

heating mi Nb₃Sn Sample Furnace rotary moti feedthroug Rocco Cammarere Mentor: Sam Posen Advisor: Professor Liepe SRCCS Program 2010

What is an SRF Cavity?

- Superconducting Radio Frequency (SRF)
- A device that accelerates particles to a certain energy using oscillating electric fields and superconducting capabilities.
- Typically made of Niobium with frequency of 1.3 GHz.

Once upon a time (in the 80's) there were two metals being considered for superconducting cavities; Niobium and Niobium 3 Tin (Nb₃Sn)

Q_0 vs. E_{acc} Matchup

• Both Metals came up short on the projected allowed gradient (E_{acc}) and quality factor (Q_0) which had been expected.

 $Q_0 = \omega U_{stored} / P_{Dissipated}$

 Q_0 vs. E_{acc} plot for pure niobium

Q₀ vs. E_{acc} plot for Nb₃Sn superconductors

- Theorically, Nb₃Sn should have had twice the superheating field (H_{sh}) and critical temperature (T_c) as regular niobium.
- Superheating field (H_{sh}) analogous to a "supersaturated magnetic field"

Superconducto	<i>T</i> с г (К)	μ ₀ <i>H</i> _c (0) (mT)	$\mu_0 H_{\rm sh}(0)$ (mT)	$\max E_{acc}$ (MV m ⁻¹)
РЬ	7.2	80	105	25
Nb	9.2	200	240	57
Nb ₃ Sn	18.2	540	400	95

- Nb₃Sn indeed had a T_c of 18.2 K!
- However, the results showed Nb_3Sn to come up far short of expectations.

The Deciding Factor

• Niobium was easy to create and form into cavities.

• Nb_3Sn was difficult to produce (as will be seen) and form into cavities.

Regular niobium won!

- Finally reached goal of 50 MV/m with Niobium cavities.
- Maximum super heating field limits (Ex: Niobium ~240 mT)
- Niobium quality factor (Q_0) seemed to be leveling out slightly above 5.0 x 10¹⁰.

- This is where Nb₃Sn comes into play!
- Research of Nb₃Sn sample making processes can lead to more efficient cavities with higher quality factors (Q_0).
- Samples produced can be used to study *actual* critical field of Nb₃Sn (this information is not known yet).

Production of Nb₃Sn

- Vapor diffusion of tin gas onto niobium metal will be the technique utilized.
- Tin will be heated to ~1200 °C in a tungsten crucible at the bottom of the furnace.
- This tin will be deposited on the walls of a niobium sample at ~1100 °C.

The Design Thus Far (top of furnace)

The Design Thus Far (bottom of furnace)

The Actual Cavity

Challenges

- Equipment needs to be temperature resistant for over 1200 °C.
- Radiation shielding must be adequate to significantly reduce radiation leaving furnace.
- Reaction of tin and Niobium must consistently produce Nb₃Sn.
- Need a good vacuum during reaction!

Tools and Skill Set

- Matlab R2007b to analyze and collect data from Thermocouple.
- LabVIEW further data acquisition.
- Clean room training
 - Clean room holds furnace
 - furnace needs to be extremely clean

THATS IT!

Any Questions?

