
1

SIMPLEHEAT:
X-RAY HEAT LOADING FOR THERMAL MODELLING

Richard Hilliard, CHESS, Cornell University, Ithaca, NY 14853, U.S.A.

Abstract

Heat loading is a critical concern in x-ray optics.
Deformations (heat bumps) may form on surfaces
absorbing high energy, high power x-rays. These thermal
bumps limit coherence and reduce flux in the beam, thus
degrading the quality of the x-ray probe. SimpleHeat is a
software package that models three-dimensional power
absorption in beamline components due to beams from
both undulators and wigglers. This data can then used to
calculate thermal profiles and predict energy deposition
and deformation.

MOTIVATION

Only a small portion of the total power in the x-ray
beamline reaches the monochromator due to upstream
filters and apertures, but this power can still cause
considerable deformation in the first crystal, leading to
decreased x-ray flux and deterioration of the tuned beam,
limiting the coherence before diffraction.

The SimpleHeat software enables quick and accurate
prediction of anticipated damages and deformations in
variable objects and filter configurations due to
synchrotron x-rays. The software is intended to minimize
the time spent by engineers, technicians and scientists on
empirical determination of heat-load modeling and
provide accurate information to determine the necessary
characteristics of cooling schemes for optical elements
of the beamline.

ARCHITECTURE

The SimpleHeat software is written in Python 3, its
graphic user interface (GUI) is implemented with Qt [1],
using PyQt4 [2], a Python binding plug-in which enables
the use of Qt’s GUI modules from Python code.
Additionally SimpleHeat utilizes XOP [3] to map
radiation spectra from insertion magnets.

heatloadmatrix.py

The main script, ‘heatloadmatrix.py’, calls and
organizes the various sub-scripts, sub-functions and
procedures to perform the desired tasks during its
execution. This task order is set through a series of
switches interfaced through the GUI selecting for

insertion device (and applicable parameters), object
configuration, mesh, filter type and power output.
SimpleHeat supports undulator and wiggler insertion
devices and will incorporate bending magnet
functionality in the future. To calculate the characteristic
radiation spectra of wigglers and undulators, SimpleHeat
invokes XOP.

Figure 1: The SimpleHeat GUI, built with Qt.

XOP 2.3

SimpleHeat uses two executable files from XOP 2.3 to
create the wiggler and undulator radiation spectra to
develop spatially and spectrally resolved heat loads
given specified synchrotron source parameters. XOP was
developed at ESRF by Manuel Sanchez del Rio and
Roger J. Dejus and was last patched in June of 2013
(installations instructions for XOP are included in the
SimpleHeat documentation). Possible parameters
include: beam energy, beam current, period, number of
periods, deflection in the x direction, deflection in the y
direction, minimum photon energy, maximum photon
energy, number of energy steps, distance from source, x
and y positions of the aperture, width (x) of slits, length
(y) of slits and the number of integration points in the x
and y directions. These two executable files, ‘ws’ for
wigglers and ‘us’ for undulators, generate two-column
tables ofphoton energy (for each specified energy step)
against power per .01% bandwidth of the given energy.

2

At each energy step, the energy range is set up by the
specified minimum and maximum photon energies.

Figure 2: an XOP generated undulator spectrum.

Running either the wiggler or undulator executables of
XOP generates a single radiation spectrum and power for
an aperture of the specified fixed size and location
relative to the centered of the beam described.
SimpleHeat runs these executables, using small
apertures, for each “brick” designated by the specified
number of steps in the x and y directions until it has
covered the target. This process generates a spectrum
and a power (in Watts) for every location on the surface,
including those outside of the beam footprint where the
crystal is often distorted nonetheless.

backend_worker.py

The majority of the mathematical heavy lifting and
miscellaneous classes/functions are implemented in this
module. The class ‘Back’ imports all of the region and
filter values, beam, machine and insertion device
parameters which are initialized and stored to ‘.json’ files
in a project subdirectory. Processing modules are
imported to decrease clock cycles. Ultimately, a
subroutine checks that total power is equal to power
absorbed plus power transmitted:

p = t + a

to ensure that there are no deep errors in computation
and the output is accurate.

