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The limitations of the Talbot interferometer for use with the Nova600 microfocus X-ray source
are discussed. The spatial resolution and the phase sensitivity of the system are calculated. The
resolution takes into account the Nova600’s source size, Fresnel diffraction limits and phases grating
period. The phase sensitivity is determined through Monte Carlo simulation.

1. INTRODUCTION

X-ray imaging has become essential to many medical and technical application, but there have been few advancements
in the technique. The X-ray imaging we see done in the doctor’s office is based on absorption contrast, which provides
little information on weakly-absorbing or thin materials. Recently, phase-sensitive X-ray imaging has become a
prominent area of research because it is sensitive to slight variations in the density of matter and has the potential to
be used with existing X-ray sources.

We have constructed a Talbot interferometer for phase-contrast imaging, which we have been using at the F3 station
at the Cornell High Energy Synchrotron Source (CHESS). We have ordered the Nova600 microfocus X-ray source
from Oxford Instruments so that we can image when we do not have beam time and take quick images of a specimen
in order to determine if it has interesting features. While the Nova600 has less flux than the synchrotron, it has a
smaller source size, which may increase the visibility. We wish to determine the capabilities of the Nova600 and so
we have estimated the resolution and phase sensitivity of the Talbot interferometer with the microfocus source.

2. BACKGROUND

The Talbot interferometer is based on the self-imaging “Talbot effect” [1]. When a monochromatic light source passes
through a diffraction grating it forms periodic self-images at certain distances downstream. Fig. 1 illustrates the
concept of the Talbot interferometer. A silicon phase grating, g1, is placed a distance L downstream of the source. A
highly absorbing, gold-coated analyzer grating, g2, is placed a fractional Talbot distance behind g1 [2],

dm = m
p1

2

8λ
, (1)

for a parallel beam setup, where m is an odd integer corresponding to the order of the Talbot distance, and λ is the
wavelength. For our cone beam setup, the fractional Talbot distance is given by

dm
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L

L− dm
dm. (2)
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FIG. 1: Talbot interferometer for phase-contrast imaging. (a) The setup without a sample. The phase grating, g1, acts as a
beam splitter and the diffracted light forms an interference pattern at the analyzer grating, g2. (b) The setup with a sample
in the beam path. The sample shifts the angle of diffraction by ∆αPG and shifts the interference pattern by ϕ [2].
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g1 is a π-shifting phase grating that acts as a beam splitter, dividing the beam into the +1 and -1 diffractive orders.
The diffracted light forms an interference pattern at g2. The period of g2 (p2) is matched to the period of the fringes.
p2 = p1/2, for a parallel beam setup, and

p2
∗ =

L

L− dm
p1

2
, (3)

for a cone beam setup [2].
For our setup p2 is fixed at 2µm, so it is useful to solve for p1:

p1 =
2(L− dm)

L
p2. (4)

Using equation (1), we get

p1 =
2(L−mp1
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L
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simplifying, we get
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Then, given L, equation (5) can be used to calculate dm
∗.

When a sample is placed in the beam path, the angle of diffraction is shifted by ∆αPG at the phase grating [2]

∆αPG =
λ

2π

∂Φ

∂x
,

where ∂Φ
∂x is the differential phase shift at g1 due to the sample. This causes a shift in the interference pattern [2]

ϕ =
λdm
p2

∂Φ

∂x
. (6)

We can determine the position of the interference pattern at g2 by running a phase-stepping scan, in which we shift
the analyzer grating along xg (see Fig. 1) through one period of g2. Since g2 is highly absorbing and period-matched
to the fringes, the phase-stepping scan causes the the intensity in each pixel (m,n) to oscillate sinusoidally (Fig. 2)
according to [3]

I(m,n, xg) =
∑
i

ai(m,n) cos(i2πxg/p2 + ϕi(m,n))

≈ a0(m,n) + a1(m,n) cos(2πxg/p2 + ϕ1(m,n)), (7)
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where ai are amplitude coefficients and ϕi are phase coefficients. By repeating the process without the sample in
the beam, we can detect the changes due to the sample and reconstruct an image using a discrete Fourier transform
(DFT) or a curve fitter. Absortption-contrast images can be obtained from the change in the average intensity a0.
Dark field images can be obtained from examining the decrease in the ampliude of oscillation a1 due to scattering.
And differential phase-contrast images can be obtained by examining the shift of the interference fringes ϕ1.

