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Abstract
The quality of the electron beam and resultant x-ray radi-
ation produced by the proposed Energy Recovery Linear
Accelerator (ERL) under development at Cornell Univer-
sity is limited by the quality of the electron bunch produced
at the photocathode in the injector. The shape of the emit-
ted electron bunch is determined by the shape of the laser
pulse that strikes the cathode. The goal of this project is
to use an adaptive optics system to shape the laser pulse
and remove unwanted aberrations in the wavefront, allow-
ing for the optimization of the electron bunch shape and
improving the overall performance of the ERL.

1 Introduction and Background
The proposed energy recovery linear accelerator (ERL) cur-
rently under development at Cornell University is a new ad-
vanced synchrotron radiation source. In the ERL, electron
bunches are injected into a linac and accelerated through a
series of superconducting RF cavities, complete one loop
around the Cornell Electron Storage Ring (CESR) emit-
ting bright x-ray radiation, and finally, pass through the
RF cavities of the linac 180 degree out of phase and are
decelerated to their original injection energy. The decel-
erated electrons are sent to a beam dump and their energy
is recycled. The photoinjector used in the ERL contains a
high energy 520nm, 1.3GHz laser which strikes a photo-
cathode and emits an electron bunch which is then accel-
erated through a series of superconducting RF cavities and
injected into the linac. The brightness of the x-rays emitted
by the ERL is largely determined by the quality of the elec-
tron pulse produced by the photocathode. The shape of the
electron bunch leaving the photocathode is determined by
the shape of the laser pulse, so the quality of the electron
beam can be optimized by choosing a laser pulse shape that
will produce a high quality, low-emittance electron pulse.
However,as the laser pulse propagates to the photocathode,
it acquires unwanted aberrations which alter the shape of

the wavefront and reduce the quality of the electron pulse

Project Goals:

The goals of this project were first, to correct the wave-
front of the laser, eliminating any aberrations introduced
by the laser’s propagation through space and various opti-
cal elements between the laser and the photocathode, and
secondly, to produce an arbitrary pulse shape at the pho-
tocathode. These goals can be accomplished by using an
adaptive optics system to shape the wavefront of the laser
pulse. The adaptive optics set-up used for this project will
not be constructed or tested with the ERL laser; instead,
a low-power, 532nm, non-pulsed laser will be used, and
if the system is sufficiently effective, an analogous system
will be employed in the ERL.

2 Relevant Theory
Fourier Optics:

An understanding of Fourier Optics is important for this
project because it describes the phase propagation of light
and can be used to determine how the phase of a beam
changes as it propagates through space and passes through
optics. The propagation of a wavefront through space is
described by the equation:

E(x, y, z) =
ik

2πz
eikzeik(x

2+y2)/2z

×
∫ ∞
−∞

∫ ∞
−∞

f(ξ, η)eik(ξ
2+η2)/2ze−ik((xξ+yη)/z) dξ dη

A focusing lens adds a phase of e−ik(x
2+y2)/2f to the in-

coming beam. If the field of the incoming beam is a con-
stant function E(x, y, 0) = Aiψ over the aperture of the
lens (i.e. the beam is flat), it can be shown that if the beam
propagates for one focal length after passing through the
lens and picking up the additional phase, its electric field
will be

E(x, y, f) =
ik

2πf
eikfeik(x

2+y2)/2fAeiψδ(kx/f, ky/f)
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In other words, if a flat-phase beam passes through a
lens and propagates for one focal length, the resulting elec-
tric field will all be concentrated at the point (x, y) = (0, 0).

If the field of the incoming beam at the aperture of the
lens, E(x,y), is not constant, the field of the beam after pass-
ing through the lens and propagating for one focal length is

E(x, y, f) =
ik

2πf
eikfeik(x

2+y2)/2fE′(kx/f, ky/f)

where E’ is the spatial Fourier transform of E. These
results show that at the transform plane (one focal length
past the lens), the intensity distribution of the beam is re-
lated to the square of the amplitude of Fourier Transform
of the input beam. Therefore, changing the phase of the
input beam results in an altered intensity distribution at the
transform plane. This correlation between the phase of the
beam and the intensity at the transform plane can be ap-
plied to the problem of 3D laser pulse shaping: by adding
an appropriate phase to the input beam, an arbitrary inten-
sity distribution can be produced at the transform plane.

