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Non-linear frequencies present in fourier spectra in CESR experiements suggest

the interaction of the electron cloud with stored bunches producing coupled motion

referred to as Heat-Tail Motion. This is not the only explanation for the appearance

of such side bands. In fact, non-linearities in the detection instruments may very well

be significant enough to be comparable to what is observed. The focus of this paper is

to simulate bunch positions and the signal produced onto the detection instruments

in order to analyze the position fourier sprecta in search of the non-linear frequencies.

Results of the simulation suggest that the non-linearities of detection are strong and

symmetric. This implies that the side bands can be a result of the instruments,

but disparities in signal strength of frequency sign pairs (ω1 ± ω2) are suggestive

of extraneous effects not attributed to detection non-linearities. Also, using round

beam pipes have weaker non-linearities and may serve as a test bed for Head-Tail

Motion experiments.

I. INTRODUCTION

In accelerator-based experiments, such as those conducted at Cornell’s Electron/Positron
Storage Ring (CESR),experiment design utiliizes non-invasive detection techniques. One
such technique is the use of beam position monitors (BPMs) for detecting the instantaneous
positions of charged bunches within the vacuum chamber. BPM signals are in the form of
voltages occuring on electrodes which are translated into a scalar signal D(x, y) by methods
described briefly in a forthcoming section.[? ] As a result, much of the information from
BPM signals can be extracted from its frequency components by means of fourier transforms.
When analyzing this data, one must be able to differentiate true experimental results from
background noise caused by the intrinsic properties of the experiments’ instrumentation.
The latter is what I will expand upon in this report.

In the case of the CESR vacuum chamber, the BPM signal is heavily dependant on the
chamber’s geometry. The impact of this result can be understood by considering the main
contributor to the focus of CESR experiments: the electron cloud. As the charged bunches
within CESR are bent in their roughly circular trajectory, they emit photons which in turn
create photoelectrons off of the vacuum chamber’s walls. The build-up of the electron cloud
leads to non-uniform bunch motion, some of which is refered to as head-tail motion.[? ] The
way this kind of motion is detected is through the appearance of side bands in the fourier
spectra of the BPM position data. The problem arises when one cannot differentiate the
cause of the side bands as head-tail motion or intrinsic non-linearities of the BPM signal
itself. This example is just one of many experiments that depend on understanding how the
instruments’ non-linearities affect the data in order to accurately assess the information at
hand.
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II. INSTRUMENTATION

In the following section I will address an overview of bunch motion, CESR’s vacuum
chamber geometry, and BPM design and signal processing. Beginning with bunch motion
within CESR, it is important to note that for the entirety of this paper, I will treat the bunch
as a single, ultra-relativistic charged particle disregarding the accelerations from RF cavities
(assume constant velocity throught the ring) and suffering no influence from the electron
cloud previously mentioned. The purpose of my analysis is to find the non-linearities solely
due to the geometry and instrumentation, without extraneous perturbations.

A. Bunch Motion

For a traditional circular accelerator with focusing, defocusing, and bending magnets, it is
known that the motion of a charged particle can be described by a superposition of betatron
motion and energy oscillations.[? ] As a particles goes around the ring, different magnets
provide forces that prevent the particle from deviating from the ideal orbit. It is important
to note that these forces are not being continuously applied, but rather a particle encounters
them in short bursts of magnetic fields leading to a roughly sinusoidal path centered about
the machine’s ideal orbit.

Betatron motion is analytically represented by sine-like motion that is caused by the
intermittent magnet bends and quadrupoles. The true motion of a charged particle is by no
means a perfect sinusoidal function, but rather described by a more complex equation

x(s, t) = a
√
β(s)cos(ωβt+ φ0s)

Where β(s) is a function which satisfies a non-linear ordinary differential equation describing
the discrete magnetic interactions throughout the ring, a and φ0s being constants determined
by initial conditions, and s serves as the parametric variable describing the relative longitu-
dinal position of the particle within the ring. At any specific point along the ring, s = s0,
β(s) is constant, leaving us with

x(t)s0 = kβcos(ωβt+ φ0s)

This make the expression a purely sinusoid. This serves as a perfectly valid description
of betatron motion at s = s0 (for very much the same reason high order harmonics are
indistinguishable from a base frequency in a discrete fourier transform). Since the function
β(s) is only dependant of position, if we choose a stationary sampling position, the nature
of discrete sampling represents the true motion of the bunch at the location s0 alone. As
long as the betatron function agrees with all sampling points, it is a valid description of the
motion at the specified location, as illustrated below in Figure 1.
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FIG. 1: Note that the motion between sampling points is unknown to the researcher. Figure

extracted from page 42 of The Physics of Electron Storage Rings: An Introduction by M.

