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In a type-II superconducting cavity, the Bean-Livingston barrier prevents the penetration of flux
vortices parallel to the surface. However, this barrier disappears when the applied external field
exceeds the entrance field, He. By making an analogy with electrostatics, the method of images
may be applied to calculate the interaction energy between a flux vortex and cavity wall. In further
applying a conformal transformation to this solution, the interaction energy between a vortex and
surface defect may further be found. These techniques are used to calculate the vortex entrance
field in the presence of a grain boundary, and are considered with respect to using Nb3Sn in the
construction of superconducting accelerators.

I. INTRODUCTION

For the type-II classification of superconductivity,
there exists a meta-stable transition state between the
normal and Meissner states. A type-II superconductor is
characterized by κ > 1/

√
2, where the Ginzburg-Landau

parameter κ = λ/ξ is defined as the ratio of the material’s
London penetration depth λ to it’s coherence length ξ.
Such values of κ are obtained by Nb3Sn, with κ ≈ 12,
due to its relatively small coherence length. Within this
classification of superconductor, it can become energet-
ically favorable for magnetic flux to enter the bulk of a
superconducting surface in the form of flux vortices. This
occurs when the external applied magnetic field, Hext, is
greater than the lower critical field Hc1 .

A flux vortex is comprised of of a normal core with ra-
dius ξ, as depicted in FIG 1. The amount of flux passing
through each vortex is quantized; this is denoted as φ0,
a single quantum of magnetic flux. The presence of such
vortices are undesirable in radio-frequency applications,
as quenching is imminent when magnetic flux penetrates
the bulk of an accelerating cavity.

Magnetic Flux Lines
Supercurrent Loops

FIG. 1. Lines of magnetic flux encircled by supercurrent,
shown penetrating the bulk of a superconducting material.
The normal cores within the supercurrent loops have a radius
of ξ.
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Following [1], a flux vortex in close vicinity to the sur-
face of a superconductor is subjected to an attractive
imaging force. This may be conceptualized as the at-
traction of a vortex to its so called mirror image within
the surface, where the fictitious image vortex serves to
satisfy boundary conditions associated with the nature
of superconductivity. However, flux penetration is ulti-
mately prevented by the Bean-Livingston barrier, which
is a function of both the surface geometry and the mag-
nitude of the applied external field. Hence, it follows
that the surface geometry also affects the strength of
the entrance field, He; the maximum achievable exter-
nal field before flux penetration occurs. From this, it
has become well known that surface defects in the form
of grain boundaries weaken the entrance field and thus
expedite flux penetration. This phenomenon is of partic-
ular concern in regards to the limiting implications it has
upon using Nb3Sn as a bulk film within superconducting
radio-frequency accelerating cavities.

In this paper, we focus on presenting an in depth work
through of the derivation for the entrance field near a
grain boundary, as given by Buzdin and Daumens in [2].
We begin by reviewing the mathematical methods used
within this derivation, which include several techniques
drawn from complex analysis, as well as the method
of images from electrostatics. Afterwards, we introduce
the vortex-electrostatic analogy and begin our derivation
by calculating the vortex-defect attractive imaging force.
Following this, the flow of supercurrent around the de-
fect is analyzed. This will allow us to determine the
associated Lorentz force acting on the vortex, which will
ultimately lead to an analytic expression for the entrance
field in the presence of a grain boundary. We follow up
these calculations by interpreting the implications they
have upon using Nb3Sn as a superconductor. Finally,
we probe the physical accuracy of our choice in grain
boundary model by presenting a few insightful results
from other work done in this field.

II. MATHEMATICAL FRAMEWORK

In this section, we briefly review the mathematical
techniques used throughout the derivation of He. In par-
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ticular, several techniques from complex analysis will be
utilized. A more in-depth treatment of these methods
may be found in [3].

A. Forming A Complex Analogy

As we will be working extensively with vectors in a two-
dimensional plane, we need to use an analogy to relate
this problem from R2 to one that belongs to the complex
plane, C. To accomplish this, we may write a vector
r = xî + yĵ in R2 as ζ = x + ıy in C. Furthermore, it
follows that the norm of r is equivalent to the modulus
of ζ, such that |r| ≡ |ζ|. In addition, it is important
to also note that a complex function w = f(ζ) may be
interpreted as a mapping from the ζ-plane to the w-plane.
This is analogous to that a single real valued function in
the form of y = f(x), where a point along the x-axis
maps to a point along the y-axis.