Zernike Polynomials:

Zernike Polynomials are a set of polynomials commonly
used in optics that are orthogonal over a unit disk. It is
convenient to use these polynomials as a set of basis and to
use them to describe optical aberrations. Different Zernike
modes correspond to different kinds of aberrations (See fig-
ure 1), and any optical phase can be written as a weighted
sum of Zernike Polynomials. Knowledge of this set of
polynomials is important for this project because the soft-
ware used in the adaptive optics system requires the phase
of the wavefront to be input in terms of Zernike polynomi-
als. The mathematical form of the Zernike polynomials is
shown below:
Even polynomials:

Zmn (ρ, ϕ) = Rmn (ρ) cos(mϕ)

Odd Polynoials:

Z−mn (ρ, ϕ) = Rmn (ρ) sin(mϕ)

where

Rmn (ρ) =

(n−m)/2∑
k=0

(−1)k(n− k)!
k!((n+m)/2− k)!((n−m)/2− k)!

ρn−2k

Figure 1: Zernike Modes [1]

3 Experimental Methods
The adaptive optics system used in this experiment was a
commerciallly available system manufactured by Okotech
The system includes three components: a wavefront sen-
sor, a deformable mirror, and Frontsurfer adaptive optics
software

Wavefront Sensor

The wavefront sensor (WFS) operates on the same prin-
ciple as a Shack-Hartmann sensor. The incoming beam
passes through an array of lenslets and is focused onto a
sensor. If the incoming beam is collimated the wavefront
is flat, and therefore it will pass directly through the lenslet
array and focus to a point on the sensor directly behind
each lenslet. However, if the wavefront is not flat, it will
pass through the lenslets in the array at different angles
and the points of focus on the sensor will be shifted. By
analyzing the direction and amount by which each spot is
shifted on the sensor from the flat-wave pattern, the phase
of the wavefront can be reconstructed. A schematic of a
Shack-Hartmann sensor is shown in figure 2. The wave-
front sensor used in this project contained a lenslet array
of 127 microlenses arranged in a 3.9mm hexagonal grid; in
order to reconstruct the wavefront, the pattern formed on
the sensor by the incoming beamed is compared to an ideal
hexagonal grid.

Figure 2: Shack-Hartmann Sensor [7]
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Deformable Mirror

An OKOTech micromachined membrane deformable
mirror (MMDM) with a 37-channel, 12mm hexagonal ac-
tuator structure and a 15mm aperture was used. A picture
and schematic of the MMDM are shown in figure 3.

Figure 3: Micromachined Membrane Deformable Mirror
[10]

Applying voltage to the actuators deforms the mirror
by applying an attractive force on the membrane, pulling
it towards the actuator. The deformable mirror is used to
change the phase of the incoming laser beam, and the shape
of the added phase corresponds directly to the shape of the
mirror deformation. By applying the appropriate voltages
to the mirror actuators, the mirror membrane can be de-
formed into virtually any shape, and an arbitrary phase can
be produced. A simplified illustration of the correlation
between mirror deformation and the shape of the resulting
phase is shown in figure 4.

Figure 4: The deformation of the mirror causes parts of the
incoming waves to travel farther than others before reflec-
tion, causing a direct correlation between the deformation
shape and the phase shape of the reflected beam.

Frontsurfer Software

The software used consolidates the system, taking in
data from the wavefront sensor, analyzing it, and applying
voltages to the mirror actuators accordingly until the de-
sired wavefront shape is achieved.

Interfacing with the Wavefront Sensor:

The Frontsurfer software superimposes an ideal hexag-
onal reference grid onto the image of the spot pattern of the

beam passing through the WFS lenselet array, and recon-
structs the wavefront by analyzing the difference between
the reference and experimental hexagonal spot patterns.

Interfacing with the MMDM:

The voltage of each of the 37 MMDM actuators can be
set manually or a target function can be entered into the
software as a weighted sum of Zernike polynomials, with
the Zernike amplitudes input in microns. The software will
begin a feedback loop, intaking data from the WFS and ad-
justing the MMDM actuator voltages accordingly until the
target function is produced. If the aberration φn remaining
after the nth iteration corresponds to the set of actuator sig-
nals Xn, then the actuator signal Xn+1 at the next iteration
is described by the equation:

Xn+1 = Xn − gA−1φn

where g is the feedback coefficient which is always in the
range (0...1], A is the influence matrix of the mirror, and
the pseudo-inverse of A is found by singular value decom-
position:

A−1 = VS−1UT

U, S, and V are the singular value decomposition of

A = USVT

The columns of U comprise an orthonormal set of mir-
ror deformations, and the element of the diagonal matrix S
are the ”singular values” or gains of these modes

It is important to calibrate the mirror before running
feedback whenever the experimental set-up has been ad-
justed; calibration applies voltage to each of the actuators
sequentially, measures the response of the wavefront, and
calculates the singular values.

