

The Radiative Decay $J/\psi \rightarrow \gamma \pi \pi \pi$

Why?

It is hard to study gluons, the carriers of the strong force J/ψ are produced easily at CESR

When the quarks inside J/ψ annihilate, they make high energy gluons

Gluons can't be produced singly

Conservation of angular momentum and charge conjugation force gluons to be produced in threes in J/ψ decay

By demanding a photon, we can conserve quantum numbers, let the photon escape, and are left with only two gluons, which we can then study.

How?

$$e^+e^- \to \psi(2S)$$

$$\to \pi^+\pi^- \ J/\psi$$

$$\to \gamma \ \pi^+\pi^-\pi^+\pi^-$$
 Why not done before?

Why not done before?

Need good photon detection combined with good charged particle tracking CLEO is the first detector in the charm region with both state-of-the-art

Technique

CLEO delivers a list of tracks and photons in an event Bethany puts them together to see if they

- 1) Account for everything in the event (energy, momentum conservation)
- 2) Are consistent with the desired decay pattern Carefully count occurrences to calculate decay rates