summarised in Table 5.2. Predictions based on the formulae given in Section 4.5 are
also given in Table 5.2 (recall that, for the l = 0 mode, the stationary wake does
not affect the frequency shift). The differences in the measured slope are near the
threshold for statistical significance in the case of the frequency shift, and probably
do not reflect the effect of the ferrite impedance.

In the case of the damping rate, the differences are well above the noise level
and much larger than predicted. To see whether these differences could indeed be
attributed to the ferrite, some reproducibility measurements were done. A difference
in damping rate slope of 3.5 to 4 (ms A)−1 was seen between measurements made
and repeated after about one day under the same conditions. The differences seen
between the measurements with and without ferrite are slightly larger, but, relative
to the reproducibility measurements, more time elapsed and more changes were made
to the storage ring between measurements. Thus, it cannot be said that the measured
differences in slope are due to the ferrite.

5.6 Refinements to the Loss Factor Predictions

As discussed in Section 5.3, there is a factor of∼ 2 discrepancy between the calorimet-
rically measured loss factor of the ferrite structure and the loss factor predicted for
the L3 load in Chapter 3. The loss factor of the full-size HOM load mock-up was also
smaller than predicted (see Section 3.3). There are several idealisations in our model
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Figure 5.11. Comparison of single-bunch measurements of (a) the vertical betatron frequency and (b) the corresponding
damping rate, with and without ferrite.
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which one might turn to in order to account for this factor of 2. We will examine
them in this section. It is also possible that the systematic error in the measurement
is the cause; another beam test would be required to rule out this possibility.

One idealisation that was made was to assume that all the power lost by the
beam is dissipated in the ferrite; in practice, it is possible that some of the energy
will propagate into the beam tube and eventually be dissipated elsewhere in the ring.
We estimated the importance of this effect by comparing the fraction of the power
transfer above the beam tube’s cutoff frequency to the total power transfer from
the beam. The latter is obtained via a direct application of Equation (3.8), while
the former is obtained by excluding frequencies below cutoff from the integral in
Equation (3.8). In the extreme case in which all of the power above cutoff propagates
into the beam tube, the predicted power dissipation in the ferrite decreases by 11%
at most, depending on the bunch length. Thus, this idealisation does not account for
the discrepancy.

A second idealisation we made was to approximate the three ferrite units as a
single section of ferrite with three times the length of one unit. To estimate the
importance of the longitudinal distribution of the ferrite, we did a more realistic
AMOS calculation with the ferrite layer split into three parts. We also tried to
improve the realism in the end effects. AMOS predicts a 5% increase in the loss
factor in the more realistic case (for the shortest bunch length, which shows the most
dramatic change). This idealisation does not account for the discrepancy either.

A third idealisation we made was to assume that the microwave properties of
the ferrite tiles used in the L3 load are identical to those measured for TT2-111V. In
reality, there is significant batch-to-batch variation in the properties, particularly in ε.
The firing processes also have an influence on the microwave properties. To estimate
the variation in the loss factor to be expected due to these effects, we predicted the loss
factor for four other batches of TT2-111-series ferrite, whose µ and ε were measured
after they were fired in air at 900◦C and in nitrogen gas at 250◦C [25]. This firing
cycle approximates the preparation and soldering cycle that the tiles undergo. For
the relevant range of σz values, the predicted loss factors based on the treated ferrites’
properties were between 1% and 14% smaller than the loss factor based on untreated
TT2-111V. Thus, the variation in ferrite properties cannot be said to account fully
for our factor of ∼ 2.