From the initialized and specified values at the GUI
level, ‘backend_worker’ does the work of assembling the
XOP formatted, two dimensional (x and y directions)
matrices for wigglers or undulators, and then applies the
specified depths to calculate the volumes and create the
‘brick matrix’ and finally runs XOP to generate the
necessary spectrum at each stage for each ‘brick’.

Subsequently, the transmissions of flux through each
filter are calculated. First, the function ‘filter_flux’ finds
the transmissions through one or more filters using
Beer’s Law:

I = Io e-ax

where ‘I’ is the intensity of the beam which decreases as
a function of ‘x’, the penetration depth. Alpha (a) is the
mass attenuation coefficient of the given material. The
total transmission reaching the target is the difference
between total transmission minus the total intensity
absorbed by each and every filter.

Absorption for each brick in the target object is
calculated in a similar manner to flux transmission. From
the total power reaching the surface, absorption in each
brick is returned as power in Watts. For successive
bricks, the relation is:

I = Io e-ax2 — Io e-ax1

with the difference between the depths x2 and x1
signifying the depth or height of each brick, and the
intensity value decremented through each iteration and
checked against the total power equation mentioned
above.

The alpha values (a), the mass attenuation
coefficients, are interpolated within the user directed
range from two-column .csv files in the ‘mu_data’
directory which list empirically determined absorbances
of each object material at a given energy level of photon.
These values are taken from the National Institute of
Standards and Technology website. To date, SimpleHeat
supports 19 filter and object materials [see Figure 3s],
with beryllium, carbon and silicon being the most
commonly used at CHESS; the former in entrance
windows (visible in Figure 4) and the latter two as
monochromators. The default parameters in SimpleHeat

Figure 3: filters and
objects.

Ag, Al, Au, Be, Br,
C, Co, Cu, Fe, Hg,
Mn, Ni, Pb, Pt, Rb,
Se, Si, Ta, Zn

3

match those used in the CHESS West A2 hutch setup. To
use some other filter or object, the user simply needs to
create a new ‘mu_data’ spreadsheet from NIST values or
another resource, appropriately name the file and call it
from the GUI.

Figure 4: beryllium entrance windows produced by
Advanced Design Consulting.

Attenuation through a filter alters the radiation
spectrum. After each successive filter, the spectrum is
redrawn along each photon energy and returned for the
next calculation. The ease of altering, adding and
subtracting filters and objects to run against the same
machine parameters is a principal mechanism by which
SimpleHeat reduces x-ray community work-hours spent
on experimental setup and testing of different
components for heat loading.

Figure 5: Projection and mirroring scheme set by
incident angle.

Lastly, the flux load (photon energy) is translated to
power and power is divided by volume to obtain power
density. A switch in the GUI enables one or both of these
variables as output. The power (Watts) and power
density (Watts per cubic meter) of each brick are written

as output to tables with their corresponding coordinates
in the x, y and z-directions.

Depending on the inclination of the beam, SimpleHeat
calculates either a one-quarter or a one-half projection
and then mirrors those values. This is done to minimize
computation and makes the reasonable assumption of
beam symmetry about the vertical axis. For a
perpendicular beam, a quarter projection made and then
mirrored three times; for a beam of any angle other than
90º, a half projection is made and mirrored once about
the vertical axis.

FIXES

Multiple fixes were made to bugs carried over from
the last (2012) version of the program, formerly
‘HeatBump’ [4]. These are listed in detail in the
packaged program files. The default and user-set
parameter files (.json) were frequently corrupted,
causing the program to crash. This was fixed by
changing a number of call orders, file extensions and
switches for read/write parameters. The GUI windows
were reformatted for greater readability using the Qt
designer tool. A number of Unicode decoding errors
were fixed within the XOP calls. The region function
was fixed to correctly separate and assign the brick
thicknesses or ‘slice’ values. The .ui files for the GUI,
which are built and read by Qt, were updated and rerun
through the ‘pyuic4’ script to create the correct .py files.