Sands[? ]

Betatron oscillations are present in both horizontal beam motion and in the vertical. The
frequencies of these two independent oscillations are different, ωx

2π
= 220 kHz, ωy

2π
= 230 kHz.

Apart from this disparity, there is one more major difference between horizontal and vertical
motion: the energy oscillation. As a particle moves around the ring, the average energy varies
from the ideal energy assumed by the machine’s design. This causes the particle oscillate
horizontally, traveling in an orbit of smaller radius to an orbit of larger radius and back. The
reason being that any imperfection in the horzontal direction will cause a slightly larger or
smaller orbit, which in turn is compensated by CESR’s magnets. Take the example where
it decreases its radius; this causes the particles to experience a stronger force as it passes
through the bending magnets relative to a particle on an ideal orbit since it is traveling
slightly faster than its outer radii neighbors. If a particle takes a smaller radius, the rbit
has a smaller circumference and thus has a smaller distance to travel. This means that it
speeds up relative to the ideal particle. As a result, the particle looses energy, which in
turn has it experience weaker magnetic forces leading to less bending, allowing the particle
to move to a larger orbital radius. Similarly, with a larger radius, the orbit is larger and
the particle ”speeds down” relative to its ideal-orbit counterpart. This finally causes forces
that drive the particle back towards a smaller orbital radius. This behavior is branded
”energy oscillation” with an angular frequency ωs, the synchrotron frequency, which occurs
dominantly in the horizontal plane by design. The equation used to describe this motion
is x(t)s = ηxδ0cos(ωst+ φ0s) where ηx is a machine-designed orbit dispersion function and
δ0 is a dimensionless parameter describing the peak amplitude of the oscillation. For very
strong disturbances, the motion can be dampened, but there will always be a dispersion of
energy within the bunch causing oscillations orbital radii.

Finally we can write our bunch motion using two equations decribing the horizontal and
vertical motion separately:

x(t) = x0cos(ωxt+ φ0x) + ηδ0cos(ωst+ φ0s) (1)
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y(t) = y0cos(ωyt+ φ0y) (2)

B. CESR Geometry and BPM Design

One of the most commonly found nuances in experiments conducted with CESR is related
to the complexity of the vacuum chamber’s geometry. For most of the length of the storage
ring, the vacuum chamber lacks a simple analytic function suited to describe the shape
of the pipe and be used in simulations of experiments. For this reason, it is common to
approximate the geometry of the CESR vacuum chamber to an ellipse or a similar simple
shape. In my analysis I used an ellipsoidal geometry to mimic the dimensions of actual
CESR beam pipe as shown in Figure 2.

Beam Position Monitors on CESR are housed in flat, circular blocks, two per block and
two blocks per assembly (Figure 2). Signals from BPMs are a result of the build-up of
charge on the surface of the ”buttons.” The signal, denoted D(x, y), can be simulated given
the electric field produced by a charged particle. In CESR’s geometry, the electric field
produced by a bunch passing by is not easily obtained and must also be approximated
by simulation. The process for doing so will be described in a forthcoming section. Note
that in the proposed geometry the ”dimples” formed towards the center make a somewhat
horizontal, flat region. This region is used to simulate the flat cut-out created by the BPM
blocks in the physical machine.
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FIG. 2: Top Left: Cross-section of CESR vacuum chamber. Note two BPM blocks on the top

and bottom walls. Top Right: Perspective of CESR vacuum chamber. Note flat circular cut-outs

where the BPMs (gold) sit. Bottom: Simulated CESR vacuum chamber. Height: 52 mm, Width:

86 mm. All measurements on drawings are in mm.