A fourth idealisation is that the ferrite layer has a uniform thickness of 3.175 mm.
This is in fact the thickness of the tiles before they are radiused for soldering to the
inside of the copper tube—after radiusing, the thickness remains 3.175 mm in the
middle of the tile, but decreases to a minimum value of about 1.33 mm at the edges.
There are also gaps between the tiles (see Figures 5.1 and 5.2). One might expect
to get better agreement with the measurements by using an “isochoric” model, i.e.
choosing an equivalent ferrite layer thickness for which the total volume of ferrite is
the same as in the actual load (to wit, 2.33 mm), rather than using the maximum
thickness of ferrite. The analytically-predicted dependence of the loss factor on the
thickness of the ferrite layer is compared to the measured single-bunch loss factors in
Figure 5.12. The measurements agree with the predicted loss factor for a thickness
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Figure 5.12. Comparison of analytically-predicted (dashed and dotted lines) and
measured (solid lines) loss factors for three different bunch lengths. The measured
values shown are based on a single bunch of about 20 mA.

between 1.25 and 1.4 mm, which is close to the thickness at the edge of the tiles. The
implication may be that the gaps between the tiles are more effective at reducing the
loss factor than can be accounted for via a simple-minded isochoric approximation.
Of course, the effects discussed above may contribute to the overall reduction.

5.7 Load Performance

The maximum (total) power dissipation in the ferrite was 5.8 kW according to
calorimetry, corresponding to an average power density = 3.8 W/cm2; this was ob-
tained with I = 142 mA in 9 bunches. At this current, the pressure gauges read ≤
30 pbar, although pressures as high as 50 pbar were recorded (at lower I) during an
earlier “beam processing” shift. Several vacuum “spikes” occurred in the course of
the test, with the pressure rising to 100–200 pbar or higher. Prior to installation, the
pressure in the ferrite assembly reached 1 pbar at 17◦C after a vacuum bake-out to
150◦C.

An inspection of the ferrite chamber after removal from CESR revealed that one
corner of one tile had broken off; it was found lying on the bottom of one of the ferrite
sections. The piece appeared to have been unsoldered except along one edge. There
was no obvious damage to any other tiles.
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If the current per bunch is sufficiently high, the electromagnetic fields which travel
with the bunch can be expected to produce a non-linear response in the ferrite. Based
on the beam currents and bunch lengths obtained in the beam test, the maximum
(instantaneous) magnetic field at the surface of the ferrite was 4.1 mT. The corre-
sponding surface electric field was 1.2 MV/m. As suggested in Section 5.3, the slight
decrease in the measured loss factor with current might be associated with these high
surface fields. Unfortunately, we do not have much information on the ferrite’s re-
sponse to high fields. However, we measured an order-of-magnitude change in the
L-band lossiness of a TT2-111-series tile in the presence of a magnetostatic field. The
strength of this field was measured to be of the order of 250 mT [79], which might
be consistent with the hypothesis that the beam’s magnetic field produced a slight
decrease in the loss factor. Because of the smaller load diameter and higher cur-
rent per bunch (and accounting for the longer bunch length), the maximum surface
fields obtained in the beam test are about a factor of 7 higher than the surface fields
expected due to the direct interaction with the beam for Porcupine loads in CESR-V.

5.8 Other Related Beam Tests

Cavity Test in CESR

Prototypes for the superconducting cavity, cryostat, and Porcupine HOM loads for
the CESR upgrade were subjected to a beam test in CESR in August 1994 [14, 80,
70, 81]. Among other things, the loss factor of the cavity, tapers, and HOM loads was
measured calorimetrically. Reasonable agreement was found between the measured
values and predictions based on the composition rule (see Section 3.3), although there
were indications that the loss factor was smaller than predicted for the shortest bunch
length (about 10.3 mm). No correlation was seen between the beam current and the
loss factor.

