
Data Processing in Serial Oscillation Protein Crystallography:

Serial_xds and Optimization of Processing Time Through Parallelization

Nugzari Khalvashi-Sutter

Corning Community College

Abstract:

This report documents the development of a serial_xds program that is used for data processing in

oscillation serial crystallography. The two objectives of this project were to write a functional program in

the Python language; and to introduce parallelization– distribution of tasks across several computing

nodes– to reduce the overall processing time. The program was organized in four script files with clean

object-oriented design, along with almost doubled efficiency in processing time after implementing

parallelization.

Introduction:

Serial crystallography is a method to obtain atomic structural information from a protein crystal by

collecting small X-ray diffraction datasets from many crystal specimens. When a focused X-Ray beam

interacts with a protein crystal, the incident X-rays are diffracted, producing a pattern of reflections that

are recorded by a detector [1]. Information about the position and intensity of reflections is transmitted to

a computer in digital form and then used to reconstruct an image of the molecules in the unit cell.

At the Cornell High Energy Synchrotron Source (CHESS), a microchip system is used to deliver crystals to the

X-Ray beam in the serial crystallography experiment. The chip (Figure 1) contains up to 81 grids of 40x40

wells of 10-100 µm in size (Figure 2) [2]. I will be using these terms to describe some functionalities of the

program in the sections below.

Figure 1 Figure 2

Program Organization:

Generally, data processing in the serial crystallography experiment involves execution of several repeating

operations on the same types of data. In our case, serial_xds generates input files and runs X-Ray Detector

Software (XDS) - a program package written for the "reduction" of 2-dimensional oscillation images

obtained from irradiated crystals, developed by Wolfgang Kabsch in 1986 [3] . XDS consists of seven steps:

XYCORR (detector surface and parallax correction); INIT (calculates initial background); COLSPOT (finds

spots for indexing); IDXREF (indexing and refinement); DEFPIX (generates masks prior to processing); XPLAN

(data collection strategy); INTEGRATE (integration of reflections); and CORRECT (applies correction factors).

Object-oriented programing (OOP) in Python, a type of computer software design in which types of a data

structure are defined along with operations that can be applied to it, is an ideal solution for the structural

organization. Some of the benefits of this approach include a reduced length of the code, easy debugging,

and usage of the code lines. The program was organized in four scripts: serial_xds.py, master.py,

datawell.py, generate_xds.py. The flowchart depicts the overall structure of the program:

serial_xds.py

• Using the argparse Python module to define command line options. Parsed variables include:

o Directory or directories containing input files

o Position (in pixels) of the beam center

o Oscillation angle per well

o Detector distance in mm

o Wavelength in Ångstrom

o Number of frames per degree

o Output directory

o Space group (optional)

o Unit cell (optional)

• Searches for HDF5 master files in a given path and creates a list. Each master file corresponds to a

single grid on the chip (Figure 1).

• Uses master files from the list to create instances of the Master class defined in master.py. Each

master file is now an object.

• Uses the time Python module to return total processing time, after program successfully

completed.

master.py

• Defines the Master class, and methods within it. Methods refer to functions that are used do

something with objects passed into the class:

➢ Upon initialization, creates a directory for the Master object.

➢ Uses object to create instances of a class defined in datawell.py.

The Multiprocessing Python module is used to run this part of the code in parallel.

Maximum number of available cores is used by default.

➢ Creates a dictionary for the object and write it as a JSON file. Dictionary store information

about the outcome of XDS.

datawell.py

• Defines the Datawell class, and methods within it. (Datawell is a subclass of Master, defined in

master.py) Methods refer to functions, that are used do something with objects passed into the

class:

➢ Create Datawell directory.

➢ Runs XDS in each datawell directory.

generate_xds.py

• Generate XDS input file, using variables defined in serial_xds.py.

Results on parallelization:

We tested the efficiency of the program with parallelization in serial_xds.py and master.py. The best

performance was observed with spreading tasks in master.py, reducing processing time almost by half of

the time without parallelization (Table 1,2).

Summary:

Python made it easy to cluster parts of the data into objects and assign functionalities to them using

classes. Structuring the program in this way led to reduced length of the code and an overall clean, object-

oriented design. A multiprocessing package was used to leverage the availability of several processors on

CHESS machines. The performance was tested by comparison of the processing time for the code with no

parallelization, to the code with parallelization, showing significant improvement in processing time.

Acknowledgments:

I would like to thank my mentor Aaron D. Finke for his time, efforts, and support with this project. Summer

Research for Community College Students (SERCCS) program gave me a great opportunity to work with

world-class people and learn from them about their fields.