B. The Cauchy-Riemann Condition

Having defined the concept of a complex function, it
becomes natural to ask whether or not the methods of
differential calculus similarly be applied to functions of
this type. This is indeed the case, and we define the
complex derivative as

f ′(ζ) = lim
∆ζ→0

f(ζ + ∆ζ)− f(ζ)

∆ζ

where we note that the limiting value f ′(ζ) of the differ-
ence quotient must be independent of how ∆ζ converges
to 0. Hence, the value of f ′(ζ) is the same for ∆ζ = ∆x
and ∆ζ = i∆y. Then by computing for the real and
imaginary parts of f ′(ζ) for each choice of ∆ζ, respec-
tively, we have

f ′(ζ) =

{
ux(x, y) + ivx(x, y), for ∆ζ = ∆x

vy(x, y)− iuy(x, y), for ∆ζ = ı∆y

Therefore, these two values of f ′(ζ) must be identical if f
is said to be analytic at a point ζ ∈ C. Equating the real
and imaginary parts above yields the Cauchy-Riemann
condition,

ux = vy and uy = −vx (1)

Furthermore, the Cauchy-Riemann condition also pro-
vides a useful tool in determining whether or not a vec-
tor field is conservative. Consider the complex function
w = u(x, y) + ıv(x, y), here we state without proof that
the partial derivatives ux, uy, vx, and vy are continuous
and satisfy the Cauchy-Riemann condition in some re-
gion of C if and only if w is analytic in that region of
C. We can further extend this result by noting that a

function w is analytic in some region of C if and only if
it satisfies the two-dimensional Laplace Equation

∇2f(ζ) = 0

corresponding to that region in C [3]. Functions satis-
fying this equation in the complex plane are said to be
harmonic. Therefore, it follows that a complex function
w is harmonic in some region of C if and only if it has
continuous partial derivatives and satisfies the Cauchy-
Riemann condition in that region of C. We make use of
this statement in the following development of the com-
plex potential.

C. The Complex Potential

Let v = vxî + vy ĵ be a vector field that satisfies the
condition ∇ × v = 0. It then follows from multivariate
calculus that v is the gradient of some scalar potential,
such that v = ∇Φ. Now consider v = vx + ıvy to exist in
the complex plane, where the same condition is satisfied.
We may write

vx =
∂Φ

∂x
and vy =

∂Φ

∂y

Since Φ is harmonic, it must satisfy the Cauchy-Riemann
condition given in (1). Therefore, from the above expres-
sion, we may also write

vx =
∂Ψ

∂y
and vy = −∂Ψ

∂x

The functions Φ and Ψ are both harmonic parts of what
is referred to as the complex potential

Ω(ζ) = Φ + iΨ (2)

From this expression, we note that our original vector
field v ∈ R2 is analogous to the complex expression of

Ω∗′ = vx + ıvy = v eıθ (3)

where ∗ denotes the complex conjugate operator.
Additionally, and as further consequence of the

Cauchy-Riemann condition, we note that the level sets
Φ = c1 and Ψ = c2 for c1, c2 ∈ R are mutually or-
thogonal. This allows for the complex potential to be
implemented as a useful tool when dealing with various
physical phenomena. In electrostatics for example, the
level curves of Φ are the equipotential surfaces, where as
the curves of Ψ correspond to lines of flux. In fluid flow,
Φ is denoted as the velocity potential and Ψ is referred
to as the stream function. This example is of particu-
lar interest for our purposes, as we will be specifically
making use of the complex potential for our calculation
concerning fluid flow in Sec. V.
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FIG. 2. The Schwarz-Cristoffel transformation f(ζ) = ζ
α/π shown for various values of α. A half plane corresponds to a value

of α = π, and we denote a wedge plane as having an angle of π < α < 2π. In our model of a grain boundary, we will be using
the limiting case of α→ 2π.

D. Conformal Mapping Theory

The importance of a function satisfying the Laplace
Equation is that these types of functions are ubiquitous
in physical applications. As if often the case, the ge-
ometry of the physical domain may not be particularly
convenient for obtaining a quick solution to the Laplace
Equation. However, we may simplify the process by per-
forming a mapping that serves to transform the Laplace
Equation from a convoluted geometry to a simplified one,
allowing for an easier solution to be found in the trans-
formed image domain. Afterwards, we may map this
solution back to the original, which provides us with the
solution corresponding to the more complicated domain
we began in.

In order to meet this end, the mappings we choose
to use must satisfy the following condition. Consider a
mapping in the form of w = f(ζ) which contains the
property w′(ζ0) 6= 0, then the mapping is referred to as
being conformal. A conformal mapping is one that pre-
serves the angle between two differentiable arcs meeting
at some point ζ0, such that f ′(ζ0) 6= 0. This allows us to
map two orthogonal functions in one plane to another,
by which the image functions retain their orthogonality
relationship among one another. The importance of this
property is clear when considering applying a mapping to
a complex potential; the harmonic conjugates comprising
of this function must retain their mutual orthogonality
in order to uphold any physical reality they correspond
to.

It should be mentioned that the function w = ζ
α/πâ

is a particular type of mapping, known more formally as
a Schwarz-Cristoffel Transformation. As demonstrated
in FIG. 2, it has the property of mapping between the
half plane and a wedged plane for angles in the range of
π < α < 2π. As we approach the limit of α → 2π, we
note that the wedge becomes an infinitesimally wide slit
of semi-infinite length. This particular case is interesting
as it provides an excellent model of a grain boundary,
both mathematically and physically. Overall, this trans-
formation will be used extensively while deriving He in
Secs. IV, V, and VI.