Wake sampling measurements with 2 bunches were also done for the loss factor of
the cavity assembly (as determined calorimetrically via the Porcupine HOM loads);
the results, when considered in conjunction with the results of the analogous measure-
ments in the L3 ferrite test, suggest that there might be another explanation for the
anomalous results of Figure 5.7. In the discussion in Section 5.3, we assumed that the
wake function of the first bunch cancelled out the wake function of the second bunch
in order to reduce the net power dissipation in the case of a spacing of one RF bucket
(0.6 m) between the two bunches. If so, the loss factor should be independent of the
current per bunch, provided both bunches have equal charge. In the L3 test, we did
not vary the charge per bunch in the 2-bunch measurements (we did measurements at
20 mA per bunch only), so we have no knowledge of the dependence on current; in the
cavity test, however, analogous measurements were done at three different currents
(5, 10, and 15mA per bunch). The results are more easily interpreted when expressed
in terms of power dissipation versus total current squared instead of loss factor. The
cavity test results are compared to the normalised L3 test results in Figure 5.13. As
can be seen, all of the data for spacings of more than one bucket fall on a straight
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Figure 5.13. Comparison of the measured power dissipation in the Porcupine HOM
loads (hollow symbols) during the cavity beam test with that measured in the L3 test
(solid symbols). Values of Pd for the L3 test were multiplied by 0.356 to account for
the larger loss factor of the L3 load (this value was chosen because the multi-bucket
data then followed a straight line). In the cavity test, measurements were done for
spacings of 1, 2, 3, 4, and 5 buckets, with σz ≈ 15 mm.

line. The data for 1-bucket spacing, on the other hand, do not increase linearly with
I2—at the two lowest currents, the 1-bucket and multi-bucket points overlap, but the
1-bucket points are significantly lower for the two highest currents. The single-bucket
data have a plausibly smooth dependence on I2, however. We may speculate that this
is the result of another coupling impedance in CESR which produces bunch length-
ening when two bunches are very closely spaced (the likely explanation being that
the short-range wake of the leading bunch causes lengthening of the trailing bunch).
This hypothesis would explain why the 1-bucket loss is anomalously low, even though
the predictions based on the L3 load impedance (Figure 5.7) and the cavity module
impedance [80] indicate that there should be no difference between one bucket and
multiple buckets. Since this hypothesis is based on a total of two anomalous data
points from two different experiments, however, it is not altogether convincing.2

2We might add that, since the smallest spacing between bunches that is envisaged for future
CESR operation is 7 buckets, the question is somewhat academic for the problem at hand.
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Ferrite Load Test in TRISTAN

A prototype HOM load for the KEK-B superconducting RF system was tested by T.
Tajima in the TRISTAN Main Ring in May 1995 [82]. The HOM load was axisym-
metric; it was fabricated via hot isostatic pressing of ferrite powder onto a copper
shell. At the shortest bunch lengths, the calorimetric loss factor of the ferrite and
tapers was somewhat higher than expected from predictions. The bunch lengths in
this test (σz = 4 to 8 mm) were smaller than those used in CESR tests, so that
propagation into the beam pipe might be more significant.

5.9 Summary

CESR beam measurements with a ferrite-lined section of magnified impedance indi-
cate that the loss factor is a factor of ∼ 2 smaller than predicted, possibly due to the
thickness variation along the the tiles and the gaps between tiles. The measured wake
field may endure longer than predicted, but there is no visible effect for ∆z = 4.2
m, the smallest spacing envisaged for future incarnations of CESR; hence there is no
indication that multi-bunch instabilities due to the ferrite will be a problem. The
signal-to-background ratio made it difficult to pick out effects from the ferrite via
measurements on the beam only; this is consistent with predictions, if the stationary
wake term is included.



Chapter 6

Conclusion

6.1 The Beam-Ferrite Interaction: Review

The purpose of this thesis was to (i) quantify the interaction, via the coupling im-
pedance, between a beam and a layer of microwave-absorbing material on the inside
of a beam tube, (ii) predict the power dissipation in the absorbing layer due to the
interaction, (iii) predict the beam instability thresholds in a storage ring due to the
interaction, and (iv) test the predictions in a storage ring. In order to predict the
coupling impedance as required in step (i), it was first necessary to measure the
microwave properties of the material.

