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Accelerating gradients in SRF cavities have consistently been increasing in recent

years, largely due to better surface preparation techniques. This makes the critical

magnetic �eld, at which the cavity loses its superconductivity, a very important limit

to address. We worked to minimize the peak magnetic �eld Hpk on the surface of the

cavity with respect to the acceleration rate Eacc. Allowing the peak electric �eld Epk

to increase slightly with respect to Eacc was acceptable because the critical magnetic

�eld is a hard limit that cannot be exceeded, whereas the limiting electric �eld at

which �eld emission starts depends heavily on the surface treatment of the cavity.

Previous work used two conjugated elliptical arcs to describe the pro�le of a reentrant

half-cell of a cavity and to minimize the Hpk/ (42 · Eacc) ratio for Epk/ (2 · Eacc) = 1.2.

These two ratios are used to allow for easier comparison with the TESLA cavity, which

has values of one for both Hpk/(42 ·Eacc) and Epk/(2 ·Eacc). The optimal shape had

an Hpk/ (42 · Eacc) value of 0.9000. We allowed for more intricately shaped cells by

using six conjugated elliptical arcs to construct half-cell pro�les, and we tried the

optimization for Epk/ (2 · Eacc) = 1.2 again with this model. Our best result was

a reentrant cavity that had Hpk/ (42 · Eacc) = 0.8950, which showed that using six

arcs instead of two causes some improvement to the optimization, but the two arc

geometry remains a good approach.

I. INTRODUCTION

The development of superconducting radio frequency (SRF) cavities plays a large role

in facilitating the progression of accelerators to higher and higher energies. The future

International Linear Collider will require approximately 17,000 nine-cell SRF cavities, and
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this level of demand calls for more e�cient and cost-e�ective cavities [1]. In recent years

SRF cavities have improved dramatically due to better surface preparation techniques that

give rise to higher accelerating gradients [2]. These better processing practices can reduce

and control the �eld emission that high electric �elds can cause, so electric �elds are brought

to greater levels within cavities without signi�cant power loss.

These recent improvements in cavity performance through surface preparation techniques

have placed more importance on the critical magnetic �eld, a hard limit that causes the

cavity to lose its superconductivity (by �quenching�) when reached [3]. Reducing the peak

magnetic �eld Hpk within the cavity with respect to the accelerating gradient Eacc would

allow greater power levels and thus greater accelerating gradients to be reached before the

cavity reaches the critical magnetic �eld. As the peak electric �eld Epk does not have a hard

limit like the peak magnetic �eld does, we allowed the Epk/Eacc ratio to increase in order

to decrease Hpk/Eacc; better surface treatment can be used to control the �eld emission.

Minimizing Hpk/Eacc at the expense of Epk/Eacc by changing the cavity shape has allowed

single cell accelerating gradients to reach a record of 52 MV/m for a continuous wave mode

on a large niobium cavity [4].

Previous work has found cavity shapes that minimized the Hpk/Eacc ratio for speci�c

values of Epk/Eacc [5�7]. The TESLA cavity provides a convenient point of comparison for

these ratios; it has values of Epk/Eacc = 2.0 and Hpk/Eacc = 42 Oe/(MV/m) [8]. We de�ne

e and h as the normalized peak electric and magnetic �elds:

e =
Epk

2Eacc

, h =
Hpk

42Eacc

, (1)

so that e and h are each one for TESLA. Minimizing h for e = 1.2 previously produced

h = 0.9000 using a reentrant cavity half-cell pro�le described by two conjugated elliptical

arcs [5]. We continued work on this e = 1.2 case and reduced h to 0.8950 by also using a

reentrant cavity but having six conjugated elliptical arcs describe the half-cell pro�le.

II. SIMULATION AND MODEL

To test out the performance of di�erent cavity shapes we used the SuperLANS code.

For a cavity, SuperLANS calculates the maximum electric and magnetic �elds inside it, the

frequency, accelerating gradient, and the �eld distributions along the cell pro�le [9]. This
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gave us the means to calculate the e and h values using electric and magnetic �eld values

that have an accuracy on the order of 0.1% for the lowest order mode [10]. The program

takes as input the cavity geometry and a mesh of points inside the cavity, and then it

performs a numerical analysis on the �elds at all of the points to create a holistic picture of

the interior �elds. Straight lines and elliptical arcs describe the cavity pro�le, allowing for

a lot of freedom in shaping the cell.