While in this project the MMDM was used to correct
static aberrations and to add constant phases to the beam,
the software provides feedback and runs continuous itera-
tions to allow for the correction of dynamic aberrations.

Other Key Features:

Singular Values: Frontsurfer software displays the num-
ber of active modes of the mirror. Which modes are ac-
tive and which are not is determined by setting a threshold
on the singular values corresponding to each mode (in this
case, singular values >0.01 were classified as active; the
value of the threshold is adjustable in the Frontsurfer soft-
ware). The number of active modes is a good indicator of
whether or not the incoming beam is the correct size. If
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the beam is too small, there will be fewer active modes be-
cause the beam will not cover the entire surface of the ac-
tuator structure, so movement to peripheral actuators will
not be able to produce the desired effect on the shape of
the beam. Thus, if the program is failing to generate target
phases effectively, a check of the number of active modes
of the mirror can help identify the cause of the error.

Final Report: After running feedback to generate a
target function, a final report of the Zernike polynomials
comprising the generated wavefront is produced. This re-
port describes the final phase of the wavefront in terms of
Zernike modes, listing the coefficient of each mode and
highlighting the dominant component. Graphing this data
and comparing it to a graph of the target function provides
a simple way to determine how successfully the software
reproduced the target function.

Feedback Loop: The software can run a continuous
feedback loop displaying a bar graph indicating the weight
of various low-order aberrations, including defocus, astig-
matism, and coma; this allows the user to instantaneously
observe the effects of adjustments to the optical system.
This feature is especially useful when trying to reduce aber-
rations introduced by imprecise alignment of optical com-
ponents. However, it is important to recall that the MMDM
must be recalibrated after every adjustment of the experi-
mental set-up so it is best to use a flat mirror rather than
the MMDM when using the feedback loop for alignment
purposes, or alternatively, to make adjustments in small in-
crements and recalibrate the MMDM often throughout the
process.

Additional Data: In addition to a reconstruction of
the wavefront, Frontsurfer software generates an interfer-
ogram, and an image of the far-field intensity distribution.
The interferogram proved helpful in determining whether
the mirror was successfully generating target functions by
comparing the interferograms produced by various Zernike
aberrations to those shown in the technical passport of the
MMDM used.

An image of the various data types produced by the
Frontsurfer software is shown in figure 5.

4 Experimental Process and Results
Goal 1: Cleaning Up the Laser Beam

The first goal of this project was to remove any un-
wanted aberrations in the wavefront and to return the wave-
front to a flat-phase wave. The initial experimental set-up
is shown in figure 6.

Figure 5: Frontsurfer Software Interface: Clockwise from
Top Left: (1) Hartmannogram, (2) Wavefront Reconstruc-
tion,(3) Interferogram, (4) Far-Field Intensity Distribution
(5) Beam on Wavefront Sensor

Figure 6: Initial Experimental Set-Up

4



Using this set-up, it was possible to generate certain
low-order Zernike polynomial target functions (specifically,
astigmatism Z−22 and defocus Z0

2 ); however, the interfero-
grams for higher Zernike polynomials did not agree well
with those shown in the technical passport of the MMDM
used. At its best, the system was capable of producing a
flat-phase wavefront with a peak-to-valley distance of 0.25
waves; while this was a promising initial result, a flatness
of 0.1 wave was desired. An image of a flattened wavefront
produced with this experimental set-up is shown in figure
7.

Figure 7: Results from Initial Set-Up

Although the system was able to flatten waves some-
what effectively, its inability to produce waves with a peak-
to-valley distance less than 0.25 waves or to generate higher-
order Zernike terms imposed severe limits on the useful-
ness of the system. To determine the source of the non-
flatness in the final wavefront, the WFS was used to de-
termine the flatness of the beam at various points along
the beam path. It was measured directly after collimation,
directly after passing through the pellicle, in the MMDM
plane, and in the plane of lens 2. At all points, the peak-
to-valley distance was between 0.215 and 0.250 waves, and
adjustments in the set-up only decreased the flatness.