Microwave Properties

The coaxial transmission line technique was used to measure the complex permeability
and permittivity as a function of frequency for TT2-111-series nickel-zinc ferrite and
other microwave-absorbing materials over a large frequency range (300 kHz to 20
GHz). To improve the accuracy of the results, different sample lengths were used for
different portions of the frequency spectrum. We found our ε values to be sensitive
to gaps between the sample and the walls of the coaxial line: it was necessary to fill
the gaps with liquid metal in order to obtain reproducible results for materials with
large ε. We found it helpful to measure both the forward and reverse S-parameters in
gauging the systematic error; in particular, the phases of the two reflection coefficients
were found to be good indicators of sample misalignment.

Because of the strong frequency dependence in the µ and ε values for the absorbing
ferrites, we found that the standard algorithm for calculating µ and ε from the mea-
sured S-parameters was not appropriate. We used a different algorithm to determine
the number of whole wavelengths in the sample. Because of the large frequency range
involved, we were able to confirm the consistency of our µ values for TT2-111-series
ferrite using a Kramers-Kronig relation. For ε, the Kramers-Kronig test suggests
that the material has significant absorption at frequencies above 20 GHz. For the
frequency range of overlap, our results agree reasonably well with the majority of the
measurements we have seen in the literature.
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Coupling Impedance

An analytic approximation for the coupling impedance of a microwave-absorbing layer
on the inside of a circular beam tube was derived. The measured microwave prop-
erties were used to predict the coupling impedance of a beam tube section with a
layer of TT2-111-series ferrite using this analytic approximation, a field matching
method derived by Akasaka, and a fully numerical solution (the AMOS program
written by DeFord et al.). All of the predictions agreed reasonably well below the
cutoff frequency, but the more exact methods (which account for the finite length
of the structure) predicted a significantly larger impedance at high frequencies for
the Porcupine geometry intended for use in the new RF system for CESR. The pre-
dicted impedance was checked against impedance measurements done by Walling on
a smaller structure using the wire method. The analytic approximation, the Akasaka
field matching method, and the AMOS numerical solution are applicable to arbitrary
µ(ω) and ε(ω), although the frequency dependence must be fitted to the relaxation
model for AMOS. A simple model was derived to account for the low-frequency
behaviour of the coupling impedance for TT2-111-series ferrite; the low-frequency
impedance was found to be dominated by µ and insensitive to ε in that particular
case.

Power Transfer and Beam Instabilities

An alternate formula was derived for the bunch length in the presence of potential
well distortion. The transverse analog of potential well distortion (the “bananer
effect”) was analysed for the case in which the synchrotron angular frequency is
large compared to the transverse radiation damping rate. Formulae were derived for
the shifts in the complex frequencies of oscillation of the beam, with the lowest-order
contribution from the stationary wake term included. Formulae applicable to a general
coupling impedance (as opposed to a Q = 1 resonator impedance) were derived
for the longitudinal and transverse microwave instability thresholds. The “effective
elastance” was introduced as a means of unifying the treatment of multi-turn power
dissipation, potential well distortion, the bananer effect, complex frequency shifts,
and mode coupling. An extension of the effective elastance to include multi-bunch
effects was given. All of the above results were formulated in a manner applicable to
an arbitrary coupling impedance.

The direct power transfer to the ferrite was predicted from the calculated ferrite
impedance. Including the indirect power transfer from the cavity and tapers, the
predicted average power density is 12.8 W/cm2 for the Porcupine loads in CESR-
III.5; for CESR-V, the average power density is predicted to be 82.5 W/cm2. The
maximum power density is predicted to be at least 1.5 to 1.7 times higher than the
average.

Estimates were made for the static effects and instability thresholds to be expected
from Porcupine loads in CESR-V. The ferrite was predicted to produce a slight
shortening of the bunch (≤ 2%) and a negligible static distortion in the transverse
plane; of the various possible beam instabilities, the longitudinal microwave instability



124

was predicted to have the lowest threshold current, namely 27 mA per bunch. This
value represents a lower bound, so the actual instability may arise at a significantly
higher current. Since the design current for CESR-V is 11 mA per bunch, we do not
expect the Porcupine loads to produce an instability.