This work was done at CHESS, funded by National Institutes of Health/National Institute of General Medical

Sciences award GM-103485. Experimental datafiles for testing were provided by MacCHESS ID7B2

beamline. To see more information about the program, visit: https://github.com/aaronfinke/serial_xds

https://github.com/aaronfinke/serial_xds

References:

1. Rhodes, Gale. Crystallography Made Crystal Clear: A Guide for Users of Macromolecular Models. Second
ed., Academic Press, 2000.

2. Wierman, J. L., et al. (2019) IUCrJ, 6, 305-316

3. Kabsch, W. (2010a). XDS. Acta Cryst. D66, 125-132

Serial_xds.py

import argparse, fnmatch, os, h5py, time

import master

def main():

 time1=time.time()

 parser = argparse.ArgumentParser(description='Arguments required to process the data: input, beamcenter, distance.')

 parser.add_argument('-i', '--input', type=str, nargs='+', required=True, help='Path of Directory containing HDF5 master file(s)')

 parser.add_argument('-b', '--beamcenter', type=int, nargs=2, required=True, help='Beam center in X and Y')

 parser.add_argument('-r', '--oscillations', type=float, default=1, help='Oscillation angle per well')

 parser.add_argument('-d', '--distance', type=float, required=True, help='Detector distance in mm')

 parser.add_argument('-w', '--wavelength', type=float, default=1.216, help='Wavelength in Angstrom')

 parser.add_argument('-f', '--framesperdegree', type=int, default=5, help='Number of frames per degree')

 parser.add_argument('--output', default=os.getcwd(), help='Use this option to change output directly')

 parser.add_argument('-sg', '--spacegroup', help='Space group')

 parser.add_argument('-u', '--unitcell', type=str, default="100 100 100 90 90 90", help='Unit cell')

 parser.parse_args()

 args = parser.parse_args()

 # Get all master files from the given path and create a list:

 for masterdir in args.input:

 master_list = fnmatch.filter(os.listdir(masterdir), "*master.h5")

 print(master_list)

 for masterfile in master_list:

 # Return number of data files linked to a master file:

 masterpath = "{}/{}".format(masterdir, masterfile)

 totalframes = master.get_number_of_files(masterpath)

 # Each master file in the list now used to create an instance of a class called 'Master' (from master.py):

 master_class = master.Master(args, masterpath, totalframes)

 time2 = time.time()

 print("Total time: {:.1f} s".format(time2-time1))

if __name__=='__main__':

 main()

master.py

import os, sys, h5py, json, re

from multiprocessing import Pool

import datawell

class Master(object):

 # Generating a constructor for the class:

 def __init__(self, args, masterpath, num_of_total_frames):

 self.args = args

 self.masterpath = masterpath

 self.frames_per_degree = args.framesperdegree

 self.total_frames = num_of_total_frames

 self.output = args.output

 # Variables defined within class:

 self.master_dictionary = {}

 self.new_list = []

 # Functions called within class:

 self.create_master_directory() # creating masterfile directories

 # creating datawell directory and run XDS in it (with parallelization)

 self.new_list = map(int, range(1,self.total_frames,self.frames_per_degree))

 p = Pool()

 p.map(self.create_and_run_data_wells, self.new_list)

 p.close()

 self.generate_master_dictionary() # creating a master dictionary

 self.write_master_dictionary() # writing a master dictionary as a json file

 def create_master_directory(self):

 # Generate a name for masterfile directory:

 try:

 end_index = self.masterpath.find('_master.h5')

 start_index = self.masterpath.rfind('/')

 dir_name= self.masterpath[start_index+1:end_index]

 new_dir_path = '{new_dir}/{name}'.format(new_dir = self.output, name = dir_name)

 # Create a mesterfile directory:

 try:

 os.makedirs(new_dir_path)

 except OSError:

 print("Creation of the directory {} failed. Such file may already exist.".format(dir_name))

 else:

 print("Successfully created the directory {}".format(dir_name))

 except:

 print("Something is not working. Check the code in 'master.py'")

 def create_and_run_data_wells(self, framenum):

 # Generate datawell directories by creating instances of class called 'Datawell' (from datawell.py):

 data_well = datawell.Datawell(framenum, framenum+self.frames_per_degree-1, self.get_master_directory_path(), self.masterpath, self.args)

datawell.py

import subprocess, os, re

from generate_xds import gen_xds_text

class Datawell(object):