E. The Dirichlet And Neumann Problems

We close this section by taking a look at a theorem that
provides a basis of validation in our coming application
of conformal mappings. While we have already estab-
lished that a harmonic function undergoing a conformal
mapping results in a new function that is harmonic in the
mapped domain, it is unknown as to whether or not it
will be the unique solution to Laplace’s equation within
the mapped domain. However, this end may be met by
specifying the appropriate boundary conditions our so-
lution must adhere to, which are determined from the
physical setup. More specifically, we may specify con-
ditions upon either the harmonic function itself, or the
gradient of the function, in order to achieve the guaran-
tee of uniqueness within the region of analysis. Problems
of these types have become known as the Dirichlet and
Neumann problems, respectively.[3, 4]

The importance of this theorem is that in mapping
a solution to the Laplace equation from the half plane
to a wedged plane, we can be confident that it is the
unique solution corresponding to that plane if it satisfies
the specified boundary conditions. Therefore, a solution
obtained through a conformal mapping is not only per-
fectly valid from a physical standpoint, but is also the
exact same solution that would have been obtained us-
ing an alternative method of approach.

III. ELECTROSTATIC METHOD OF IMAGES

In this section, we take a first look at applying the
Schwarz-Cristoffel transformation of w = ζ

α/π to simplify
an electrostatics method of images problem. To begin,
suppose that we wish to solve for the potential corre-
sponding to the shaded region of the w-plane as shown
in FIG. 3. This region contains an infinite line charge
of charge density +q, and is bordered on the u- and v-
axes by semi-infinite grounded conducting sheets. Our
method of approach will be to transform these two per-
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FIG. 3. A line charge of charge density +q positioned at
w0 = a+ ıb from the origin in the w−plane, where w = u+ ıv.
Two semi-infinite, grounded, conducting sheets are positioned
along the positive u- and v-axes.

pendicular sheets into one planar sheet, which results in
an easier geometry to work with in terms of determining
the electrostatic potential of the surrounding region. We
note that the potential we seek Vw will only be a func-
tion of u and v, due to the transnational symmetry of
the infinite line charge along the w-axis.

However, we will first determine the potential distri-
bution of an infinite line charge before applying a trans-
formation to this problem. Working in R2, the electric
field of an infinite line charge of charge density +q takes
on the form of

E =
q

2πε0r
r̂ (4)

We integrate this expression to obtain the electrostatic
potential field distribution, and hence obtain

V = − q

2πε0
ln(r) + c (5)

Due to the infinite length of the line charge, there does
not exist an infinitely distant reference surface to base
the potential from. Therefore, a cylinder with arbitrary
radius d centralized along the z-axis is chosen. By set-
ting (5) equal to zero, we solve for the arbitrary constant
within and find

c =
q

2πε0
ln(d) (6)

Therefore, the potential distribution of an infinitely long
line charge may be written as

V =
q

2πε0
ln

(
d

r

)
(7)

Now we are ready to map the wedged w-plane from
FIG. 3 onto the half ζ-plane of FIG. 4. This is achieved
by substituting the value α = π/2 into w = ζ

α/π, giving
us

w = ζ
1/2 (8)

In this easier geometry, the method of images now pro-
vides a simple solution to the corresponding shaded re-
gion of the ζ-plane. With our initial line charge located
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FIG. 4. An infinite line charge of density +q located at ζ0
above an infinite grounded conducting sheet. The correspond-
ing image line charge of density −q is located at ζ∗0 . Vζ is only
valid within the shaded region of the plane.

at ζ0, the conducting sheet may be replaced by an image
line charge of charge density −q, residing at the point ζ∗0 .
This gives us a potential field distribution of

Vζ =
q

2πε0
ln

(
dζ

|ζ − ζ0|

)
− q

2πε0
ln

(
dζ

|ζ − ζ∗0 |

)
(9)

where by simplifying the logarithm, we arrive at

Vζ =
q

2πε0
ln

∣∣∣∣ζ − ζ∗0ζ − ζ0

∣∣∣∣ (10)

As it is well known that V as given in Eq. (7) satis-
fies the Laplace equation for r 6= 0, the potential distri-
bution determined in Eq. (10) does not at ζ = ζ0, ζ

∗
0 ;

therefore, the uniqueness theorem does not apply to the
entire shaded region. However, this specific example will
still follow, as properties of the natural logarithm will en-
sure that the correct solution is obtained. Consequently,
a transformation of Vζ into the w-plane will give us the
potential distribution Vw corresponding to the shaded
region in the w-plane. This inverse transformation is
achieved by solving (8) for ζ, giving

ζ = w2 (11)

Then, it follows that by substituting this result into
(10), we transform from the ζ-plane back to the w-plane.
Thus, we obtain a value for Vw of

Vw =
q

2πε0
ln

∣∣∣∣w2 − w∗20

w2 − w2
0

∣∣∣∣
=

q

2πε0
ln

∣∣∣∣ (w − w∗0)(w + w∗0)

(w − w0)(w + w0)

∣∣∣∣ (12)

Finally, we may expand the logarithm to obtain a solu-
tion of

Vw =
q

2πε0

(
ln

dw
|w − w0|

+ ln
dw

|w + w0|

− ln
dw

|w − w∗0 |
− ln

dw
|w + w∗0 |

)
(13)
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FIG. 5. The method of images solution for an infinite
line charge of density +q located between two semi-infinite
grounded conducting sheets. The hollow circles represent the
image charges. The electrostatic potential, Vw, is only valid
in the shaded region of the plane.