[? ]

III. SIMULATION DESIGN

Referring back to Eqns.(1-2), the betatron and energy oscillation functions rely on peak
amplitude parameters x0, y0, and ηxδ0. These three parameters indicate the maximum ampi-
tudes of each component of the motion. In practice, the energy oscillation peak amplitude,
η0δ0, is determined experimentally by looking at data from exciting the bunches with longitu-
dinal kicks produced by varying the phase of the RF cavities and recording the machine’s ηx
value. As a result, the value of our energy oscillation peak amplitude came from a recorded
experiment, that of a CESRTA Project experiment labeled Data Set 166.[? ]

Peak amplitude values for the horizontal and vertical betatron oscillations are chosen a
very different way. Similar to the energy oscillation value, it begins with experimental data.
Betatron motion fairly familiar and well documented. This lead researchers to develop an
empirical formula relating the conditions in CESR to the RMS of the motion. For a given an
average beam current (Ib) and two physical machine-given constants (x′, y′), we can use the
spectrum of the position to translate the amplitudes of the horizontal and vertical spectrum
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analyzer amplitudes (Ax, Ay) to determine xrms and yrms using the following equations:

xrms =
x′

Ib
10

Ax
20

yrms =
y′

Ib
10

Ay
20

A. Data Set 166

One of the main motivations of this project is the data from a CESRTA experiment, Data
Set 166, shown below as Figure 3. The graphed spectrum displays midrange frequencies such
as the horizontal betatron frequency (ωh = 2π220kHz) and the vertical betatron frequency
(ωv = 2π230kHz), as well as ”side bands” of mixed frequencies such as ωv +ωs (2π255kHz)
and ωv − ωs (2π205kHz) for the last bunch in a train of 30 bunches under the influence of
the effect from an electron cloud.

FIG. 3: Position FFT Spectrum for CESRTA experiment: Data Set 166. Shown above is the

position spectrum for the 30th bunch in a 30 bunch positron train in CESR.[? ]

Within CESRTA, there is a significant amount of work done that suggests some of these
mixed frequencies (ωv ±ωs) may be a result of Head-Tail Motion, an effect originating from
a build-up of an electron cloud within the CESR vacuum chamber perturbing the charged
bunches. As a bunch goes around CESR, the bunch as a whole moves in an up-down
fashion at the vertical betatron frequency Fv. Then, within the bunch, different particles
have different energies, which deviate with a fraction energy error δ fromt the ideal energy
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E0. Particles that are at a radius within the ideal have energy E < E0 travel a shorter
distance around the ring, making them gain velocity relative to the ideal particle in the
center. The opposite is true for particles with energy E > E0. This has the particles rotate
around the center of the bunch at the synchrotron frequency Fs as illustrated in Figure
4. Finally, if there is an asymmetric perturbance of the bunch, it will ”wobble” and cause
the motion to couple the up-down movement to the rotation. This manifests itself in the
motion spectrum as the side bands, Fv ± Fs. In Figure 3 we can see a significant signal at
these frequencies, but it is not enough to say that it is due to Heat-Tail Motion because an
alternative explanation places the cause due to the instrinsic non-linearities of the BPMs.

FIG. 4: Head-Tail Motion: External perturbances from the exterior such as a build-up of an

electron cloud in the vacuum chamber leads to ”wobbles” in the vertical position of the head of

the bunch with respect to the tail of the buch and thus the bunch precesses at frequencies ωv +ωs
and ωv − ωs [? ]

In order to test these competing hypotheses, we decided to simulate bunch motion and
the associated BPM signals. As mentioned in the previous section, it is possible to find
adequate parameters to simulate bunch positions such as those contributing to Data Set
166 using the frequency spectrum of previously recorded data. Looking at Figure 3, we can
see that the amplitude of Fv is about -32 dB while the amplitude of Fh averages to -67 dB.
Using these amplitudes and using the other physical parameters for the BPM used in the
experiment, we find :

x0 =
√

2xrms =
√

2
81.3

.73
10

−67
20 ≈ 70µm

y0 =
√

2yrms =
√

2
45.3

.73
10

−32
20 ≈ 2.2mm

The peak energy oscillation in Data Set 166 is estimated to be on the order of ηxδ0 = 2.7mm.
This gives us enough information to simulate betatron motion in both horizontal and vertical
directions as well as the energy oscillation term.

