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SIMPLEHEAT: 
X-RAY HEAT LOADING FOR THERMAL MODELLING

Richard Hilliard, CHESS, Cornell University, Ithaca, NY 14853, U.S.A.

Abstract

Heat loading is a critical concern in x-ray optics. 
Deformations (heat bumps) may form on surfaces 
absorbing high energy, high power x-rays. These thermal 
bumps limit coherence and reduce flux in the beam, thus 
degrading the quality of the x-ray probe.  SimpleHeat is a 
software package that models three-dimensional power 
absorption in beamline components due to beams from 
both undulators and wigglers. This data can then used to 
calculate thermal profiles and predict energy deposition 
and deformation. 

MOTIVATION

Only a small portion of the total power in the x-ray 
beamline reaches the monochromator due to upstream 
filters and apertures, but this power can still cause 
considerable deformation in the first crystal, leading to 
decreased x-ray flux and deterioration of the tuned beam, 
limiting the coherence before diffraction.

The SimpleHeat software enables quick and accurate 
prediction of anticipated damages and deformations in 
variable objects and filter configurations due to 
synchrotron x-rays. The software is intended to minimize 
the time spent by engineers, technicians and scientists on 
empirical determination of heat-load modeling and 
provide accurate information to determine the necessary 
characteristics of cooling schemes for optical elements 
of the beamline.

ARCHITECTURE

The SimpleHeat software is written in Python 3, its 
graphic user interface (GUI)  is implemented with Qt [1], 
using PyQt4 [2], a Python binding plug-in which enables 
the use of Qt’s GUI modules from Python code. 
Additionally SimpleHeat utilizes XOP [3] to map 
radiation spectra from insertion magnets.

heatloadmatrix.py

The main script, ‘heatloadmatrix.py’, calls and 
organizes the various sub-scripts, sub-functions and 
procedures to perform the desired tasks during its 
execution. This task order is set through a series of 
switches interfaced through the GUI selecting for 

insertion device (and applicable parameters), object 
configuration, mesh, filter type and power output. 
SimpleHeat supports undulator and wiggler insertion 
devices and will incorporate bending magnet 
functionality in the future. To calculate the characteristic 
radiation spectra of wigglers and undulators, SimpleHeat 
invokes XOP. 

Figure 1: The SimpleHeat GUI, built with Qt.

XOP 2.3

SimpleHeat uses two executable files from XOP 2.3 to 
create the wiggler and undulator radiation spectra to 
develop spatially and spectrally resolved heat loads 
given specified synchrotron source parameters.  XOP was 
developed at ESRF by Manuel Sanchez del Rio and 
Roger J. Dejus and was last patched in June of 2013 
(installations instructions for XOP are included in the 
SimpleHeat documentation).  Possible parameters 
include: beam energy, beam current, period, number of 
periods, deflection in the x direction, deflection in the y 
direction,  minimum photon energy, maximum photon 
energy, number of energy steps, distance from source, x 
and y positions of the aperture, width (x) of slits, length 
(y) of slits and the number of integration points in the x 
and y directions. These two executable files,  ‘ws’ for 
wigglers and ‘us’ for undulators, generate two-column 
tables ofphoton energy (for each specified energy step) 
against power per .01% bandwidth of the given energy. 
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At each energy step, the energy range is set up by the 
specified minimum and maximum photon energies.

Figure 2: an XOP generated undulator spectrum.

Running either the wiggler or undulator executables of 
XOP generates a single radiation spectrum and power for 
an aperture of the specified fixed size and location 
relative to the centered of the beam described. 
SimpleHeat runs these executables, using small 
apertures, for each “brick” designated by the specified 
number of steps in the x and y directions until it has 
covered the target. This process generates a spectrum 
and a power (in Watts) for every location on the surface, 
including those outside of the beam footprint where the 
crystal is often distorted nonetheless.

backend_worker.py

The majority of the mathematical heavy lifting and 
miscellaneous classes/functions are implemented in this 
module. The class ‘Back’ imports all of the region and 
filter values, beam, machine and insertion device 
parameters which are initialized and stored to ‘.json’ files 
in a project subdirectory.  Processing modules are 
imported to decrease clock cycles.  Ultimately, a 
subroutine checks that total power is equal to power 
absorbed plus power transmitted:

p = t + a

to ensure that there are no deep errors in computation 
and the output is accurate.

From the initialized and specified values at the GUI 
level, ‘backend_worker’ does the work of assembling the 
XOP formatted, two dimensional (x and y directions) 
matrices for wigglers or undulators,  and then applies the 
specified depths to calculate the volumes and create the 
‘brick matrix’  and finally runs XOP to generate the 
necessary spectrum at each stage for each ‘brick’.

Subsequently, the transmissions of flux through each 
filter are calculated. First, the function ‘filter_flux’ finds 
the transmissions through one or more filters using 
Beer’s Law:

I = Io e-ax

where ‘I’ is the intensity of the beam which decreases as 
a function of ‘x’, the penetration depth. Alpha (a) is the 
mass attenuation coefficient of the given material. The 
total transmission reaching the target is the difference 
between total transmission minus the total intensity 
absorbed by each and every filter. 