The validity of this result may be checked by noting
that it also corresponds to a method of images solution
applied to the w-plane. This fact becomes clear when
observing FIG. 5.

In this particular problem, it would have been much
easier to just write down the electrostatic potential Vw
by applying the method of images to the problem in the
w-plane. However, this method is only viable for two
semi-infinite planes that form angles which are integer
divisors of 180◦ [4]. On the other hand, employing a con-
formal transformation will allow us to solve for a much
wider range of configurations than allowed for by the
method of images. In this example, we chose to map
the entire potential field V from one plane to another.
In the following derivation of He though, we will only be
concerned with how a single point maps. Additionally, a
careful setup of our initial coordinate system will allow
us to utilize the method of images in solving a problem
with respect to angles greater than π.

IV. VORTEX-DEFECT INTERACTION

In this section we begin our derivation of He by cal-
culating for the vortex-surface interaction force. After-
wards, a conformal transformation is applied to deter-
mine the value of this force in the presence of a grain
boundary.

A. Flux Vortex Analogy

By making an analogy between electrostatics and flux
vortices, it may be shown that the method of images can
be utilized in solving for the interaction force between
vortex-defect interactions. Specifically, we examine the
case where the interaction distance is much smaller than
the London Penetration Depth, such that r � λ. This
case is of special interest since this interaction force drops
off exponentially for distances on the order of r ∼ λ. If

we consider a single flux vortex located at the origin, the
two dimensional London equation is written as

∇2hv −
1

λ2
hv = −φ0

λ2
δ2(r) (14)

where hv is the field of a vortex with h = hv ẑ and where
δ2(r) is the two dimensional delta function. However,
since we are taking r � λ, the second term on the left
may omitted as it is negligibly small in comparison with
∇2hv. This gives us

∇2hv = −φ0

λ2
δ2(r) (15)

which is simply the Poisson Equation in terms of hv. In
comparing this with the Poisson equation for electrostat-
ics, we are able to draw forth the following analogies for
the electrostatic potential and effective charge in terms
of the flux vortex . Following [5], the term λhv may be
thought of as the electrostatic potential, and the term
φ0

4πλ may be considered to be the effective line charge.
We specify line charge specifically here, due to the fact
that hv possesses transnational symmetry along the z-
axis. Using this analogy, we may write the interaction
energy and attraction force between two static vortices
in their equivalent electrostatic forms, respectively, as

Eint =
φ0

4πλ2
(λhv) (16)

Fatt = − φ0

4πλ2
∇(λhv) (17)

where Fatt = −∇Eint.
Additionally, boundary conditions will play an essen-

tial role in our within our study of vortex-defect inter-
actions. Since the surface between regions of super and
non-superconductivity carries a uniform magnetic field,
this will be taken as analogous to an equipotential sur-
face from electrostatic problems. Therefore, the surface
within a superconductor will be taken as equivalent to a
grounded conducting sheet as per our work done in the
previous section.

B. Flux Vortex Method Of Images

Further following the condition of r � λ, we may spec-
ify an expression common from literature for the mag-
netic field distribution of a single flux vortex, with

hv =
φ0

2πλ2
ln
λ

r
(18)

The derivation of this result can be quite long, but an
in-depth presentation for this may be found in [6]. We
also quickly note that a function of this form is harmonic,
since it satisfies the two-dimensional Laplace equation in
R2. This may be quickly verified by noting the similarity
between this expression and that of the potential of an
infinite line charge, as determined in Eq. (7).
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FIG. 6. The method of images solution for a vortex located
alongside a superconducting surface. The vortex/anti-vortex
positioned at x0,−x0 respectively are treated by analogy as
infinite line charges, and the surface may be considered as a
grounded conducting sheet. The internal field H is parallel
to the surface.

Moving forward, we will apply the method of images
to our established electrostatic-flux vortex analogy in or-
der to solve for the interaction force between a vortex
and surface defect. Suppose then, that a vortex is po-
sitioned at a distance ζ0 = x0 from the planar cavity
surface located along the y-axis. Drawing from the anal-
ogous electrostatic problem covered in Sec. III, we may
solve for the associated scalar potential λhv by modeling
this problem using a vortex and anti-vortex located at
x0 and −x0, respectively, as shown in FIG. 6. Following
the expression for hv from Eq. (18), and by again us-

ing φ0

4πλ as the analogous line charge, the magnetic field
distribution in the shaded region of the ζ-plane is

hv,ζ =
φ0

2πλ2
ln

∣∣∣∣ζ + x0

ζ − x0

∣∣∣∣ (19)

Within a superconductor, the applicable boundary
conditions are that the current density j is must be tan-
gential to the surface, and that the magnetic field must
constant on the surface. To show that the former holds
true, we draw forth another electrostatic-vortex anal-
ogy between the current density j and the electric field
E = −∇V , such that