An OS X version was developed using the same
Python 3.3.2, Qt 4.8.4, and PyQt4.10.2 configuration
that the Windows 7 development version used. The OS
X version additionally uses the GNU Fortran distribution
for the front-end compiler and GCC libraries. The
distribution presently includes two versions, one for each
operating system, but it should be possible to engineer
the distribution to provide a build capable of running on
either system.

DOCUMENTATION

SimpleHeat is outlined and characterized in the
SimpleHeatWiki, that will be hosted on the CHESS
website. The logged changes, version history and
directives for the future are contained within the
packaged SimpleHeat software. The SimpleHeatWiki
contains a Quick Start Guide, a Program Guide
describing more complex operations, an About section,
public licensing details as well as installation
instructions.

The installation and building of the SimpleHeat
software and all of the requisite tools are nontrivial tasks

ϴ =

90°
ϴ ≠
90°

4

for the novice computer user, so special attention was
paid to their precise documentation. Packaged binary
installers exist for the Windows machines, simplifying
much of this process. However, the Macintosh
installation instructions should be followed closely as the
needed software must be installed and built from the
terminal.

Figure 6: The terminal output from a SimpleHeat run.

OUTPUT & ANALYSIS

After ‘heatloadmatrix.py’ runs, output .csv files are
created for power (Watts) and/or power density (Watts
per cubic meter) mapped to the matrix of bricks. These
files are then used to calculate thermal profiles and
predict deformation of optics. A finite element modeler
(typically, ANSYS at CHESS) is then used to turn the
power values and brick matrix to a 3-dimensional model
of the heat bump on the component optical crystal using
a steady-state thermal distribution and a static structural
simulation[5].

CONCLUSION

Tests have found that the slope error profile of these
heat load models very closely approximate the
experimentally measured slope error profiles in head
loaded optics [6]. SimpleHeat promises to help scientists
at both CHESS and the broader x-ray community
determine which optics will best function at specific
beamlines, and what cooling schemes will be necessary
to mitigate heat load for those optics.

Figure 7: A simulated ‘heat bump’ modeled by
ANSYS .

ACKNOWLEDGMENTS

This project would not have been possible without the
direction and support Jim Savino and Aaron Lyndaker.
Additional gratitude is directed towards the many others
at CHESS, both past and present, who have worked on
and around the development of this project. Thanks go
also to Matthias Liepe who has championed this project
and others like it. This work is supported by the National
Science Foundation under Grant No. 0841213.

REFERENCES

[1] Qt, https://qt-project.org/’, (2013).
[2] PyQt, http://www.riverbankcomputing.com/

software/pyqt/intro, (2013).
[3] XOP, http://www.esrf.eu/Instrumentation/software/

data-analysis/xop2.3, (2013).
[4] Hilliard, ‘SimpleHeatWiki,’ CHESS website,

(2013).
[5] Revesz, et al., ‘Heat-bump Measurements at CHESS

A2 Wiggler Beam,’ CHESS News Magazine,
(2009).

[6] Revesz, et al., ‘Heat-bump Measurements at CHESS
A2 Wiggler Beam,’ CHESS News Magazine,
(2009).

FIGURES
Figure 1: the SimpleHeat GUI.
Figure 2: an XOP generated undulator spectrum.
Figure 3: filters and objects.
Figure 4: beryllium entrance windows produced by
Advanced Design Consulting.
Figure 5: Projection and mirroring scheme set by
incident angle.
Figure 6: The terminal output from a SimpleHeat run
Figure 7: A simulated ‘heat bump’ modeled by ANSYS .
Figure 8 (attached): SimpleHeat module dependency
chart.

5

Figure 8:
SimpleHeat module
dependency chart.