One potential explanation for the non-flatness of the
wavefront was the size of the beam.It was realized that
only 18 (out of 37 possible) modes of the mirror were ac-
tive. The beam was measured using a CCD camera and
found to be 4mm, which was an appropriate size for the
3.9mm wavefront sensor, but too small for the 12mm actu-
ator structure of the MMDM. The beam was expanded at
the MMDM and then resized so it would not be too large
for the wavefront sensor.A schematic of the new set-up is
shown in figure 8.

With the new set-up, 31 modes of the MMDM were ac-
tive and the performance of the system improved dramati-
cally. The Zernike aberrations demonstrated in the MMDM
technical passport were input as target functions and the
generated wavefront and interferograms matched those shown
in the passport adequately (the lower orders matched al-
most perfectly).

The system was also able to repeatedly generate waves
with a peak-to-valley distance of less than 0.1 waves. This
indicates that the system is in fact an effective mechanism
for removing any unwanted aberrations that alter the wave-
front from its original flat phase. An image of the system

Figure 8: Experimental Set-Up with Resized Beam

flattening a wavefront is shown in figure 9.

Figure 9: Result from Improved Set-Up

Shaping the Laser Pulse

The second goal of this project was to produce a laser
beam with an arbitrary shape by using the MMDM to add
an appropriate phase passing the beam through a Fourier
transforming lens. As previously stated, the intensity dis-
tribution of the resultant image on the focal plane is related
to the square of the Fourier transform of the input beam.
A focusing lens and a CCD camera were inserted into the
system. The function of the focusing lens was to take the
Fourier transform of the beam, and the CCD was placed in
the transform plane (where the photocathode would be po-
sitioned in the ERL) to observe the intensity distribution.
A schematic of this set-up is shown in figure 10

As a first step to determining whether this adaptive op-
tics system could be used to produce a beam of arbitrary
shape, an attempt to transform a Gaussian beam into a flat-
top was made.

Transforming a Gaussian Beam into a Flat-Top:

First, the phase needed to transform a Gaussian into a
flat-top beam must be calculated, a shown below:

The calculation to determine the phase is carried out in
three steps. The calculations consider an incoming beam
from z = −∞, passes through a lens and beam-shaping
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Figure 10: Experimental Set-Up with CCD

element, and propagating to z = f .
1) Determine the constant A that defines the intensity

of the output beam by requiring that the energy of the in-
coming and outcoming beams are the same:

Ein =

∫ ∞
−∞

I(s/R) ds = R

∫ ∞
−∞

I(s) ds

Eout =
AR

D

∫ ∞
−∞

Q(s/D) ds = AR

∫ ∞
−∞

Q(s) ds

A =

∫∞
−∞ I(s) ds∫∞
−∞Q(s) ds

In the case of a radial gaussian beam,

Q = 1; s < 1

Q = 0; s > 1

Using these restrictions on Q to solve for A:

A =
1

2π

2) The second step is to describe a function that maps
rays at the plane of the phase-adding optical element (in
this case an MMDM) to rays at the focal plane. More
specifically, a function that maps rays at the lateral position
x = Rξ at the MMDM to rays at the position x = Dα(ξ))
at the focal plane. This is done by asserting that a bundle of
rays at the MMDM plane has the same energy as the same
bundle of rays in the focal plane. Mathematically, this con-
dition is represented by the following equation:∫ ξ

−∞
I(s) ds = A

∫ ∞
α(ξ)

Q(s) ds

While α(ξ) is defined by this equation, it will prove more
convenient to instead consider its derivative:

AQ(α)
dα

dξ
= −I(ξ)

For the case of converting a Gaussian to a flat-top beam,

α(ξ) =
√
2π
√
1− e−ξ2

3) The third step is to calculate the function φ(ξ) that
describes the phase shift introduced by the deformable mir-
ror. This is done by determining the time it takes for a ray
to travel from its source, reflect off of the MMDM and pass
through the focusing lens, and propagate to the focal plane.
The travel time can be broken down into three parts: the
time to travel from the source (0,−L) to a point on the
MMDM (Rξ, 0), the time delay introduced as the beam en-
counters the MMDM at (Rξ,0), and the time for the beam
to travel from (Rξ, 0) on the MMDM to a point (Dα, f) at
the focal plane.