E = −λ∇hv (20)

From magnetostatics, we know that current density may
be written as

j =
c

4π
(∇× h) (21)

In our two-dimensional geometry, this is may be equiv-
alently written as

j =
c

4π
∇hv × ẑ (22)

Where the above follows from h = hv ẑ, since

∇× h = −∂hv
∂r

θ̂ =
∂hv
∂r

r̂ × ẑ = ∇hv × ẑ (23)

Hence, drawing forth from (20) and (22), it further fol-
lows that j ·E = 0, since(

c

4π
∇hv × ẑ

)
·
(
−λ∇hv

)
= 0 (24)

This allows us to infer that the lines of current corre-
spond to the equipotential surfaces from the analogous
electrostatic problem [5, 7]. Therefore, the condition that
j is tangential to the cavity surface is automatically sat-
isfied by (24). Furthermore, Eq. (20) also satisfies our
second boundary condition on hv, due to the fact that
E = −λ∇hv corresponds to a level curve along the sur-
face of the cavity.

Now that we have satisfied the applicable boundary
conditions, we may determine the value of the potential
field distribution at the point ζ = x0 by using (19). The
contribution from the image vortex produces a value of

hv,ζ = − φ0

2πλ2
ln

λ

2x0
(25)

This may equivalently be written as

hv,ζ = − φ0

2πλ2
ln
λ

r

∣∣∣∣
r=2x0

(26)

Here we note that this is of the same form as Eq. (18),
thereby making it harmonic. Hence, we have shown hv,ζ
to satisfy the Neumann problem corresponding to the
shaded region of the ζ-plane. Consequently, a conformal
transformation will map hv,ζ to a harmonic function hv,w,
which is unique in the shaded region of the w-plane.

Before applying the mapping, we will use the relation-
ships from (16) and (17) along with the value of hv,ζ
from Eq. (25) to write down the interaction energy and
force of attraction between the vortex/anti-vortex pair,
respectively, as

Eint,ζ = −
(
φ0

4πλ

)2

ln
λ

2x0
(27)

Fattζ = −
(
φ0

4πλ

)2
1

x0
(28)

It is important to note that the given interaction en-
ergy is half of what one might expect it to be from equa-
tion (16). However, this is due to the fact that only one
of the vortices in the problem is real, and therefore the
work required to move the real vortex into position is
only half as much as is required to move two real vortices
into this arrangement. The electrostatic analogy for this
may be found in [4].

C. Transforming The Surface

We now wish to determine the interaction force be-
tween a vortex and surface defect. We’ll achieve this by
mapping the expression of hv,ζ from the ζ-plane of FIG.
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FIG. 7. Modeling a surface defect by using the transformation
w = ζ

α/π. A vortex is positioned on axis with the defect at u0.
The field H is parallel to the surface. No method of images
solution exists for this geometry, since α > π.

6 onto the w-plane of FIG. 7. The wedge produced by us-
ing the mapping w = ζ

α/π will serve to model the defect,
and specifically we’ll use it to model a grain boundary
in the limit of α → 2π. In order to apply the mapping,
we must first determine how the variables x, y from the
ζ-plane will map to the u, v variables in the w-plane.
Consequently, by writing w = ζ

α/π in component form,
we obtain

u+ ıv = (x+ ıy)
α/π (29)

Having conveniently set up our initial coordinate system
in the ζ-plane, we need only determine how x maps in
order to write hv,ζ in the w-plane. Therefore, in taking
y = 0 we have

u+ ıv = x
α/π (30)

Here we note that the right hand side consists of only
real variables. Therefore, we must have v = 0 for the left
hand side to retain the equality relationship. This gives
us

u = x
α/π =⇒ x = u

π/α (31)

Therefore, we may conclude that the point x0 from the

ζ-plane maps to the point u
π/α
0 in the corresponding w-

plane. This is all the information we will need to com-
plete our mapping, since we are only concerned with the
nature of the magnetic field distribution at one specific
point in each plane and not the entire plane itself.

Hence, substituting x0 = u
π/α
0 into Eq. (25) gives us

the magnetic field distribution at the point u0 of

hv,w = − φ0

2πλ2
ln

λ

2u
π/α
0

(32)

By now using this expression in conjunction with Eqs.
(16) and (17) again, we find the interaction energy and
interaction force of the vortex-defect pair in the w-plane

of

Eint,w = −
(
φ0

4πλ

)2

ln
λ

2u
π/α
0

(33)

Fatt,w = −
(
φ0

4πλ

)2
π

αu0
(34)

D. Force Comparison

The choice of variables used in each of ζ- and w-planes
was arbitrary, and had we chose to, we could have just
used the same convention within each plane. This would
of course have caused confusion, but nonetheless, the
forces we obtained in Eqs. (28) and (34) are directly
comparable. To see that this indeed the case, we may
just evaluate each expression at the same arbitrary point
x0, u0 = r0 along the horizontal axis of each respective
plane. By doing so, we find that the force of attraction
with respect to a wedge shaped defect decreases by a
factor of

Fatt,w
Fatt,ζ

=
π

α
(35)

In the limit of α→ 2π, we find that the interactive force
is only half as strong near our modeled grain boundary
than it is with respect to a planar surface.

