

Cornell University Laboratory for Elementary-Particle Physics

Residual Resistivity Ratio Measurements

Motivation

The Residual Resistivity Ratio (RRR) of niobium is an excellent indicator as to how pure a given sample is. This is important because increasing the purity of a niobium cavity increases the maximum accelerating gradient the cavity can withstand before quenching due to thermal instability.

Resistivity 300 K RRR =Residual Resistivity 4 K (Normal State)

RRR Measurements

A niobium sample is placed in a solenoid and cooled to 4 Kelvin. In driving a current through the coil, an external magnetic field is produced which serves to bring the sample from the Meissner to normal state.

Circuit Schematic

By extrapolating to zero current, the effects of magnetoresistance are negated and a reading for the low temperature normal state residual resistivity is obtained.

Summer Research for Community College Students – 2012 **Calculating Magnetic Flux Penetration** in Type II Superconductors

Motivation

In a type II superconductor, the Bean-Livingston barrier prevents the penetration of flux vortices parallel to a cavity surface from entering the cavity. However, this barrier disappears when the surface magnetic field exceeds the Superheating field, H_{sh.} By making an analogy with electrostatics, the method of images may be applied to calculate the interaction energy between a flux vortex and cavity wall. These techniques are explored in [1] and used to calculate the vortex entrance field in the presence of a grain boundary, of which we have analyzed with respect to using Nb₃Sn as a superconducting surface.

	Electrost	atic A	Analo	gy	
At distances r << λ , the local magnetic field of a single					e By [.]
⁻ lux quantum as derived from the London Equation					cor
takes the fo	rm of a Pois	son equ	uation,	with the	ma
effective so	urce term be	eing the	e vortex	core. This	
problem is a	nalogous to	electro	ostatics	when h	
possesses tr	anslational	symme	try alon	ig the z-axis. [2	2]
Electrostatics Vortices				The	
Potentia	al	V		λh	
Chargo		a		ϕ_0	
Charge		q		$\overline{4\pi\lambda}$	
Current	Density	$ec{j}$	_	$\lambda^2 \operatorname{curl} \vec{h}$	
		-I T			
Using Conformal Transformations					Ag
The local field (h) of a flux vortex satisfies Laplace's					
equation and is therefore conservative.					fac
$b = \phi_0 \left(\lambda \right) (r \ll \lambda)$					sur
	$2\pi\lambda^2 = 2\pi\lambda^2$	(r)	(/ <		
This allows t	he field to ι	Indergo	o a conf	ormal	
transformat	ion from on	e plane	geome	etry to another	-,
whereby the transformed field <i>h</i> remains harmonic.			Wit		
ζ-μ	plane		N X X	v-plane	cor
		\checkmark	\searrow		len
			$\langle \langle \rangle \rangle$		mo
				XZ	sup
Inside Cavitv	Cavity Wall	$\Rightarrow I C$	nside 💛 Cavity 🦯	Cavity Wall	
			TH		1 /
			TXX	XXXX	I. F
			X X X		t
				XHH	2. A
Modelin	g a surface defect	using the tr	ansformati	on w = $\zeta^{\alpha/\pi}$	t 2. / 5

Method of Images

treating the cavity surface as a grounded infinite nducting plane, the method of images gives the agnetic field distribution due to a vortex at x_0 as

$(\zeta) =$	$\frac{\phi_0}{2\pi\lambda^2}\ln$	$\left \frac{\zeta + x_0}{\zeta - x_0}\right $,	$(\zeta = x + i$
-------------	-----------------------------------	--	---	------------------

e attraction forces were found to be

ζ -plane	$f_{\zeta} = -\frac{\phi_0}{4\pi\lambda}^2 \frac{1}{x_0}$
w-plane	$f_w = -\frac{\phi_0}{4\pi\lambda}^2 \frac{\pi}{\alpha u_0}$

grain boundary may be modeled by the case $\rightarrow 2\pi$, of which the transformed attractive force is a tor of 2 smaller than the attractive force for a flat face. The entrance field is ultimately found to be

$$H_e \simeq H_c \left(\frac{\xi}{\lambda}\right)^{1-\pi/2}$$

Conclusions

th respect to the grain boundary modeling of the nformal transformation, the smaller coherence ngth of Nb₃Sn appears to make the metal much ore susceptible to surface defects as a perconductor than for that of Nb.

References

A. Buzdin, M. Daumens. Electromagnetic pinning of vortices on different types of defects. Physica C 294 (1998) 257-269 A Buzdin, D. Feinberg. Electromagnetic pinning of vortices by nonsuperconducting defects and their influence on screening. Physica C 256 (1996) 303-311.

The Critical Temperature (T_c) of a Nb₃Sn sample is strongly dependent on the chemical composition of the metal. Construction has begun on a Critical Temperature measurement system so that the composition of a given sample may be measured.

Critical Temperature Measurement System

Motivation

System Construction

The upper structure of the T_c measurement system, with radiation shielding attached.

The copper housing unit with resistor heating elements.

The sub-assembly that holds the sample Nb₃Sn and inductor coils.

Conceptual view of Nb₃Sn between inductor coils.