Work on minimizing h has shown that reentrant cavities are the best for optimizing h

and that nearly identical shapes also minimize the power losses in cavities [11]. Therefore,

besides allowing greater accelerating gradients, reentrant shapes can also reduce the cryo-

genic requirements for SRF cavities. In addition to using a reentrant geometry, shaping the

iris of the cavity with an elliptical arc reduces e [11] ; the electric �eld on the cavity surface

is highest along the iris. h is a monotonically decreasing function of e [5, 6], so reducing e

by lowering Epk (without increasing h) allows us to reduce h while bringing e back up to its

original value. Conversely, we can reduce h at the expense of e initially, and then reduce e

back to the original value while maintaining a reduced h. The corresponding approach to

reducing h with the cavity shape is to describe the cell's pro�le with an elliptical arc near

the equator [12]. In this manner, the previous work on optimizing h for e = 1.2 used two

conjugated elliptical arcs to describe a half-cell [5]. The optimized shape has an extended

top of the surface magnetic �eld (Hs) pro�le curve (see Figure 1); as the magnetic �ux is

approximately the same between di�erent shapes, this lowers the peak magnetic �eld [5].

Initially we simulated the shape described by two conjugated elliptical arcs to con�rm

the merits of the reentrant cavity. Later we described a half-cell pro�le with six conjugated

elliptical arcs so that we could explore more intricately shaped cavities. In a MathCAD

program, we input the intersection points and end points of the elliptical arcs, and systems

of equations solved for the parameters of the ellipses. The shape was then output to a

geometry �le that SuperLANS could use. To reduce h for e = 1.2, we �attened the electric

�eld pro�le to lower Epk (since di�erent shapes also have approximately the same electric

�ux) and also �attened the magnetic �eld pro�le to lower Hpk.
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Hs Profile for TESLA
Hs Profile after Optimization for e=1.2

Figure 1: The Hs pro�les for the TESLA cavity (dashed red) and the optimized half-cell shape for

e = 1.2 using two conjugated ellipses (solid blue) [5].

III. REENTRANT CAVITY SIMULATIONS

We �rst simulated both reentrant and nonreentrant cavity shapes to con�rm that the

reentrant cavity minimized h more e�ectively. We used TunedCell, an optimization program

that can run SuperLANS for a whole range of input parameters, to perform our simulations.

TunedCell describes the half-cell pro�le with two elliptical arcs that are connected with a

straight line segment that is tangent to both arcs [13]. Both a nonreentrant version and a

reentrant version of this design are shown in Figure 2. The upper elliptical arc has major

and minor half-axes of A and B, respectively, and the lower elliptical arc has a and b as its

corresponding half-axes. l denotes the length of the line segment connecting the two arcs.

We allowed A, B, a, and b to vary within certain ranges and let l be solved for by the

program. The equatorial radius Req was adjusted by the program so that all of the cavities

had a frequency of 1300 MHz [13]. After starting from a broader range of parameters, we

gradually narrowed in on the minimum h for e = 1.2 for both the nonreentrant and the

reentrant shapes. The parameters for our best solutions are given in Figure 3 below. These

results show that the reentrant shape minimizes h more e�ectively than the nonreentrant

one for our case of e = 1.2. Therefore, we continued on and simulated more elaborately
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Figure 2: Nonreentrant (left) and reentrant (right) half-cell pro�les used by TunedCell.

Figure 3: Table of the parameters for the optimized reentrant and nonreentrant shapes using

TunedCell.

Cavity Type Req (mm) A (mm) B (mm) a (mm) b (mm) l (mm) e h

Reentrant 98.711 51.54 36.26 9.18 11.91 0.388 1.1998 0.8995

Nonreentrant 99.421 48.30 33.25 9.35 10.53 20.645 1.1999 0.9167

shaped reentrant cavities to further minimize h.

IV. IMPROVING THE SHAPE

After con�rming that the reentrant shape gives the best h values, we allowed for greater

variation in shape by describing the half-cell pro�le with six conjugated elliptical arcs. We

tried to change the shape of the cell to �atten the peaks of the electric and magnetic �eld

pro�les, both of which would lead to a reduction of h for our e = 1.2 case.

A pro�le using six elliptical arcs is shown in Figure 4, using Z as the major axis and R

as the minor axis. We designated the intersection points and the end points between the

ellipses as points 0, 1, 2, 3, 4, 5, and 6 moving from the equator to the iris. Points 2 and 4

are de�ned as the upper and lower points, respectively, where the derivative of the pro�le is

in�nity, while point 3 is the in�ection point between points 2 and 4.

We can only compare �elds between cavities if they are at the same frequency. We �tuned�

each cavity to f = 1300.000±0.025 MHz by changing the equatorial radius of each new cell.
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Figure 4: Model of the six conjugated elliptical arcs used to describe a half-cell, alternating between

dashed red and solid blue. The intersection points and end points are labeled.