V. THE SINGULAR MAGNETIC FIELD

In order to motivate the following calculations, we will
present another important consequence of the previously
established flux vortex-electrostatic analogy. Drawing
from [5], the Lorentz force exerted upon a vortex in the
vicinity of a current is equivalent to the Coulomb force
exerted on the analogous line charge. Moreover, in fol-
lowing [1] we find that the edge of a wedge shaped defect
results in a singularity within the current density local
to that region; hence, the phenomenon of vortex pen-
etration into the bulk of a superconducting medium is
expedited. Therefore, we will proceed by calculating for
the singular field associated with a wedge shaped defect.
Ultimately, this will be used to attain an expression for
the corresponding singular current.

A. Fluid Flow Analogy

By neglecting the effects of screening, the problem of
the magnetic field distribution is similar to the problem
of the potential of the velocity field for an ideal fluid in
2D-geometry. Since the effects of screening the external
field are negligible in the case of r � λ, we will adopt this
fluid flow analogy in the calculation of the singular field
hs. Consequently, we will consider the flow velocity field
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and current density to be parallel and directly analogous
to one another, such that vf ∼ js.

In order to develop an understanding of this analogy,
we consider the properties associated with an ideal fluid
alongside those inherent of the current density. Ideal
fluid flow refers to fluid flow that is steady, inviscid, in-
compressible, and irrotational. Expanding upon these
definitions, steady flow means that our current density
be time independent. This we will satisfy by not tak-
ing time as a consideration in our derivation. Next, the
condition of inviscid flow is automatically satisfied, as it
requires no friction to exist between the fluid and surface
in contact with the flow. Thirdly, incompressible flow
means that the fluid density is constant, which may be
written mathematically as ∇ · js = 0. Since hs strictly
points in the ẑ direction, we may write js in the form of
(21) to satisfy this condition. This gives us

∇ · c

4π
(∇× hs) = 0 (36)

which follows due to the fact that the divergence of the
curl of a vector field is always zero. Finally, irrotational
flow means that the curl of the fluid flow is zero. This too
is satisfied by writing js in the form of Eq. (22). From
this we have

∇× c

4π
∇hs × ẑ = 0 (37)

which follows since the curl of a gradient is always zero.
At this point, we must point out a slight discrepancy

within our analogy that relates fluid flow to the flow of
current density. While we have shown that js relates to
the associated current flow potential, or singular field hs,
as shown in Eq. (22), the flow velocity differs by instead
satisfying vf = ∇Φ. Therefore, from our relationship of
js ∼ vf , it follows that

∇hs,ζ × ẑ ∼ ∇Φ (38)

such hs is orthogonal to Φ. Nevertheless, we may de-
termine the function corresponding to hs,ζ by consider-
ing the associated complex potential as discussed in Sec.
II C.

Ω = Φ + ıΨ (39)

Since Ψ is also orthogonal to Φ, we may infer the rela-
tionship hs,ζ ∼ Ψ. Upon further inspection, we find that
these terms are in fact anti-parallel; therefore, it follows
that hs,ζ may be written in terms of Ω as

hs,ζ = =(−Ω) = −Ψ (40)

For completeness, we may also express the fluid flow po-
tential under this convention as Φ = <(Ω), where the
symbols = and < correspond to the taking the imaginary
and real parts, respectively.

To verify that this is indeed the case, we refer to Eq.
(38) and note that taking cross product with ẑ in R2 is

Surface

x

iy 

ζ-plane

vf

FIG. 8. The flow of an ideal fluid with respect to a planar
surface.

equivalent to multiplying by −ı in the complex plane.
Hence, we apply the gradient and multiply −∇Ω by −ı
before taking the imaginary part in (40) to obtain

∇hs,ζ × ẑ ∼ =(ı∇Ω) = ∇Φ (41)

and thus, our assertion is confirmed.

B. Flow Along A Plane

There are several ways by which a flow potential of an
ideal fluid may be found. Of these, we will follow the
theme of this paper and will determine the flow potential
around a corner by using a conformal mapping. Consider
then, the flow of an ideal fluid over a flat planar surface,
as depicted in the in the ζ-plane of FIG. 8. Following
this figure, we may write down the flow across the planar
surface in complex notation as

vf = ıA, for A ∈ R (42)

By inspection, it may be seen that this mathematical de-
scription adheres to the properties associated with ideal
flow. In order to obtain the potential of this velocity
field, we’ll first solve for the associated complex poten-
tial by following the ideas presented in Sec. II C. As per
Eq. (3), the complex potential satisfies

Ω′∗ζ = ıA (43)

From this, we may take the complex conjugate of each
side and integrate with respect to ζ to obtain

Ωζ = −ıAζ (44)

Before moving forward with the transformation, we
should ensure that all corresponding boundary conditions
are met. With respect to an ideal fluid, there must be no
flow through the surface of the boundary. This is equiv-
alent to requiring that surface boundary correspond to
a streamline, such that the stream function is constant
along the boundary. Then, by substituting ζ = ±ıy into
(44), we obtain

Ωζ = ±Ar (45)
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α

vf

/2

FIG. 9. The flow of an ideal fluid with respect to a wedge
shaped surface.

whereby the streamline corresponding to =(Ωζ) equals
zero. Then, having fulfilled the requirements of a Neu-
mann problem, we are ready to proceed with the trans-
formation.