Beam Measurements

A ferrite-lined section of decreased radius and increased length was fabricated and
subjected to a beam test in CESR. The monopole and dipole loss factors of the ferrite
assembly were measured calorimetrically; the short-range wake of the ferrite structure
was also sampled via a calorimetric measurement. The measured monopole loss factor
was within a factor of 2 of the predicted value. The dipole loss factor was consistent
with predictions, although the signal-to-noise ratio for the dipole dissipation was
not very favourable. The short-range wake results agreed with the predictions in the
régime of interest (bunches more than one RF bucket apart). The monopole loss factor
of the ferrite was checked independently via the RF power consumption of the beam:
the RF power and calorimetric measurements were consistent, although the former
was significantly less accurate than the latter. The effect of the ferrite on the beam,
as manifested by the complex frequency shift, was near the reproducibility threshold
of the measurements, a result which is consistent with our present understanding. An
average power dissipation of 3.8 W/cm2 was reached; 1 ferrite tile out of a total of
120 failed in the course of the test.

6.2 Discussion

The present Porcupine load design will likely be able to handle the power dissipation
predicted for CESR-III.5; for CESR-V, the predicted power dissipation is excessive. If
a CESR-V-like storage ring is to be built, a redesign of the HOM loads will probably
be required. A reduction in the loss factor of the tapered transition from the 240 mm
diameter beam tube would be a good start.

No beam instabilities due to the ferrite are predicted, even for the CESR-V case.
Likewise, the distortion in the beam’s longitudinal and transverse charge distribution
is predicted to be insignificant. The results of the CESR beam test of the ferrite-lined
section of magnified impedance are consistent with our predictions. Thus, there is no
beam mechanics argument against the use of ferrite in future incarnations of CESR.
Historically, however, the experimental arm of beam mechanics has always been a
few paces ahead of its theoretical counterpart, so there may yet be some surprises in
store for us. Although the results presented herein are more or less self-consistent,
there are certainly aspects of the problem that are not yet fully understood; some of
the unanswered questions are discussed in the next section.

The scaling with machine parameters for the various collective effects is fairly
transparent in the approximate formulae that we have used; for example, when calcu-
lating static distortion or instability thresholds, the effective elastance (or the effective
impedance, Λm, in the case of the microwave instability) is always multiplied by the
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current per bunch and divided by the beam energy. Thus, by halving the impedance
of the HOM loads, one could operate with the same stability margins at twice the
current per bunch.

The fact that the beam is predicted to be stable even for the rather extreme
machine parameters of CESR-V suggests that the scheme of placing the HOM loads
on the beam line holds promise for use in RF systems for future cyclic accelerators.
The placement of the HOM loads on the beam line is particularly attractive for a
superconducting RF system, because the reduction in the accelerating mode’s shunt
impedance due to the increased beam tube diameter is offset by operation at a higher
accelerating gradient. Thus, a similar HOM damping scheme is planned for the
superconducting RF system for KEK-B [83]. HOM loads on the beam line (with
absorption via a high electrical resistivity, in this case) are even being incorporated
to supplement the waveguide coupler damping scheme in the normal-conducting RF
system for the ATF Damping Ring at KEK [84]. Although we have considered only
the storage ring case herein, HOM loads on the beam line may be of interest for
future linear accelerators as well, since strongly-damped HOMs are an attractive
solution to the problem of beam instabilities in linear accelerators. There might be
yet another application for a layer of material on the inside of a beam tube: passive
bunch shortening, as proposed by A. Burov [85].

6.3 Possibilities for Future Work

Microwave Properties

It would be worthwhile to measure the dependence of µ(ω) and ε(ω) on temperature,
on the amplitude of the RF field, and on the amplitude of the external magnetostatic
field. Such measurements might help to explain the slight dependence of the loss
factor on current.

