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e Two main projects in the ILC R&D effort
— Low Emittance Tuning
— Electron Clouds

e Emittance 1s a measure of beam size

e Electron clouds seen as the major obstacle to ultra
low emittance operation of ILC damping rings

 Low Emittance tuning is the optimization of the
accelerator to operate at ultra low emittance

e [ worked within both efforts, but my main
contribution was to the Low Emittance Tuning group
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Week long workshop with international collaborators
~40 physicists from all over the world

Workshop was divided into an electron cloud group
and a Low Emittance Tuning group

I spent most of my time with the electron cloud group

The workshop was very educational, both from a
scientific perspective and as an introduction to large
international collaborations
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The Dispersion function is the relation between energy spread and its contribution to
position spread in the beam, has units of length/%

The design energy spread is 0.1%, so an uncertainty in the dispersion of 10cm
corresponds to a beam size uncertainty of 100 microns

Measure by taking the difference of two orbits at different energies

Since 2006, dispersion measurements have differed from the design dispersion in one
localized region. During the course of months of investigation, this phenomenon took
on the name 'horizontal dispersion anomaly.'

Dispersion Anomaly could be due to survey problems, control problems, or data
acquisition problems.

However, it's stable enough that we can correct via calibration constants
Data was taken giving orbits at many beam currents and various attenuations
Python script was developed to analyze the orbit files

The results of the analysis were used to prepare a calibration, and a script to apply the
calibration directly to the data
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Butn #1 signal Vs Beam Current at a variety of Attenuations
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BPM 28 Butn #1 signal Vs Beam Current
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Constant Oftset fit parameter Vs Bpm number, for butn 1, attenuation 1
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Constant Offset fit parameter Vs Bpm number, for butn 1, attenuation 1
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Electron Clouds are the major source of emittance growth in the ILC

e Primary Source: Synchrotron Light

OEAATR R 3

( Charges accelerated by beam passage as Job 261: Cloud charge profile after bunch 10 at time = 126.25 ns g
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high-velocity electrons impacting the &% | 1N
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Questions?

Thanks to Jim Crittenden
Dave Rubin
Rich Galik
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