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The amplitude dependent tune shifts of the Cornell Electron Storage Ring (CESR)

originate as a product of the action of sextupole magnets on the beam within the

CESR lattice. In order to study the amplitude dependence of the horizontal and

vertical tune shifts, simulations were used to model turn-by-turn data for a variety

of amplitudes in two family sextupole distributions in the lattice and in optimized

versions of those two family sextupole distributions. By taking actual CESR turn-

by-turn measurements for different amplitudes with one of the simulated sextupole

distributions, the model and CESR measurements can be compared to see the accu-

racy of the model.

I. INTRODUCTION

The non-linear lattice of CESR is composed of several different types of magnets for
controlling the electron and positron beams by bending, steering, and focusing them along
with other components that control other aspects of the beam. While dipole magnets are
used for bending the beam through the beam pipe, the quadrupole magnets are used for
beam focusing and are responsible for the oscillation of the beam as it moves through the
ring. The two types of quadrupole magnets are F quadrupoles and D quadrupoles. F
quadrupoles focus the beam in the horizontal plane and defocus in the vertical plane while
D quadrupoles focus vertically and defocus horizontally. Alternately placed throughout the
ring, the action of the F and D quadrupoles on the beam results in a net focusing effect and
the oscillation of the beam.

The tune, Q, is the number of oscillations that the beam experiences about its central
axis as it passes through the beam pipe in a single turn. Tune is defined as: [2]

Q =
1

2π

∮ ds

β(s)
(1)

As the focusing strength of the quadrupole magnets increases, the tune increases. This
is because the beam size, and thus the Beta function, get smaller as the focusing strength
increases. Because tune is dependent on the inverse of the Beta function, it increases as
Beta decreases.

As the particles within the beam pass around the ring, they will experience a transverse
kick from the quadrupole magnets that is proportional to the displacement of the particle
from the central axis of the beam. The farther away the particle is from the central axis, the
larger the kick is from the quadrupoles. This keeps the tune independent of the amplitude
and makes the beam act as a simple harmonic oscillator. The sextupole magnets within the
lattice are necessary for the correction of beam energy spread. Because the kick from the
sextupoles is non-linear, this results in the tune of the beam becoming amplitude dependent.
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II. METHOD OF INVESTIGATION

Because the data taken from CESR would be in the form of position data, I used the
Python programming language to create scripts which would extract frequency and tune
from position data. Because frequency is the number of oscillations in an amount of time
and tune is the number of oscillations in one turn, which is approximately 2.5 microseconds
in CESR, tune can be found similarly to frequency by adjusting for the amount of time in
one turn.

A. Non-Linear Oscillator Model

In order to become more familiarized with the process of calculating the period and
frequency from position data, I first worked with position data from a simple pendulum, a
non-linear oscillator.

1. Local Maxima Method

Position data for the pendulum was calculated after numerical integration of the differ-
ential equation:

d2θ

dt2
= sinθ (2)

After plotting position versus time, the average period was calculated by locating the local
maxima of the position data and finding the period between those peaks. One maximum
to the next constitutes a full oscillation; thus the period is the time between peaks and the
frequency can be found as its inverse. The period of the pendulum motion was checked
against the analytical solution for small angles usig the mall angle approximation. [1]

2. Fast Fourier Transform

The periodicity of the pendulum motion allows for it to be analyzed through Fourier
analysis. With a Fast Fourier Transform (FFT), the position data recorded from the pen-
dulum was transformed into frequency data. By analyzing the frequency spectrum created
by the FFT, the dominant frequency from the position data can be found by looking for
the frequency with the largest amplitude in the FFT. The FFT is a useful tool because in
Python it is a much faster way to analyze the position data and find the frequency than
using the local maxima method.
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FIG. 1: Using both the local maxima and FFT methods, the periods and frequencies for a
range of initial amplitudes were found for the non-linear oscillator model.

With using both the local maxima method and FFT for finding the period and frequency
of an oscillation and comparing the two methods in Fig. 1, it is apparent that both are
working correctly and are in good agreement with each other.

B. Simulations

Turn-by-turn data for CESR was simulated using an object-oriented subroutine library
called Bmad. Horizontal and vertical positions of one bunch were simulated for 1024 turns at
one Beam Position Monitor (BPM) within the lattice. Simulations were done for four CESR
lattices with 4-dimensional and 6-dimensional tracking. The first two lattices are based on a
two family distribution of sextupoles, where the two families alternate throughout the ring
with one family having positive values and the other family having negative values. The
specific values for each sextupole family are different and dependent upon correcting for off
energy beam spread or chromaticity. The latter two sextupole distributions are optimized
versions of the first two lattices which correct for chromaticity and amplitude dependent
tune shift while also reducing various resonance-driving terms. The sextupole values for
these optimized lattices are different for each sextupole on the east and west sides of the
ring, while symmetric between the two sides.

For each sextupole distribution, a matrix of horizontal and vertical amplitudes was used
to create the position data. Initially, simulations were taken with initial amplitudes up to
20mm from the central axis of the beam in the horizontal and vertical planes. However, beam
instabilities were prevalent at higher amplitudes, so the simulations were then narrowed to
a range of amplitudes from .1 mm to 10 mm in x and y. This allowed for the observation of
the beam’s tune shift within the dynamic aperture, where the beam is stable.

By taking an FFT of the position data, the horizontal and vertical tunes can be found at
each amplitude in each lattice. The tune shift for each amplitude is calculated by subtracting
the zero-amplitude tune from the tune at that amplitude, where the zero-amplitude tunes
for each lattice were the tunes calculated with initial horizontal and vertical amplitudes
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of .1 mm. The horizontal zero-amplitude tunes were approximately .570 and the vertical
zero-amplitude tunes were approximately .629, with slight variations between lattices.