Coupling Impedance

It would be worthwhile to do more impedance measurements with the wire method
in the frequency domain. A closer reconciliation between the wire results and the
impedance predictions would be helpful. Wire measurements on a smaller diame-
ter load would be preferable, because of the problems that can be expected due to
waveguide modes with large-diameter tubes. Additional wire measurements might
give more insight into the discrepancy between the predicted loss factor and the loss
factor measured with the beam.

Power Transfer

A numerical prediction should be obtained for the longitudinal distribution in the
power density induced directly by the beam in the Porcupine load. There are other
interesting questions about the indirect power transfer to the ferrite: What fraction of
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the power from the tapers and cavity propagates into the CESR beam tube instead of
being dissipated in the ferrite? How do the modes above cutoff affect the distribution
in the indirectly-induced ferrite power density? Can the worst-case power per load
be reduced by placing multiple cavities in a large-diameter section of beam tube with
tapers only at the ends, or does all the taper power end up in the load closest to it?
A better understanding of these issues would be helpful in redesigning the RF system
for operation at currents beyond the CESR-III goals.

Beam Instabilities

It would be worthwhile to apply a more general theory in the beam instability pre-
dictions. Things that could be incorporated include a more rigorous treatment of
radial modes, a more realistic model for the machine (in which, for example, the
localised nature of impedance-producing structures and the the betatron function’s
dependence on position are included in a less ad hoc manner), a treatment of counter-
rotating beams, and the inclusion of the stationary wake term in the analysis of mode
coupling. It would be worthwhile also to include the impedance of other elements
in the storage ring in a more complete analysis of the ring’s stability. In addition,
a time domain simulation of the beam’s motion would complement the perturbation
approach that was used herein.

Beam Measurements

Much more could be learned by repeating the L3 ferrite beam test. Things that could
be done include

1. frequency shift measurements for the l = 2 longitudinal mode or an l = ±1
transverse mode. This would allow us to check the frequency shift prediction
for the ferrite’s stationary wake.

2. single-bunch calorimetric power measurements at lower cooling water flow rates.
This would indicate whether the ferrite loss factor retains its slope at low cur-
rents.

3. calorimetric measurements as a function of current with 2 bunches spaced one
bucket apart. This would indicate whether the power dissipation is indeed non-
quadratic in I, as expected from the hypothesis about lengthening in the second
bunch.

Additional possibilities which would require further preparation include

1. bunch length measurements. If the bunch length in CESR could be measured
to better than 5%, the bunch shortening predictions could be checked.

2. a “bunch phase” measurement of the total loss factor of the ring with and
without the ferrite present. This technique might give better sensitivity than
the measurement of RF power consumption.
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3. the use of a magnetostatic field to reduce the dissipation in the ferrite. This
might allow more sensitive measurements of the effect of the ferrite on the beam.

4. a long-term evaluation of the loads’ performance in the presence of a high density
of beam-induced power.

A few of the aforementioned measurements could be made with the Porcupine
loads in the second beam test of the superconducting RF system, for which prepara-
tions are presently being made.



Appendix A

Permittivity and Permeability
Models for AMOS

As discussed in Chapter 3, simplified models were used to specify the µ and ε of the
ferrite materials in the AMOS calculations. In the calculations with TT2-111V, ε
was assumed to have a constant real part and an imaginary part given by a constant
electrical conductivity σe via Im ε = −σe/ω. The values used were Re ε = 14 and σe =
0.0023 (Ω m)−1. A three-term relaxation model was used for µ (see Equation (3.9)).
The fitted parameters are given in Table A.1.

In the calculations with Ferrite-50, two-term relaxation models were used for both
µ and ε. The parameters are also given in Table A.1. The measured µ and ε and the
fitted values for the Ferrite-50 case are compared in Figures A.1 and A.2.
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Figure A.1. Measured and fitted values of (a) the real part and (b) the imaginary part (times −1) of µ for Ferrite-50 used in
the coupling impedance predictions.
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Figure A.2. Measured and fitted values of (a) the real part and (b) the imaginary part (times −1) of ε for Ferrite-50 used in
the coupling impedance predictions.
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Table A.1. Relaxation model parameters used in AMOS.