FIG. 2: Intensity in a pixel as g2 is scanned along xg. The extracted parameters a0, a1 and ϕ1 can be compared to a reference
scan to obtain absorption, dark field and phase-contrast images.

3. RESOLUTION

We wish to determine the minimum detectable feature for the Talbot interferometer with the new Oxford Instruments
Nova600 microfocus X-ray source.

3.1. Limits

The resolution of the system is limited by the finite source size, Fresnel diffraction limits, and the period of the phase
grating. Fig. 3 outlines the geometry that limits the resolution of the Talbot interferometer.

3.1.1. Source size

The Nova600 has a Gaussian source size of 13-20µm (FWHM), according to the specifications given by Oxford
Instruments. We used the highest source size, 20 µm, in order to estimate the worst visibility. The projected source
size at the analyzer grating is

Σp = Σ

(
dm
∗

L

)
(8)

where Σ is the source size and dm
∗ is the distance between the source and the analyzer grating.

The source size limits the fringe visibility at the detector. The convolution of a perfect sine wave with the Gaussian
source profile yields an equation for the visibility [4]

V = e−(1.887Σp/p2)2

(8)⇒ V = e−(1.887Σdm
∗/Lp2)2 . (9)

* *

FIG. 3: Setup of the Talbot interferometer. L and Ls are the distances from the source to the phase grating and specimen,
Lf is the distance from the specimen to the analyzer grating, dm

∗ is the inter-grating distance (a fractional Talbot distance of
order m for a cone beam), s is the source size, w is the projected source size, a is the size of the specimen, a′ is the effective
size of the specimen, and g1 and g2 are the phasing and analyzer gratings.
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Momose et al. [5] believe that a fringe visibility of at least 0.2 is needed for quantitative phase measurement. However,
imaging has been achieved with a visibility of 0.03-0.05 [6, 7]. We will use 0.2 as a reasonable minimum visiblity, but
we will also calculate the resolution for minimum visibility of 0.03 for a very optimistic estimation.

3.1.2. Fresnel diffraction limits

Since the Talbot effect is a near-field diffraction effect, the geometry of the system must maintain F & 1, where F is
the Fresnel number. For our system, F is defined as

F =
a2

λLf
(10)

where a is the size of the feature of interest and Lf is the distance between the specimen and the analyzer grating.

3.1.3. Phase grating period

Since the phase data from the specimen will be imprinted in the interference pattern at g1, the smallest amount of
information we can have will be contained within one fringe. Then the feature of interest should be magnified so that
it is comparable to p1 at the phase grating. As L increases, p1 approaches that given by a parallel beam setup (see
Fig. 4, p1 = 2p2. And since p2 is fixed at 2 µm, the limit for p1 is 4 µm. Thus a′ should be ∼ 4µm at g2.

The magnification due to a cone beam at the phase grating is given by

M =
L

Ls
(11)

where Ls is the distance between the source and the specimen. Thus the effective feature size at the phase grating is

a′ = Ma. (12)

FIG. 4: The phase grating period, p1, as a function of the phase grating distance, L. As L increases, the beam becomes more
like a parallel beam and p1 approaches p2 = p1/2 = 4µm.

In summary, g1 must be far enough from the source to achieve a minimum required visibility. The specimen must
be close enough to g2 to stay within the Fresnel diffraction region. But it must also be far enough from g1 to be
magnified to 4µm at g1.

3.2. Results

Since the geometry of the system depends on the periods of the gratings, and p2 is fixed at 2µm, we can take various
values for L and Ls and calculate dm

∗, and thus calculate V , F , and a′ for a specific feature size. From this we can
find the region defined by our limitations and find the maximum phase grating distance for that feature size. The
maximum phase grating distance can be used to calculate the best obtainable visibility.

Python and matplotlib were used to generate plots approximating the distances L and Ls at which a′ ≈ 4µm and
F ≈ 1 for different feature sizes, a, at the first fractional Talbot distance (m=1). The value of L at intersection of
these functions can be used to calculate the best V obtainable within the Fresnel and magnification limits. Obtaining
the best visibility for a range of feature sizes (2-4µm), we were able to plot the best visibility versus a (see Fig. 5).
Calculations were made for a 22keV beam with a 20µm source size.

With a minimum required visibility of 0.03, the minimum detectable feature size is ∼ 2.3µm. And with a minimum
required visibility of 0.2, the minimum detectable feature size is ∼ 2.8µm. Thus the theoretical minimum detectable
feature is 2.3-2.8µm.