 # Generating a constructor for the class:

 def __init__(self, first_frame, last_frame, master_directory, masterpath, args):

 self.ff = first_frame

 self.lf = last_frame

 self.master_dir = master_directory

 self.masterpath = masterpath

 self.args = args

 # Variables defined within class:

 self.framepath = "{d}/{start}_{end}".format(d=self.master_dir, start=self.ff, end=self.lf)

 self.results_dict = {}

 self.final_dict = {}

 # Functions called within class:

 self.setup_datawell_directory() # generating datawell directory

 self.gen_XDS() # generating XDS.INP in datawell directory

 self.run()

 def setup_datawell_directory(self):

 # Generate datawell directory:

 try:

 os.makedirs(self.framepath)

 except OSError:

 print("Failed to create datawell directory")

 def gen_XDS(self):

 # Generating XDS file in datawell directory:

 try:

 d_b_s_range = "{a} {b}".format(a=self.ff, b=self.lf)

 with open(os.path.join(self.framepath, 'XDS.INP'), 'x') as input:

 input.write(gen_xds_text(self.args.unitcell, self.masterpath.replace("master", "??????"),

 self.args.beamcenter[0], self.args.beamcenter[1], self.args.distance, self.args.oscillations,

 self.args.wavelength, d_b_s_range, d_b_s_range, d_b_s_range))

 except:

 print("IO ERROR")

 def run(self):

 # Run XDS in the datawell derectory:

 os.chdir(self.framepath)

 subprocess.call(r"xds_par")

 os.chdir(self.master_dir)

generate_xds.py

def gen_xds_text(UNIT_CELL_CONSTANTS, NAME_TEMPLATE_OF_DATA_FRAMES, ORGX, ORGY, DETECTOR_DISTANCE, OSCILLATION_RANGE, X_RAY_WAVELENGTH, DATA_RANGE,

BACKGROUND_RANGE, SPOT_RANGE):

 text = """

SPACE_GROUP_NUMBER=0

UNIT_CELL_CONSTANTS= {in_1}

NAME_TEMPLATE_OF_DATA_FRAMES= {in_2}

JOB= XYCORR INIT COLSPOT IDXREF DEFPIX INTEGRATE CORRECT

ORGX= {in_3} ORGY= {in_4}

DETECTOR_DISTANCE= {in_5}

OSCILLATION_RANGE= {in_6}

X-RAY_WAVELENGTH= {in_7}

DATA_RANGE= {in_8}

BACKGROUND_RANGE= {in_9}

SPOT_RANGE= {in_10}

DETECTOR=EIGER

MINIMUM_VALID_PIXEL_VALUE=0

OVERLOAD= 1048500

SENSOR_THICKNESS=0.32

QX=0.075 QY=0.075

NX= 1030 NY= 1065

UNTRUSTED_RECTANGLE= 0 1031 514 552

LIB=/nfs/chess/sw/macchess/dectris-neggia-centos6.so

TRUSTED_REGION=0.0 1.41

DIRECTION_OF_DETECTOR_X-AXIS= 1.0 0.0 0.0

DIRECTION_OF_DETECTOR_Y-AXIS= 0.0 1.0 0.0

MAXIMUM_NUMBER_OF_JOBS=4

MAXIMUM_NUMBER_OF_PROCESSORS=8

ROTATION_AXIS= 0.0 -1.0 0.0

INCIDENT_BEAM_DIRECTION=0.0 0.0 1.0

FRACTION_OF_POLARIZATION=0.99

POLARIZATION_PLANE_NORMAL= 0.0 1.0 0.0

REFINE(IDXREF)=BEAM AXIS ORIENTATION CELL ! POSITION

REFINE(INTEGRATE)= ! ORIENTATION POSITION BEAM CELL AXIS

REFINE(CORRECT)=POSITION BEAM ORIENTATION CELL AXIS

VALUE_RANGE_FOR_TRUSTED_DETECTOR_PIXELS= 6000 30000

! INCLUDE_RESOLUTION_RANGE=50 1.8

MINIMUM_I/SIGMA=50.0

CORRECTIONS= !

SEPMIN=4.0

CLUSTER_RADIUS=2

 """.format(in_1=UNIT_CELL_CONSTANTS, in_2=NAME_TEMPLATE_OF_DATA_FRAMES, in_3=ORGX, in_4=ORGY,

 in_5=DETECTOR_DISTANCE, in_6=OSCILLATION_RANGE, in_7=X_RAY_WAVELENGTH, in_8=DATA_RANGE, in_9=BACKGROUND_RANGE,

 in_10=SPOT_RANGE)

 return text