C. Flow Around A Corner

As we have done in previous sections, we will model a
corner by applying the transformation w = ζ

α/π to Ωζ ,
which effectively bringing us from the ζ-plane of FIG. 8
to the w-plane of FIG. 9. In order to accomplish this, we
will invert this expression and substitute it into (44) to
obtain

Ωw = −ıAwπ/α (46)

Written in polar form, with w = ρeıϕ, we have

Ωw = −ıAρπ/αeıπϕ/α (47)

Following (40), we obtain the associated singular field by
taking the negative imaginary part of the above, thereby
giving us

hs,w = Aρ
π/α cos

(
π
αϕ
)

(48)

As a check, we find that our result is consistent with
the corresponding solution obtained in [8]. Finally, we
may use the form of (22) to express js,w in terms of the
singular field. Accordingly, we have

js,w = −cA
4α
ρ
π/α−1

(
sin
(
π
αϕ
)
ρ̂+ cos

(
π
αϕ
)
ϕ̂

)
(49)

VI. CALCULATING THE ENTRANCE FIELD

Building upon our work from the previous two sections,
we will now conclude our derivation of the entrance field.
To continue, we must obtain an estimate for the constant
A used in our calculation of the singular field. This may

be achieved by considering the total field in the vicinity
of the defect, which is

H = Hext + hs,w (50)

Drawing from the fact that the interaction force decreases
exponentially for distances on the order of λ, the estimate
for A will be made under the assumption that hs vanishes
at ρ = λ. Since the singular field is a function of the
external field, we account for this as well and take A to
be

A = −Hextλ
−π/α (51)

As we are only concerned with the interaction force along
the axis of the defect, we will take ϕ = 0 in all subsequent
expressions. Then, by substituting A and (48) into (50),
we arrive at

H = Hext

(
1−

(ρ
λ

)π/α)
(52)

Moreover, we may also substitute A into (49) to write the
singular current near the corner of the defect in terms of
the external field. This gives us

js,w = Hext
c

4αλ

(ρ
λ

)π/α−1

(53)

Having expressed the singular current as a function of
Hext, we may incorporate this term when writing out
the Lorentz force, fL = φ0

c jϕ. Furthermore, since we are
specifically concerned with the value of the Lorentz force
at the location of the vortex, we will take ρ = u0; hence,
we have

fL = Hext
φ0

4αλ

(u0

λ

)π/α−1

(54)

Now we recall that as per the established electrostatic
analogy, the Lorentz force felt by a vortex is equivalent
to the Coulomb force exerted on the synonymous line
charge. Therefore, a vortex near a surface will adjust it’s
position accordingly to balance out the external field and
boundary conditions. Then, by equating fL with Fatt,w
from Eqs. (54) and (34), respectively, we have

Hext
φ0

4αλ

(u0

λ

)π/α−1

=

(
φ0

4πλ

)2
π

αu0
(55)

From this, it follows that increasing the external field
will force the vortex closer to the surface. However, the
minimum value this distance takes on is the coherence
length ξ, which is the radius of the normal vortex core.
Consequently, it follows that He corresponds to the value
of Hext that causes the vortex to be driven past this
minimum value and into the superconducting bulk. As
such, He may be found by first solving (55) in terms of
Hext, giving us

Hext >
φ0

4πλu0

(u0

λ

)1−π/α
(56)
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Then in taking the limit u0 → ξ, we determine He to be

He =
φ0

4πλξ

(
ξ

λ

)1−π/α

(57)

At this point in the derivation, the authors of [2] chose
to write the entrance field as

He ' Hc

(
ξ

λ

)1−π/α

(58)

since only the proportionality relationships were desired.
However, since we would like to consider this result with
respect to Nb3Sn, we may follow [9, 10] to express the
entrance field in a more explicit manner. For κ� 1, we
may write the lower and upper critical fields, respectively,
as

Hc1 =
Hc√
2κ

lnκ and Hc2 =
φ0

2πξ2
(59)

Furthermore, the thermodynamic critical field Hc may
be written as

Hc =
Hc2√

2κ
(60)

Additionally, substituting Hc2 into the above allows us
to write Hc as a function of φ0, λ, and ξ. Hence, we have

Hc =
φ0

2
√

2λξ
(61)

Therefore, we complete our derivation of He by writing
the constant term from (57) in terms of Hc, such that

He =
√

2
2 Hc κ

π/α−1 (62)

where κ = λ/ξ is the Ginzburg-Landau parameter. For
completeness, we may also express the entrance field in
terms of Hc1 and Hc2, respectively, as

He = Hc1

(
κ
π/α

lnκ

)
= Hc2

(
κ
π/α−2

2

)
(63)

VII. DISCUSSION

Having obtained a value for the entrance field in our
model for a grain boundary, it is important to not only
discuss both the validity of this model, but also the im-
plications it has upon using Nb3Sn as a superconducting
surface.