We later adopted a method of proportionally shifting all of the R or Z coordinates above

the in�ection point (3) to tune the cavities to the given frequency. Our results are valid

for any frequency, however, because we can use a proportional change of all dimensions to

transition frequencies.

A. Flattening the Electric Field Pro�le

One important method that we used to reduce h was to �atten the peak of the surface

electric �eld (Es) pro�le. This reduced e by lowering Epk and therefore gave us the oppor-

tunity to sacri�ce e (bringing it back up to 1.2) while reducing h. We could otherwise �rst

sacri�ce e to reduce h, and then reduce e by �attening the peak of the electric �eld pro�le.

The electric �eld reaches its maximum values near the end of the cell's pro�le at the iris,

and here it peaks just before reaching the end (see Figure 5 �Es before Transformation�). If

we could create a constant electric �eld over the iris surface, the peak electric �eld would

decrease since the electric �ux would remain roughly the same.

We wanted to prevent any increase in h as a result of the �attening because this would
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Es before Transformation 
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Figure 5: Comparison of the surface electric �eld pro�les before (dashed red) and after (solid blue)

the transformation to �atten the peak of the curve.

render the process less e�ective. A few di�erent changes were able to achieve this. We

reduced the curvature of the pro�le at point 5 and correspondingly increased the curvature

at point 4. Flattening the pro�le near point 5 reduced the Es values that had previously

been the highest, while increasing the curvature at point 4 raised the Es values there. This

evened out the Es distribution so that Es was roughly constant along the surface from point

4 to point 6. The transformation also decreased the curvature of the upper elliptical arcs

between points 0, 1, and 2 by making the cavity more reentrant, having point 2 pushed to

higher Z values. This made the Hs values over the equatorial region more constant so that

Hpk and thus h were reduced. The two half-cell shapes prior to and after the transformation

are given in Figure 6. e dropped by 0.0179 as a result of the �attening, giving us a lot of

room to bring h down at the expense of e. Additionally, we not only kept h from increasing,

but we also reduced it by 0.0033 as a result of the changes we made in the upper curve.

We now had the means of dropping e by approximately 0.0179 and h by approximately

0.0033. We found the factor that each input parameter changed by during this drop in e,

and the set of these factors formed an e-reduction transformation. Then we �rst reduced

h by increasing e; we could apply the e-reduction transformation after this step. Previous

work optimized h for e values between 1.0 and 1.5 in increments of 0.1, using two conjugated

ellipses to shape the half-cell pro�le [5]. From the parameters for the e = 1.2 and e = 1.3
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Figure 6: Shape of the right part of the half-cells before (dashed red) and after (solid blue) the

transformation to �atten the electric �eld pro�le peak. The right display is a closer view of the iris

region of the cavities.

cases, we calculated what the parameters would be for an e = 1.2155 cavity assuming a

linear change in parameters between the two geometries (we found that we could not reduce

e by as much as 0.0179 working from e above 1.2). These parameters were used for the six

elliptical arcs program (which can reduce to two conjugated ellipses) and this generated a

reduced h value of 0.8985. We multiplied our parameters by their respective counterparts

in the e-reduction transformation, and this allowed us to reduce e down to 1.1993 while

dropping h down to 0.8950.

B. Theoretical Attempt to Flatten the Magnetic Field Pro�le

Next we attempted to �atten the peak of the magnetic �eld pro�le by making the dis-

tribution constant near the peak region, thus lowering the peak magnetic �eld value itself.

The equatorial region of the cell has the highest surface magnetic �elds. We started out

assuming a constant magnetic �eld Hs on the cavity surface in this region and then derived

the shape of the cell pro�le corresponding with this assumption.

Based on the electric �eld pro�le of Figure 5, we approximated the surface electric �eld

in the equatorial region as a linear function of the distance L along the pro�le from the

equator:
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Figure 7: Cavity half-cell pro�le that depicts sample contours of integration.

Es = αL, (2)

in which α is a constant found from a linear least-squares regression of the electric �eld in

the region. Then, using Maxwell's equation ∇ × H = ∂D/∂t, in which H is the magnetic

�eld and D = εE is the electric displacement, we wrote an equation relating the electric and

magnetic �elds inside the cavity:∮
l

Hdl =
∫
s

∂D

∂t
ds =

∫
s

∂(ε0E)

∂t
. (3)

Here we integrated along a contour line l that describes surface s; contours are shown in

Figure 7, describing cross-sectional surfaces of the cavity perpendicular to the major axis.