5

FIG. 5: Best visibility obtainable as a function of feature size a. The dashed lines indicated the two different suggested minimum
visibilities. For a minimum required visibility of 0.03, the minimum detectable feature is ∼ 2.3µm. For a minimum required
visibility of 0.2, the minimum detectable feature is ∼ 2.8µm.

4. SENSITIVITY

We wish to estimate the sensitivity of the Talbot interferometer to the phase difference caused by a sample with the
new microfocus source. This is determined by the amount noise inherent in the system.

4.1. Uncertainty

4.1.1. Counting statistics

The error due to counting statistics contributes the most uncertainty to the extracted phase. Thus if the detector
records Ne electrons in one pixel, the uncertainty in that recorded signal is σe =

√
Ne. By increasing the imaging time

we can increase the number of incident photons, increasing Ne, and thus reduce the relative uncertainty
√
Ne/Ne =

1/
√
Ne as much as our time schedules allow.

4.1.2. Dark current

Even without any incident photons, the detector accumulates a number of counts, Nd, due to the random generation
of electron hole pairs. They are also subject to Poisson statistics and have an uncertainty of

√
Nd, which adds to

the total uncertainty. At F3 this contribution is negligible, however, we need to determine if this has a significant
contribution when using the Nova600.

We have measured a pixel response of ∼ 3e− per incident photon for our Finger Lakes CCD detector, so the number
of recorded electrons due to incident X-rays is NX-ray = 3e−/ph · Np, where Np is the number of incident photons.
The Nova600 has a quoted flux of 1.1× 1012 ph/sec/sr at 60W. At 22keV, the interferometer is predicted to transmit
30% of the incident flux, making the average flux about 3.5× 1011 ph/sec/sr. If our camera has an effective pixel size
of 6.25µm and we image at a working distance of D meters, then, on average, each pixel recieves a flux of

Np =
(6.26µm)2

D2
sr · 3.5× 1011 ph/sec/sr

=
13.67m2

D2
ph/sec. (13)

Due to limited space, the maximum working distance will likely be ∼ 1.5m. At D = 1.5m, Np = 6.08ph/sec. Then,
if a pixel receives the average flux, the detector will record (3e−/ph) · (6.08ph/sec) = 18.24e−/sec. Now, the dark
accumulation is 0.30e−/pixel/sec [8]. Then we have more than enough incident photons per second to stay ahead of
the dark current. Thus the uncertainty due to dark current does not contribute significantly to the total uncertainty,
and we can neglect it.

4.2. Monte Carlo Simulation

We simulated the recovery of the amplitude and phase data for a sinusoid with added noise with a Monte Carlo
simulation in order to estimate the phase sensitivity of the interferometer. Since we have the option of using a DFT
or curve fitter, we used both methods in the simulation. The DFT is generally faster than fitting to a curve, but the



6

parameters extracted by the curve fitter are more correct. Using both allowed us to compare the sensitivities of the
methods as well as determine the sensitivity of the system.

4.3. Method

We used the following method to estimate the phase sensitivity:

� Create a perfect sinusoid a0 + a1 sin(2πx+ ϕ) and sample N equally spaced points (the number of images in a
phase-stepping scan)

� Add Gaussian noise with standard deviation σe (calculated as
√
Ne for each point)

� Apply the DFT to the noisy points

� Recover estimated a0, a1 and ϕ

� Repeat many times (we used about 100,000 trials). Calculate the standard deviation of all the extracted ϕ,
which gives a reasonable estimate of the sensitivity.

� Repeat for curve fitter

4.4. Results

To simulate a pixel with 100% visibility, we set Imin = 0 ADU. Our detector digitalizes images to 16 bits per pixel,
so the maximum intensity the detector can read out is 216 - 1 = 65535 ADU. The minimum intensity the detector
can read out is 10400 ADU. Thus, if we want to set Imin = 0 ADU, then Imax = 55135 ADU. Then our sinusoid will
have a0, a1 = 27567.5.