For each sextupole distribution, the amplitude dependence of the horizontal tune shift
was found by fitting a quadratic equation to the x tune shift versus a range of x amplitudes
when the y amplitude was .1 mm, with the amplitude dependence of the vertical tune shift
being found similarly. The quadratic coefficient in the quadratic equation that was fit to
the data shows the amplitude dependence of the tune shift, with larger numbers being more
amplitude dependent and smaller numbers being less amplitude dependent.

FIG. 2: The table shows the values for dependence of tune shift on amplitude for the four
separate lattices used in the simulations.

As seen in Fig. 2, differences between 4d and 6d tracking are minimal. In order to
compare simulation data with CESR machine studies data, 6d tracking was used to make
the simulation as realistic as possible.

FIG. 3: This is an example of finding the amplitude dependence of the tune by fitting a
quadratic equation to the simulation data for x tune shift in a two family sextupole

distribution.

In Fig. 3, the tune shifts of the simulation are quantized and appear in a stepped fashion.
This is due to the nature of the FFT because the resolution of the FFT is limited to the
inverse of the number of data points it was used for. In this case, by taking an FFT of
position data from 1024 turns, the FFT resolution is .00097, or 1/1024, which is the step
size between quantized tune shifts in the figure. This presents a problem in the 4d tracking
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for the 20090516 newsext optimized sextupole distribution from Fig. 1 because dependence
of the tune shift on amplitude in the horizontal has been decreased so much that the tunes
the FFT finds for the different amplitudes are all the same. If the resolution of the FFT
were better, this would not be a problem when determining the amplitude dependence of
the tune shift.

FIG. 4: These are plots showing the change in horizontal tuneshifts with respect to x and
y amplitudes for a two family sextupole distribution (left) and an optimized sextupole

distribution (right).

In comparing the two family and optimized sextupole distributions for the x tune shifts
in Fig. 4, it is apparent that the optimized lattice has effectively decreased the amplitude
dependece of the x tune shift, as well as correcting the resonance band in the x tune shift
from the two family sextupole distribution.

FIG. 5: These are plots showing the change in vertical tuneshifts with respect to x and y
amplitudes for a two family sextupole distribution (left) and an optimized sextupole

distribution (right).
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When comparing the two family and optimized sextupole distributions for the y tune
shifts in Fig. 5, the optimized lattice appears to have corrected for the resonance band in
the y tune shift from the two family sextupole distribution. However, while the optimized
lattice has slightly decreased the amplitude dependence of the y tune shift from the two
family lattice, it hasn’t decreased the amplitude dependence of the y tune shift nearly to
the degree that it did for the x tune shift.

C. CESR Machine Studies Data

Turn-by-turn data was taken from CESR for lattice cta 2085mev xr20m 20091205, which
is a two family sextupole distribution. Data was collected over all BPMs in the ring for a
single bunch for 1024 turns. Different amplitudes for CESR measurements were created
using a horizontal or vertical pinger. A pinger is a magnet that is turned on for a very
short amount of time; in this case, as the beam is passing by it, the pinger turns on and
off before the beam comes around on its next turn, meaning that it is on for less than 2.5
microseconds. In the time that the pinger is on, the beam gets a kick from the pinger and
the turn-by-turn data collection is started right after the kick. The range of amplitudes in
the horizontal direction was created by using a horizontal pinger on the beam, increasing
the strength of the pinger between runs to create the higher amplitudes needed to take the
CESR measurements. The range of amplitudes in the vertical direction was created similarly
using the vertical pinger.

Due to time constraints on the project, a Fortran program was used to find positions and
resulting tunes for the CESR data. With this program in place, there is no quantization
of tunes because the FFT was interpolated between data points, allowing for it to find the
tune at a much higher resolution.

In order to compare the amplitude dependence of tune between CESR data and the
simulations, the amplitudes needed to be normalized for both the CESR measurements and
the simulation. The normalized amplitudes were found by taking the maximum displacement
from the central axis at each BPM and multiplying it by the square root of β at each BPM.

x = a
√
β (3)

For simulations, amplitudes were normalized using β at L0, where βx is 4.69 m and βy
is 8.28 m, and the maximum displacements were the amplitudes that were initially used to
create the data. For CESR, the turn-by-turn data was read in using Bmad tracking codes
and the amplitudes were normalized based on the amplitude and β at each specific BPM
where data was taken.
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FIG. 6: These plots show CESR and simulation tune shifts and calculations for the ampli-
tude dependence of the tune shift for a range of horizontal amplitudes (left) and vertical
amplitudes (right).

While the calculated amplitude dependences of the tune shift were not in agreement in
Fig. 6 between the simulation and the CESR measurements, the CESR data does seem to
follow the simulation data fairly well when the quadratic equation fit to the CESR measure-
ments is not taken into account. With uncertainties in CESR measurements of around .0001
m for normalized amplitude and around .001 for tune shift, there could be some error in the
fit of the quadratic equation to the CESR measurements that was not taken into account.

III. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

The measurements from CESR are not inconsistent with the model given the uncer-
tainties of finding the amplitude dependence of the tune shift. In order to have a better
comparison between the model and the CESR measurements, larger amplitudes could be
used when taking CESR measurements. Also, CESR data could be measured for the re-
maining sextupole distributions that were simulated but had no actual CESR measurements
taken. The accuracy of the model could be improved by using the interpolated FFT to get
a better resolution of tunes for the simulations.

Nonlinearities arising from trying to observe the beam at high amplitudes within BPMs
were not taken account for in this project; future work could include trying to understand
the BPM systematics in order to take more accurate measurements.

Based on the simulations, the optimized sextupole distributions might be further opti-
mized to reduce the amplitude dependence of vertical tune shift.
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