For contour line 2 of Figure 7, the left hand side of the formula simpli�es to Hs · 2πR. The

right hand side is less trivial to solve for, but if we subtract it from the same expression∫
s1 ∂(ε0E)/∂t for contour 1, the only electric �eld in the resulting expression is Es along

the surface region of width ∆L between the two contours. Therefore, subtracting Eq. 3 for

contour 2 from the corresponding equation for contour 1, we found that

Hs · 2π(R + ∆R)−Hs · 2πR = Hs · 2π∆R = −ωε0Es2πR∆L. (4)

ω is the angular frequency of the RF power coupled to the cavity. We substituted the

expression for Es from Eq. 2 into the above formula and wrote it as

∆R

R
=
−ωε0αL

Hs

∆L. (5)



10

After letting K = ωε0α/Hs, we integrated and solved for R as a function of L:

R(L) = Req · e−KL2/2. (6)

Note that we applied the initial condition that R(0) = Req. Since L is the distance along

the pro�le line, we knew that (dZ)2 = (dL)2− (dR)2 and thus that dZ =
√

(dL)2 − (dR)2 =√
1− (dR/dL)2dL. From Eq. 6, we found dR/dL and wrote

dZ =
√

1−R2
eqK

2L2e−KL2dL⇒ Z(L) =

L∫
0

√
1−R2

eqK
2l2e−Kl2dl. (7)

This completes a parametric representation of R and Z as functions of L.

In our MathCAD program that takes the points of a half-cell and �ts conjugated elliptical

arcs to them, we added several constraints that would help conform the upper elliptical arcs

to the theoretical parametric curve. To start out with, we made the radius of curvature of

the elliptical arc at point 0 equal that of the parametric curve there. The radius of curvature

Rc is given by

Rc =
(1 + (∂R/∂Z)2)3/2

(∂2R/∂Z2)
. (8)

At the equator, the dependence of R on Z is approximately the same as its L dependence,

so we can use ∂R/∂L and ∂2R/∂L2 in place of ∂R/∂Z and ∂2R/∂Z2, respectively. Equating

the two radii of curvature from the elliptical arc and the parametric curve produces

A2
1

B1

=
1

K ·Req

, (9)

in which A1 and B1 are the Z and R half-axes, respectively, of the �rst elliptical arc. For

any K, this equation will force the �rst elliptical arc to have parameters that have the same

radius of curvature as the parametric curve at the equator. We applied a similar technique to

match the radius of curvature of the second elliptical arc at point 1 to that of the theoretical

curve at the same Z coordinate. The Z dependence of R could not be approximated as

the L dependence here, however, so we matched the radii of curvature using Eq. 8 without

any approximations. These constraints forced the elliptical arcs to conform closely to the

theoretical curve in the equatorial region. The upper elliptical arcs and the theoretical curve

are give in Figure 8.

The magnetic �eld pro�le corresponding with this shape is given in Figure 9 (�after �rst

iteration�). The peak region does not have a uniform distribution; the �eld gradually tapers

o� with increasing L and then experiences a brief rise before falling away.
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Figure 8: The upper elliptical arc (solid blue) and parametric curve (dashed red) for the �rst

iteration using a linear approximation for Es.
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Figure 9: Magnetic �eld pro�les after the �rst (solid blue) and seventh (dashed red) iterations of

the matching process with a linear approximation for Es. The dashed green line is the magnetic

�eld pro�le after the �rst iteration of the matching process with the extra L3 term included in Es.
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Figure 10: Table of the K, Hpk, e, and h values for each of the iterations assuming a linear Es

dependence.

Iteration Input K (×10−4 mm-2) Output K (×10−4 mm-2) Hpk (A/m) e h

1 1.715 1.985 818.6205 1.1931 0.9032

2 1.985 2.075 818.563 1.1928 0.9033

3 2.075 2.114 819.5454 1.1919 0.9049

4 2.114 2.127 819.605 1.1918 0.9050

5 2.127 2.130 819.6317 1.1918 0.9050

6 2.130 2.132 819.642 1.1918 0.9050

7 2.132 2.132 819.645 1.1918 0.9050

The electric �eld pro�le for this shape would ideally have the same linear dependence in

the equatorial region as the pro�le that we found our K value with, for the new geometry

was based o� of this value of K. However, this was not initially the case, so we re�t the

new pro�le and found a new K. We adopted this K value in the program and created a

new shape. We proceeded iteratively in this manner, �nding a new K, making the shape,

and checking the K, until the input K into the model was the same as the output K. The

iterations' K values are given in Table 1. The magnetic �eld pro�les of the shapes from the

�rst and the last iterations were similar (see Figure 9), but neither one produced a �at peak.