B. Conformal Mapping

The electric field and equipotential lines are orthogonal by definition. At any boundary of
a conductor, we can say there is an equipotential line on the conducting inner surface itself.
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We also know that the electric field at that boundary is orthogonal to the surface and also
that we can use stream functions to describe the field.[? ] Suppose we have a conducting
surface like that of CESR’s vacuum chamber. If there is a charged particle inside, there
exists an electric field that permeates the space within the pipe and terminates orthogonal
to the walls of the pipe. Parameterize the electric field as a stream function on the complex
plane; we can couple the function describing the equipotential surface to the stream function
by having the stream function U be the real part of a complex function W = U + ιV with V
describing the points of equipotential as V = constant.[? ] By the properties of conformal
transformation (Riemann’s Mapping Theorem) we know that we can map this geometry
into any other simply connected geometry using only conformal transformations.[? ] As a
result, if we map the equipotential surface, the stream functions are still orthogonal to it.
Previously, I presented a simulation of CESR’s vacuum chamber without describing how or
why this type of geometry was chosen (Figure 2). The simulated ”Pseudo-CESR” geometry
is made by mapping a circle of radius 15 (mm) using three conformal transformations.
Beginning with the circle, we first applied an inversion transformation (z = x+ ιy):

T (z) =
α2

z

For this first transformation we used α = 2.2. The next transformation is a variation of
Joukowsky’s transformation by replacing + with − :

T (z) = z − a2

z2

In this trnasformation, a = 1.7. Finally, our third transformation is the same as the first,
but with α = 3.17 instead. This leads us to our final product, again illustrated in Figure 2.

Now suppose we have a series of points within the Pseudo-CESR geometry representing
the various passes of a positron bunch. Use the inverse of the three transformations (and
in reverse order), we can map our Pseudo-CESR geometry back to the original r = 15mm
circle. Similar to when we transformed the surface, we are now also transforming the stream
functions lying orthogonal to the new round pipe. Were we to integrate the stream function
over the entire CESR pipe, we would find the total surface charge. By properties of conformal
transformations, this integration, if conducted over the transformed geometry, should be
invariant. If we were to choose two points A and B, integrate the stream function between
these two points, we can obtain the fraction of surface charge present between the points.
Again, regardless of which geometry is being evaluated, as long as we keep track of the
points and transform them accordingly, the integration of the surface charge is insensitive to
the geometry. The significance of this result becomes clear when we try to find an equation
for the electric field in the CESR geometry. As can be quickly deduced, it is not trivial, but
if we map to the circular geometry, the problem becomes familiar and is easily solved by the
method of image charges.

C. Calculating Signals

BPMs in essence are very much like guitar pick-ups. They are conductors connected to
wires which send signals whenever charge moves on their surfaces. In our simulations, we
determine the fraction of surface charge present on a BPM button and use this output as
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the signal D(x, y) = ε0
λ

∫
pickup

−→
E • n̂ dL, where λ is the line charge density. Using method

of images we can replace a point charge in 2D space with a 3D line charge yielding the
same answer. Since the BPM button and electric field has several intricacies that keep us
from describing it easily in ful, we will approximate the button of radius R as being made

up of n smaller sub-buttons of width wstep =
√
πR
n

totaling the same area as the original
BPM button and the field normal to the button as being uniform throughout the smaller
sub-buttons evaluated the center of each sub-button. Thus

D(x, y) ≈ ε0
λ

∑
|Ei|wstep

. As stated before, we can find the electric field in the circular geometry quite easily by
method of images. First we know the potential to be:

ϕ(x, y) =
λ

2πε0

√√√√(x− xb)2 + (y − yb)2
(x− xi)2 + (y − yi)2

Taking the negative gradient and substituting the image charge positons with bunch posi-

tions xi = xbR
2

r2
b

, yi = ybR
2

r2
b

, we find the electric field at a position to be: (rb =radius from

bunch to position being evaluated, R =15mm)

Ex =
λ

2πε0

 x− xbR
2

r2
b

(x− xbR2

r2
b

)2 + (y − ybR2

r2
b

)2
− x− xb

(x− xb)2 + (y − yb)2



Ey =
λ

2πε0

 y − ybR
2

r2
b

(x− xbR2

r2
b

)2 + (y − ybR2

r2
b

)2
− y − yb

(x− xb)2 + (y − yb)2


Cancelling λ and ε we arrive at our discrete BPM signal function:

D(x, y) =
1

2
√
π

n∑
i=1

√
E2
x + E2

y

R

n

IV. SIMULATION RESULTS

The first simulation of BPM signals used the parameters from Data Set 166 in order to
debug the programs and compare the simulations to real data. Figure 4 shows a position
spectrum of the simulated Data Set 166. In this figure it is clear that frequencies from
non-linearities are present. Two of the most prominent ones are our side bands of interest
Fv/pmFs. These side bands have a peak signal amplitude of about -65 dB only 20 dB below
the very strong Fv peak. They are by far the strongest non-linear frequency signal. Other
significant non-linear frequencies are Fvpm Fh at 10 and 60 kHz, with the latter peaking at -
75 dB. It is clear that the synchrotron and vertical betatron frequencies display the strongest
signals, so it comes as no surprise that the quadratic and cubic harmonics of each (2Fs (52
kHz), 3Fs(78 kHz), 2Fv (70 kHz), and 3Fv (300 kHz)) are prominent and distinctive, 3Fv
being the smallest of all. Also any other cross-terms involving these frequencies such as
Fh-Fs at 194 kHz, tend to have a characteristic peaks indicating its influence in the signals.
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FIG. 5: Simulated Position Spectrum of Data Set 166: Note the large peaks at Fs (26 kHz), Fh

(220 kHz), and Fv (230 kHz) as well as prominent side bands at 204 and 256 kHz

The cross-terms originate from the calculation of the BPM signals. Recall in Eqns. (1-
2) that the positions were described as the superposition of three sinusoidal terms with
different frequencies. Also, recall that in calculating the BPM signals, the positions were
not only transformed, but also the electric field equation contain many different exponents
which make the overall calculation very non-linear. Take the example of simply squaring
the horizontal positions:

x2(t) = x20cos
2(ωht) + x0ηxδ0cos(ωht)cos(ωst) + (ηxδ0)

2cos2(ωst)

=
1

2
x20cos(2ωst) +

1

2
x0ηxδ0(cos(ωht+ ωst) + cos(ωht− ωst)) +

1

2
(ηxδ0)

2cos(2ωht) (3)

This illustrates how cross-terms can originate. An element of note and importance is
how the different frequencies scale. Suppose we were to double the energy oscillation peak
amplitude, the coefficient in front of the 2Fs frequency would grow as the square (quadratic
growth), thus by a factor of four in this case, while the Fh±Fs frequency would only double
(linear growth), and the Fh frequency would remain constant. The next step in the simula-
tion was looking for the growth, or lack thereof, of the different cross-frequencies by holding
all but one of parameters constant.
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FIG. 6: Left: Pseudo-CESR geometry. Roughly 52 x 86 mm. Right: Round geometry. Diameter

of 66 mm. Size was chosen by having both geometries with roughly equal area. BPMs were

maintained at same positions on x-axis with same size.

A. Linear Terms

Another question that motivated this project was how much more non-linearity is present
in the CESR geometry than a circular pipe. Future experiments may want to know which
geometry would be ideal for certain measurements. To answer this question, we will compare
the results of the BPM signal calculations in the pseudo-CESR geometry to those calculated
with a circular geometry. To begin, we could note that in all of the simulations, regardless of
which parameters are held constant or how big or small the peak amplitudes are made, the
Fourier spectrum of the bunch positions always have a peak at the three main frequencies
Fs, Fh, and Fv. This allows us to compare relative signal strength between our different
geometries.

FIG. 7: Left: Round geometry–Vertical betatron is far greater than horizontal frequencies. Right:

Pseudo-CESR– Overall stronger signals. Parameter being varied is shown on legend, others held

constant at 0.0625 mm.

In Figure 7, we can see the three linear terms in three different situations. When the peak
vertical betatron and energy oscillation amplitudes are held constant at 0.0625 mm while
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varying the horizontal betatron peak amplitude by powers of 2, the signal peaks behave as
expected. The horizontal betaron frequency, Fh, grows linearly, while the other two terms
Fs, and Fv naturally remain constant since we forced their amplitudes to remain fixed.
Note that all signals are stronger in the CESR geometry by about 10 dB, but in the Round
geometry, the two horizontal frequencies are much smaller than that of the vertical betatron
signal. An explanation of this comes from the BPM positions on the geometries. Though the
BPM location was set to be the same size and location (on the x-axis), when applying the
appropriate conformal mappings on the pseudo-CESR geometry, the BPM positions ”smear”
onto a greater extent on the x-axis, leading to greater sensitivity to horizontal motion in
the pseudo-CESR case. Regardless of this side-note, the signals should be stronger in the
pseudo-CESR case since the BPM hangs lower and thus closer to the bunches.