αj/(2π) (βj − γj)/(2π) (βj + γj)/(2π)

Item j [GHz] [GHz] [GHz]

3-term fit for 1 3 0.009 12

µ of TT2-111V 2 8 0.08 12

3 14 0.3 12

2-term fit for 1 5.75 0.016 14

µ of Ferrite-50 2 20.8 0.485 7.08

2-term fit for 1 4800 40 80

ε of Ferrite-50 2 210 0.0048 48



Appendix B

The Effective Porcupine Elastance:
AMOS vs. Analytic

The monopole elastances (see Section 4.2) obtained from the analytic coupling im-
pedance prediction for the Porcupine HOM load with σz = 10 mm are compared to
AMOS values in Figure B.1; the integral formulation was used in both cases. The
corresponding analytic and AMOS values for the dipole case are compared in Fig-
ure B.2.
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Figure B.1. Comparison of AMOS and analytic values for (a) the real part and (b) the imaginary part of the effective
monopole elastance for one Porcupine load, based on the integral formulation, with σz = 10 mm.
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Figure B.2. Comparison of AMOS and analytic values for (a) the real part and (b) the imaginary part of the effective dipole
elastance for one Porcupine load, based on the integral formulation, with σz = 10 mm and ξ = 1.



Appendix C

Model for the CESR Loss Factor

The predicted loss factor as a function of bunch length for CESR discussed in Chap-
ter 5 was obtained via scaling laws derived by M. Billing for various machine elements
[75]. In the past, good agreement has been seen between this model and the loss fac-
tor measured via the RF power [86]. Because of recent changes in CESR, the scaling
laws given in [75] are a little bit out of date. The scaling laws that we used in the
analysis of the L3 test are given in Table C.1. The values given in Table C.1 reflect
the elements present in CESR during the L3 test, not the present state of the storage
ring. The values are given in terms of G‖0, which is related to k‖0 as follows:

k‖0 =
G‖0

4πε0
. (C.1)

The quantity G‖0 is the equivalent of k‖0 in the Gaussian system of units.
The primary difference in the CESR loss factor is due to the change in the number

of RF cavity cells (reduced from a total of 28 to a total of 20 when the two 14-cell
NRF cavities were replaced by four penta-cell NRF cavities). The other difference is
in the horizontal separators. At the time of the L3 test, three of the separators had
been replaced by new models with a lower impedance [87]. The loss factor of the new
separators is believed to be 1/2 to 1/4 that of the old separators for σz ≈ 23 mm
[88]; the dependence of the new separators’ loss factor on σz is not yet known. As
an approximation, we assumed the same dependence on σz as for the old separators,
with a factor of 1/2 between old and new models (as indicated in Table C.1).
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Table C.1. Scaling laws for CESR elements. Only the parasitic term is included in
the G‖0 of the RF cavity cells.

Item G‖0 per unit Number in CESR

RF cavity cell 64 m−1 exp
(
− σz

19.4 mm

)
20

Fast kicker ceramic 2.62 m−1
(
10 mm

σz

)
4

Bumper ceramic 0.74 m−1
(
10 mm

σz

)
13

Gate valve 0.68 m−1
(
10 mm

σz

)
22

Horizontal separator (old) 116.9 m−1
(
10 mm

σz

)1.176
1

Horizontal separator (new) 58.45 m−1
(
10 mm

σz

)1.176
3

Vertical separator 60.5 m−1
(
10 mm

σz

)1.176
2

Sliding joint 1.41 m−1
(
10 mm

σz

)2
100

Horizontal scrapers 4.18 m−1
(
10 mm

σz

)5
100

Vertical scrapers 41.8 m−1
(
10 mm

σz

)5
8

Distributed pumps (per metre) 0.046 m−1
(
10 mm

σz

)5
600 m

Lumped pumps 0.55 m−1
(
10 mm

σz

)5
100
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