Time of flight identification of ions for ERL

Eric Edwards
Supervisors: Georg Hoffstaetter & Michael Ehrlichman
Why an Ion TOF Spectrometer?

• Scattering on the dilute gas by the beam produces positively charged ions
• Ions can then accumulate in the beam potential
• Possible ‘cascade’ effect
 – Disturb the motion of the beam
 – Widen the cross section (especially undesirable in ERL)
How this can happen, 1

• Fast ion instability
 – Ions oscillate in the electron beam and vice versa
 – Coupled system becomes unstable
 – Large oscillations or increase in transverse beam size

Raubenheimer and Zimmerman
How this can happen, 2

- Nonlinear focusing
 - Accumulated ions focus electrons non-linearly as a function of the electron’s distance from the beam center
 - Emittance growth

Hoffstaetter and Spethmann
http://arxiv.org/abs/0706.2897
TOF Spectrometer

- Measure the composition of the ion gas near the beam
- Determine charge state and type of ions
 - Ions enter the TOFS chamber, are accelerated through a well-defined potential, then their velocities are measured
 - Determine mass to charge ratio
Timeline

• Electronics assembly
 – Gate ring circuit, HV divider -> finished
• Ion source for characterization
 – June 20
• Characterize detector
 – Correlation of measured voltages to measured ion density
• SIMION simulation of ion optics
• Trial installation on CESR?
• Test in ERL prototype injector