A. Initial Impressions

We begin probing into the validity of (62) by consid-
ering it in respect to a planar superconducting surface.

This corresponds to a value of α = π, which allows (62)
to be simplified as

He,p =
√

2
2 Hc (64)

Drawing from [9], the superheating field Hsh, which is the
maximum value He may take on, has been determined to
be

Hsh ≈ 3
4Hc, for κ� 1

In the absence of surface defects, we would expect that
our model of the entrance field would be equal in value
to the superheating field. Therefore, it appears that this
determination of He agrees well with [9] in regards to a
planar surface geometry.

B. Grain Boundary Implications

Now we move to the heart of the matter by evaluating
the entrance within the vicinity of a grain boundary. This
is achieved by taking the limiting value of α→ 2π, which
turns the surface of the cavity into an infinitesimally thin
strip that is semi-infinite in length. In doing so, (62)
becomes

He,g =
√

2
2 Hc κ

−1/2 (65)

From a comparison of Eq. (64) with Eq. (65), it follows
that

He,g = κ−
1/2He,p (66)

Therefore, by taking on the value κ ≈ 12 for Nb3Sn, we
obtain

He,g ≈ 3
10He,p (67)

It is known that Nb3Sn has roughly twice as large of
a value for Hc than that of Nb; thus this reduction in
entrance field may impair the possibility of using Nb3Sn
as a more efficient superconducting accelerating medium
than Nb.

C. Additional Considerations

Since this derivation suggests a potentially significant
performance loss within Nb3Sn, we naturally look to ex-
plore the validity of the model used at a deeper level.
This first thing we question is in regards to the physical
accuracy of using a semi-infinite strip to model a grain
boundary, since a grain boundary has a finite length in
the real world. However, this aspect of the model re-
mains valid in light of the possible discrepancy. Since
the vortex/surface interaction energy falls off exponen-
tially on the order of r = λ, only a small and finite por-
tion of the semi-infinite strip contributes to the interac-
tion force. Furthermore, this appears to agree with [11],
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where it has been found that the entrance field asymp-
totically approaches a limiting value for distances on the
order of r = 10ξ. This is further beneficial for our model,
as the London Approximation, which is the backbone of
our derivation for He, is only valid for r � λ. Hence,
applying the model to Nb3Sn with κ � 1 ensures that
both previous conditions are satisfied.

Another question that arises concerns the validity of
modeling a grain boundary as having an infinitesimal
width, as actual grain boundaries are known to have
widths on the order of ξ. Since the drop in entrance field
was drastic in going from a planar to infinitesimal grain
boundary strip, it would appear worthwhile to recreate
the derivation of He using a more complicated confor-
mal transformation that incorporates a width dimension.
Numerical calculations in [11] show that He drops dra-
matically for defect widths in the range of 0 to 2ξ, and
asymptotically level out for widths greater than 2ξ. In
light of this, we would expect that the drastic reduction
in He obtained in our derivation to be an overestimate of
the reduction that occurs in the vicinity of a real grain
boundary.

Finally, we may also consider as to what end neglecting
the effects of screening ultimately had in our calculation
of He. A study regarding this has been conducted in [1],
from which the authors have concluded that the value of
He in the vicinity of a thin crack is instead

He,g =
√
πκ−

1/2He,p (68)

In comparing the above to (66), we find there to be a
substantial difference between the given expressions. In
regards to Nb3Sn, this result suggests that

He,g ≈ 1
2He,p (69)

While this is an improvement over what was found in
(67), the reduction in magnitude is still significantly large
with respect to the outlook of utilizing Nb3Sn in the con-
struction of superconducting accelerators.

VIII. CONCLUSION

We have examined a possible drawback of using Nb3Sn
as a superconducting surface in radio-frequency applica-
tions. Since Nb3Sn is a type-II superconductor, the meta-
stable vortex state is exhibited in transitioning from the
Meissner to normal state with increasing surface mag-
netic field. While it is energetically favorable for flux
vortices to enter a superconducting surface in the vortex
state, the Bean-Livingston barrier prevents this penetra-
tion from occurring until the external applied field sur-
passes the entrance field. However, due to the relatively
small coherence length of Nb3Sn, it has been theorized
that surface defects may serve to diminish the value of
the entrance field. Following a derivation given in [2], a
mathematical model of a grain boundary defect has been
created through the utilization of techniques from com-
plex analysis. Specifically, a conformal mapping has been
applied to a planar surface geometry such that a new sur-
face geometry analogous in effect to a grain boundary has
been created.

Using this technique, vortex-defect interaction forces
on orders of distances that allow for use of the London
approximation were examined. Consequently, it has been
found that the entrance field in the presence of a grain
boundary is roughly four times smaller in value than in
the case of a planar surface. This result suggests that
Nb3Sn will be very susceptible to surface defects in the
form of grain boundaries, and may ultimately fail to out-
perform Nb. However, since this model only roughly re-
sembles an actual grain boundary, further study of this
problem through the use of more complicated mappings
should be considered.
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