B. Quadratic Terms

A more interesting set of frequencies are those which mix the three principle ones. A
characteristic and interesting aspect of these frequencies is how their amplitudes grow as
the different parameters are varied. Take the exaple in Figure 8 where both the vertical
betatron and horizontal oscillation peak amplitudes are held constant at 1 mm, while x0
runs from 0.0625 to 8 mm. The most obvious line is that of 2Fh, which has the steepest
slope of all. In fact, the amplitude of the 2Fs peak growns at an increasing rate, arguably
as a quadratic function, compared to the linear growth of Fs in the previous section. This
comes as a result of the way sinusoidal terms’ amplitudes scale when multiplied. From Eqn.
3, note that the coefficient in front of cos2(ωxt) = 1

2
cos(2ωxt) is squared. Thus, when x0 is

increased, the amplitude on 2Fs grows quadratically. Also, observe that the cross-terms with
Fh grow linearly, while those completely lacking the frequency remain constant. Again, this
comes as a result of the presence of x0 in the coefficients corresponding to the frequencies.
The exception to this is an overall increase of all of the frequency amplitudes as the varying
parameter is driven harder, an effect I will dub ’s’houlder growth.”

Shoulder growth is the result of increasing the overall signal at a level which begins to
drive the base (floor) level of the Position Fourier Transform. This can then lead to two
situations, the first is that the base level will be dragged above the true signal level of some
of the frequecies, burying the peaks and leading us to see the amplitude of those frequencies
grow just as the base level grows. The other possibility is that strong peaks can ”smear
out” onto nearby frequencies and increases these amplitudes as the strong peak grows. The
cause behind this is the nature of discrete Fourier Transforms. Were we to use an infinite
sampling time and have an infinte amount of data, this would not exists and all peaks would
be independent dirac-delta functions, but in discrete Fourier Transforms, peaks diffuse to
nearby frequencies.
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FIG. 8: Left: y0 = ηxδ0 = 1mm; 2Fh grows in a quadratic fashion. Fv±Fh and Fh±Fs increase

linearly, but terms lacking Fh remain constant. Right: y0 = ηxδ0 = 1mm; note shoulder growth

by comparing the terms that should be constant to the graph on the left.

Looking closely at the behavior of frequency ”sign pairs,” frequencies such as Fh+Fs
pair with Fh−Fs, we can see that either they always remain very close to each other, or
they converge as the amplitudes of the frequecies increase. This is true on al of our graphs
regarless of which frequency is being excited. The importance of this lies in noting that if
there were side bands with different amplitudes, as in Data Set 166 (Figure 3), there is a
high chance of having additional phenomena present.

V. CONCLUSIONS

The results of the simulations performed on both the pseudo-CESR and round pipe
geometries can be used to interpret individual graphs and spectra, but given the motivation
presented by CESRTA, I have generalized the results to three conclusions. The first of these
is the convergence of sign pair amplitudes regardless of excitation levels or the freuqncy
being varied. As noted in previous sections, frequencies pairs such as Fv+Fh – F−Fh or
Fv+Fs – Fv−Fs tend to converge towards a mutual amplitude. If we divert our attention
to CESRTA’s Data Set 166 on Figure 3, we can see that there is about a 7 dB discrepancy
between the side band amplitudes. Though this does not prove the presence of Head-Tail
Motion, it does indicate the presence of some effect not due to BPM signal non-linearities.

The second conclusion is a result of the smaller cross-term BPM signal amplitude on the
round pipe geometry. All of the data gathered in the simulations show that BPMs in the
geometry detect the horizontal frequencies with weaker amplitudes. The relative strength of
vertical to horizonal frequencies is more atttenuated in the round than in the pseudo-CESR
geometry. This tells us that the synchrotron frequency and the cross-terms involving Fs are
smaller, suggesting that round vacuum chambers would serve as better the better testing
bed for head-tail motion.

The last conclusion is an alternate way to decrease amplitudes of non-linear signals in-
volving the synchrotron frequency–lower the dispersion constant ηx. Recall that the peak
amplitude of synchroton motion is proportional to ηx. If we were to choose experimental
conditions minimizing ηx and thus attenuating Fs. This will eliminate non-linearities in-
volving synchrotron motion, but then it brings up the question of how Head-Tail Motion is
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generated. This, though, is beyond the scope of the result presented here, but will be an
interesting task to tackle.
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