Absorption for each brick in the target object is 
calculated in a similar manner to flux transmission. From 
the total power reaching the surface, absorption in each 
brick is returned as power in Watts. For successive 
bricks, the relation is:

I = Io e-ax2 — Io e-ax1

with the difference between the depths x2 and x1  
signifying the depth or height of each brick, and the 
intensity value decremented through each iteration and 
checked against the total power equation mentioned 
above. 

The alpha values (a), the mass attenuation 
coefficients, are interpolated within the user directed 
range from two-column .csv files in the ‘mu_data’ 
directory which list empirically determined absorbances 
of each object material at a given energy level of photon. 
These values are taken from the National Institute of 
Standards and Technology website. To date,  SimpleHeat 
supports 19 filter and object materials [see Figure 3s], 
with beryllium, carbon and silicon being the most 
commonly used at CHESS; the former in entrance 
windows (visible in Figure 4) and the latter two as 
monochromators. The default parameters in SimpleHeat 

Figure 3: filters and 
objects.

Ag, Al, Au, Be, Br, 
C, Co, Cu, Fe, Hg, 
Mn, Ni, Pb, Pt, Rb, 
Se, Si, Ta, Zn
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match those used in the CHESS West A2 hutch setup. To 
use some other filter or object, the user simply needs to 
create a new ‘mu_data’ spreadsheet from NIST values or 
another resource, appropriately name the file and call it 
from the GUI.

Figure 4: beryllium entrance windows produced by 
Advanced Design Consulting.

Attenuation through a filter alters the radiation 
spectrum. After each successive filter,  the spectrum is 
redrawn along each photon energy and returned for the 
next calculation. The ease of altering, adding and 
subtracting filters and objects to run against the same 
machine parameters is a principal mechanism by which 
SimpleHeat reduces x-ray community work-hours spent 
on experimental setup and testing of different 
components for heat loading.

Figure 5: Projection and mirroring scheme set by 
incident angle.

Lastly, the flux load (photon energy) is translated to 
power and power is divided by volume to obtain power 
density. A switch in the GUI enables one or both of these 
variables as output. The power (Watts) and power 
density (Watts per cubic meter) of each brick are written 

as output to tables with their corresponding coordinates 
in the x, y and z-directions. 

Depending on the inclination of the beam, SimpleHeat 
calculates either a one-quarter or a one-half projection 
and then mirrors those values. This is done to minimize 
computation and makes the reasonable assumption of 
beam symmetry about the vertical axis. For a 
perpendicular beam, a quarter projection made and then 
mirrored three times; for a beam of any angle other than 
90º, a half projection is made and mirrored once about 
the vertical axis.

FIXES

Multiple fixes were made to bugs carried over from 
the last (2012) version of the program, formerly 
‘HeatBump’ [4]. These are listed in detail in the 
packaged program files. The default and user-set 
parameter files (.json) were frequently corrupted, 
causing the program to crash. This was fixed by 
changing a number of call orders, file extensions and 
switches for read/write parameters. The GUI windows 
were reformatted for greater readability using the Qt 
designer tool. A number of Unicode decoding errors 
were fixed within the XOP calls. The region function 
was fixed to correctly separate and assign the brick 
thicknesses or ‘slice’  values. The .ui files for the GUI, 
which are built and read by Qt, were updated and rerun 
through the ‘pyuic4’ script to create the correct .py files. 

An OS X version was developed using the same 
Python 3.3.2, Qt 4.8.4, and PyQt4.10.2 configuration 
that the Windows 7 development version used. The OS 
X version additionally uses the GNU Fortran distribution 
for the front-end compiler and GCC libraries. The 
distribution presently includes two versions, one for each 
operating system, but it should be possible to engineer 
the distribution to provide a build capable of running on 
either system. 

DOCUMENTATION

SimpleHeat is outlined and characterized in the 
SimpleHeatWiki, that will be hosted on the CHESS 
website. The logged changes, version history and 
directives for the future are contained within the 
packaged SimpleHeat software. The SimpleHeatWiki 
contains a Quick Start Guide, a Program Guide 
describing more complex operations, an About section, 
public licensing details as well as installation 
instructions. 

The installation and building of the SimpleHeat 
software and all of the requisite tools are nontrivial tasks 
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for the novice computer user, so special attention was 
paid to their precise documentation. Packaged binary 
installers exist for the Windows machines, simplifying 
much of this process. However, the Macintosh 
installation instructions should be followed closely as the 
needed software must be installed and built from the 
terminal. 

Figure 6: The terminal output from a SimpleHeat run.

OUTPUT & ANALYSIS

After ‘heatloadmatrix.py’ runs, output .csv files are 
created for power (Watts) and/or power density (Watts 
per cubic meter) mapped to the matrix of bricks. These 
files are then used to calculate thermal profiles and 
predict deformation of optics. A finite element modeler 
(typically, ANSYS at CHESS) is then used to turn the 
power values and brick matrix to a 3-dimensional model 
of the heat bump on the component optical crystal using 
a steady-state thermal distribution and a static structural 
simulation[5].

CONCLUSION

Tests have found that the slope error profile of these 
heat load models very closely approximate the 
experimentally measured slope error profiles in head 
loaded optics [6]. SimpleHeat promises to help scientists 
at both CHESS and the broader x-ray community 
determine which optics will best function at specific 
beamlines,  and what cooling schemes will be necessary 
to mitigate heat load for those optics. 

Figure 7: A simulated ‘heat bump’ modeled by 
ANSYS .
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Figure 8: 
SimpleHeat module
dependency chart.