Using a linear approximation for the electric �eld in the equatorial region was not su�cient

to �atten the magnetic �eld pro�le.

The electric �eld pro�le itself has a slight curvature in the equatorial region that is

consistent with an odd function of L. To better describe the pro�le, we incorporated an L3

term into our description of Es so that

Es = αL+ βL3. (10)

This could potentially bring about the improvement in the magnetic �eld pro�le that we

desired. Going through the same process as Eqs. 5 through 7 with this new form of Es and

then letting K = ωε0α/Hs and M = ωε0β/Hs produced

R(L) = Req · e−(KL2/2+ML4/4) (11)
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and

Z(L) =

L∫
0

√
1−Req2 · (Kl +Ml3)2e−(Kl2+Ml4/2)dl. (12)

We used these forms to modify our equations of constraint in our MathCAD program.

We matched the curvature of the theoretical curve with the �rst elliptical arc at point 0

and with the second elliptical arc at point 1 using equations 9 and 8 respectively. To match

the curve further along the elliptical arcs, we de�ned point 2 as the point at which the

theoretical curve has ∂R/∂L = −1 (here we call L = Lmax) so that

∂R

∂L
= −1 = −Req · eKLmax+ML3

max . (13)

With �xed K and M values, we solved for Lmax, R(Lmax), and Z(Lmax) and set the latter

two as the coordinates of point 2. This ensured that the elliptical arc coincided with the

theoretical curve there. At very low L, the L3 term is negligible, so we solved for α (and

then K) the same way as we did the previous case: �tting the electric �eld pro�le to a line

for the lowest L values . We then plotted log (Es − αL) vs. log L for the equatorial region

extending to approximately point 2 , since

log (Es − αL) = log (βL3) = log β + 3 · log L, (14)

and �t the data to a line. The constant term in the regression line equation is log β, so we

solved for β (and then M) in this manner.

We worked through the same iterative process with this new dependence that we did with

the linear case. We found K and M for a shape, put these values back into our MathCAD

program to generate a new geometry, and checked K and M . The magnetic �eld pro�le

after one iteration is given in Figure 9. The pro�le has higher magnetic �eld values in the

equatorial region than the other pro�les derived from the linear approximation, and also

the peak region is shorter, falling o� before the others. The electric �eld pro�le of the �rst

iteration gives rise to a β (and M) value several orders of magnitude below the original

value. The MathCAD program cannot �nd a solution using this M , since the theoretical

curve does not have a point at which ∂R/∂L = −1, so we only could go through one step

of the iteration process.

Basing our upper arcs on a theoretical curve from a linear approximation of Es, and then

also with an incorporated L3 term, did not �atten our magnetic �eld pro�le. We therefore

did not lower h from our previous value.
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V. DISCUSSION AND CONCLUSION

We �rst used TunedCell to verify that the reentrant cavity pro�le is the most e�ective

geometry for minimizing h. From here we worked with a more complicated six elliptical

arcs model of reentrant cavities and tried several di�erent ways to further minimize h for

e = 1.2. Flattening the peak of the electric �eld pro�le reduced e without sacri�cing h,

and this let us start with a reduced h and elevated e and then reduce e back to 1.2. This

gave us our best value of h at 0.8950. While �at, the peak of the electric �eld pro�le still

represents a small fraction of the cavity's pro�le. Extending the peak over a larger region

would lower the peak values and reduce e even more. The electric �eld would need to be

raised in the region of the pro�le between points 3 and 4, and making the elliptical arc have

greater curvature here could accomplish this goal. This possibility should be explored in the

future.

Our attempt to produce a constant magnetic �eld in the equatorial region of the cavity by

basing the upper arcs on a theoretically derived curve did not succeed. The peak region of

the cavity's magnetic �eld pro�le still was not uniform. We worked from Maxwell's equation

and �rst used the assumption that Es was linear in the equatorial region before incorporating

a L3 term into the dependence. Perhaps we need a more sophisticated description of the

Es dependence in order to �atten the magnetic �eld peak, or perhaps we could incorporate

other constraints into our MathCAD program to better �t our elliptical arcs to the theoretical

curve.

Our six conjugated elliptical arcs used to describe a cavity's half-cell pro�le allowed us to

improve the minimization of h for e = 1.2 to h = 0.8950. The two conjugated elliptical arcs

that were previously used (h = 0.9000 from optimization) are a simpli�ed yet still e�ective

way of optimizing the shape.
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