We ran the Monte Carlo simulation with 100,000 trials for N = 5-19, each time with a0, a1 = 27567.5 and ϕ =
0, with both the DFT and curve fitter. By increasing the number of sampled points we can further constrain the
sinusoid, so the uncertainty improves as N increases. Fig. 6 shows the dependence of the uncertainty ∆ϕ on the
number of sampled points N for the DFT and curve fitter. We can see that the uncertainty for the curve fitter,
∆ϕcurve, is consistently smaller than the uncertainty for the DFT ∆ϕDFT , although the difference becomes smaller
as N increases. For N = 5, ∆ϕcurve = 3.56 ×10−3 and ∆ϕDFT = 4.27 ×10−3. The difference is smaller for N = 11,
where ∆ϕcurve = 2.48 ×10−3 and ∆ϕDFT = 2.70 ×10−3. By N = 19, ∆ϕcurve = 1.91 ×10−3 and ∆ϕDFT = 2.01
×10−3, and there is little difference.
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FIG. 6: Plot of the standard deviation of the recovered phase versus N , the number of images in a phase-stepping scan. Blue
points were retrieved from the DFT and red points from the curve fitter.

4.5. Analysis

The refractive index for X-rays is slightly less than 1 for all materials, so we express the complex refractive index as
n = 1− δ+ iβ. Since we are considering weakly absorbing samples, the absorption index β is very small compared to
δ. Thus we consider only δ in our analysis.

Assume we are taking a knife-edge profile of the transmitted beam in which we step a straight-edge across the
analyzer grating plane and measure the intensity for each step. If we are imaging a bug in amber, let’s say we take a
knife-edge step from amber (δA) to bug (δB). Since the Nova600 has a Gaussian source profile, when convolved with
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the projected source size Σp (FWHM), the knife-edge is smeared over a distance Σp (see Fig. 7). Then the decrement
profile is approximately

δ ≈ δA +
δB − δA

Σp
· x

from 0 ≤ x ≤ Σp. Then, as it travels through the specimen, the beams acquires a phase of [9]

Φ(x) =
2π

λ

∫
δ(x)dz =

2π

λ

∫
A

δAdz +
2π

λ

∫
B

δB − δA
Σp

· xdz,

where
∫
A

and
∫
B

indicate integration over the the thickness of the amber and bug. If we assume that the amber has

been polished so that ∂
∂x

∫
A
δAdz = 0, then the differential phase shift caused by the specimen is

∂Φ

∂x
=

2π

λ

∫
B

δB − δA
Σp

dz =
2π

λ

δB − δA
Σp

· TB ,

where TB is the thickness of the bug in the beam direction.
Then, assuming p1 ≈ 2p2, the phase shift recorded by the detector is

ϕ =
λdm
p2

∂Φ

∂x
= 2π

mp2

2λΣp
(δB − δA) · TB . (14)

We can estimate the minimum detectable phase difference ϕmin by doubling the uncertainty as found above (for
either the DFT or curve fitter) in order to ensure that neighboring uncertainties do not overlap. If we rearrange
equation (14), we can relate the detectable decrement difference (δB − δA) to the minimum resolvable phase shift:

(δB − δA)TB =
ϕmin
2π

2λΣp
mp2

. (15)

Let λ = 0.564Å (22keV), p2 = 2µm, and Σ = 20µm. If we want to work at L = 1.5m, then by equations (8) and
(5), Σp = m · 0.462µm. Fig 8 plots the detectable decrement difference versus TB for N = 5, N = 11 and N = 19.
This plot can be used to determine the minimum decrement difference given a thickness or the minimum thickness
for a given decrement difference.
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FIG. 7: Representation of the convolution of the Gaussian source profile with the decrement profile.
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FIG. 8: Plot of the detectable decrement as a fraction of δA ∼ 1.3 × 10−6 versus feature thickness for N = 5 (red), N = 11
(blue), and N = 19 (green). Solid lines were obtained from the DFT and dashed lines were obtained from the curve fitter.

5. CONCLUSION

We determined the expected behavior of the Talbot interferometer when used with the Nova600 microfocus X-ray
source. The resolution of the system is limited by the source size, Fresnel diffraction limits and the phase grating period.
The resolution was calculated to be 2.3-2.8µm. Monte Carlo simulations were used to determine the uncertainty in
the extracted phase shift using the DFT and curve fitter, which gives an estimate of the minimum resolvable phase
difference. We analyzed the example of a bug in amber and plotted the minimum detectable decrement difference
versus bug thickness. These calculations will allow us the determine which samples are suitable for imaging with the
Talbot interferometer.
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134 (2008).
[4] T. Weitkamp, C. David, C. Kottler, O. Bunk, and F. Pfeiffer, Proc. SPIE 6318, 63180s (2006).
[5] A. Momose, Y. Wataru, H. Maikusa, and Y. Takeda, Opt. Express 17, 12540 (2009).
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