Testing Superconducting RF Cavities of the Highest Field Gradients for the International Linear Collider

Fangfei Shen
Massachusetts Institute of Technology

Advisors: Zachary Conway and Matthias Liepe
Cornell University
Cornell Laboratory for Accelerator-based Sciences and Education
ILC and SRF

- ILC = International Linear Collider
- The ILC is a proposed electron-positron collider that uses superconducting radio-frequency (SRF) cavities for acceleration
 - ~16,000 SRF niobium cavities are needed
 - All cavities must reach accelerating gradients of $E_{\text{acc}} = 35 \text{ MV/m}$ during tests
• $Q_0 =$ cavity’s intrinsic quality factor
 – High Q_0 is desired \Rightarrow indicates efficient performance
 – Great: $Q_0 \approx 10^{10}$ or 10^{11}

• **Quench** = the transition from super- to normal conducting, often caused by unwanted heating
 – It becomes prohibitively harder to excite normal conducting cavities to high E_{acc}

• Good cavity preparation is essential for high quality factors *and* for getting to high E_{acc}
Improving Cavity Performance

• **Defects and impurities** on the cavity surface can lower Q_0 and cause quenching
 – Increases the surface resistance of niobium
 – Causes high RF losses that generate heat
 – With enough heat, the cavity quenches

• **Common procedures to get rid of defects**
 – Chemical treatments
 – Clean assembly
 – High pressure rising
 – Baking
• **Chemical treatments** use acid solutions to etch away the outer layers of niobium
 – **Buffer chemical polish (BCP)** is a rough etch
 – **Electropolish (EP)** is a finer, smoother etch

• There exists a proposal that only BCPs are needed for large grain cavities

• BCPs and EPs use Hydrofluoric Acid → undergraduates must stay away!
Clean Room Procedures

• **Cavity assembly**
 – Always done in the clean room to minimize the number of particulates that enter the cavity

• **High pressure rinsing (HPR)**
 – Performed in clean room
 – Spray interior of cavity with jets of ultrapure water at 1000 psi
 – This dislodges loose particulates in the cavity
Cavities Bakes

- Bakes are performed for freshly electropolished cavities
 - Baking reduces the surface resistance of niobium
 - All bakes performed for this project were at 110°C, but higher-temperature bakes at ~800°C are also common
• Cavities are tested in a liquid helium bath

• Measurements are made through input and output power couplers
 – The output power probe is coupled to the cavity very weakly
 – We want the input power probe to be unity coupled to the cavity for tests
 – Probe length is semi-adjustable during tests

• Q_0 values are obtained at various E_{acc} values to create a Q-curve
• Three single-cell cavities were tested
 – AES-2
 – NR1-2
 – LR1-5

• All tests suggested high Q’s, but the only Q-curve obtained was from AES-2

• Difficulties with coupling prevented us from obtaining Q-curves for NR1-2 and LR1-5
Notes on the Tests

• NR1-2 Cavity Test:
 – Input coupler’s probe length was too long ⇒ cavity was always overcoupled
 – Estimated a low-field Q of over 8×10^{10}

• LR1-5 Cavity Test:
 – Could not unity couple to the cavity
 – Measured Q-value were: 2.4×10^{10} and 8.9×10^{9}
 – This was a large-grain reentrant cavity that had only received a BCP
Notes on the Tests

• AES-2 Cavity Test:
 – Q curve looked good: Q-values around 10^{10}
 – We were able to get above $E_{\text{acc}} = 42 \text{ MV/m}$
 – Not enough liquid helium to finish the Q slope
AES-2 Q-Curve

AES_2 12June09

\[E_{acc} \text{ (MV/M)} \]

- 1.00×10^{11}
- 1.00×10^{10}
- 1.00×10^{9}

- 0.00 10.00 20.00 30.00 40.00