Why Nb$_3$Sn?
Currently Niobium is used in modern accelerators and is reaching its fundamental limit. Nb alone has a high quality factor (Q_0); Nb$_3$Sn has a higher critical temperature (~18 K, whereas Nb has a T_c of ~9 K) -- so it has an even higher Q_0. Nb$_3$Sn performs just as well, if not better, at the natural boiling point of liquid helium (4 K) as opposed to Nb cooled to 2 K. Also, Nb$_3$Sn has a higher superheating field, which allows for higher accelerating gradients.

Coating the Cavity
After loading samples of tin and placing the standard niobium cavity within the furnace, it is placed under vacuum and heated up to 1300 ºC so that tin vapors coat the interior of the cavity.

Temperature Mapping
Once coated, the cavity is submerged in liquid helium and Q_0 as a function of the accelerating field is found. 38 boards each holding 17 resistors are placed on the cavity -- the 646 resistors give a full temperature profile of the cavity during operation.

Result
The cavity tested in July 2013 marked a breakthrough for the Nb$_3$Sn program -- it outperformed previous cavities of its type, which were produced by other labs in the 1980s. This allows for multiple new applications within the field!

Data Analysis
In the case of Wuppertal’s Cavity, it was thought that the reason for the Q_0-slope was strictly a fundamental occurrence. This breakthrough test shows that the reason for the degradation is in fact not fundamental! The first cavity manufactured at Cornell also showed a similar result to Wuppertal. In an attempt to try to further understand the Q_0-slope, the ΔT data was examined. The heating before and during the Q_0-slope was compared to see if any trends could be found. The deviation of the other points from the trend was measured, providing the normalized residual:

\[
NR = \frac{\Delta y_1}{y_1} + \frac{\Delta y_2}{y_2} + \frac{\Delta y_3}{y_3} + \ldots + \frac{\Delta y_n}{y_n}
\]

The normalized residual was plotted against the maximum heating for each resistor in a given field. Unfortunately, no trend was found within the results. Further investigations are ongoing.

This work is supported by the National Science Foundation under Grant No. 0841213. Any opinions, findings, and conclusions or recommendations expressed in this work are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.