The total time traveled is

t(ξ, α) = tL(ξ) + tdelay(ξ) + tf (ξ, α)

t(ξ, α) =
1

c

(
L+

ξ2

2L

)
−ξ2 R

2

2fc
+φ(ξ)

RD

fc
+
f

c
+
(Dα−Rξ)2

2fc

To be consistent with Fermat’s principle, the travel time
of the beam must be stationary with respect to a beam that
starts from (0,−L), reaches the MMDM at a point (Rξ +
Rdξ, 0), and travels directly to (Dα, f) in the focal plane.
Therefore the travel time must satisfy the condition

∂t(ξ, α)

∂ξ
= 0

simplifying ∂/∂ξ(tL+ tdelay+ tf ) yields the simple equa-
tion:

dφ

dξ
= α(ξ)

Which can easily be solved for α(ξ)

α(ξ) =
√
2π
√
1− e−ξ2

Solving the differential shown above for φ(ξ) yields the
phase for converting a Gaussian to a flat-top beam:

φ(ξ) =
√
2π

∫ ξ

0

√
1− e−s2 ds

Because the beam passes through a Fourier transform-
ing lens after being reflected by the MMDM, the additional
phase of e−ik(x

2+y2)/2f added by the lens must be also be
taken into account and compensated for. Therefore, the to-
tal phase that must be added to the beam by the MMDM
is:

φ(ξ) =
Dfinalk

2f

∫ ξ

0

√
1− e−s2 ds

Once the phase has been calculated, it is necessary to
write it as a weighted sum of Zernike polynomials so the
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phase can be input into the Frontsurfer software. This cal-
culation takes advantage of the orthogonality of Zernike
polynomials, as shown below:

φ(r) =
∑

Zmn(r, φ)Amn

< φ(r)|Zpq >=
∑

< Zmn|Zpq > Amn

< φ(r)|δmpδnqAmn
Amn =< φ(r)|Zmn >

The Zernike coefficients were calculated using Mathemat-
ica and are shown in figure 11.

Figure 11: Zernike Coefficients to Transform a Gaussian
Beam into a Flat-Top

The calculated coefficients were input as the target func-
tion in the Frontsurfer software; the intensity profile of the
beam measured by the CCD compared to the results of a
MATLAB simulation of converting a Gaussian to a flat-
top is shown in figure 12. The MATLAB code, written
by Adam Bartnik, mathematically propagated the beam ac-
cording to Fourier optics (due to the symmetric nature of
the problem, Hankel transforms were used instead of Fourier
transforms) through the experimental set-up, adding the ap-
propriate phase at the MMDM plane, and measuring the
intensity distribution at the transform plane.

Figure 12: Comparison Between Experimental and Simu-
lated Flat-Top Beams

Notable features of the experimental results are the hexag-
onal shape of the beam and the bright fringes.

The actuator structure of the MMDM is hexagonal, so
the shape of the beam can be attributed to the mirror, al-
though the exact cause is less obvious. An incorrect initial
beam size was proposed as a potential cause for the un-
usual features of the beam. Figure 13 shows a comparison
between the experimental results and the results of the sim-
ulation when the initial size of the beam was 10 percent
larger, and 10 percent smaller, respectively, than the initial
beam size used to calculate phase.

Figure 13: Comparison between experimentally derived
”flat-top” and simulation results for an incorrect initial
beam size

It can be seen that the matlab simulations also exhibit
different intensities around the edges, possibly explaining
the bright fringes on the experimental results, but failing to
explain the hexagonal edges observed in the experimental
intensity distribution.

Clipping of the beam on the edge of the actuator struc-
ture was proposed as an explanation for the hexagonal in-
tensity distribution. To test this idea, the beam size was
reduced from 7.9mm to 5mm at the MMDM. An image of
the resultant intensity distribution is shown in figure 14.

Figure 14: Intensity Profile of 5mm at CCD Plane

While this eliminated the hexagonal shape of the beam,
strange edge behavior was still apparent and the beam was
not a flat-top. Other target functions were input, and it was
found that the system could not generate even low order
Zernike polynomials. The mirror was found to have only
19 active modes, which explained the systems failure to
produce target functions and indicating that the beam was
too small. The beam was increased to 5.75mm, and the
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resultant intensity distribution is shown in figure 15.

Figure 15: Intensity Distribution of 5.75mm at CCD Plane

The number of active modes of the MMDM was 28 and
the system was able to generate low order Zernike polyno-
mials, but higher orders could not be produced. The inten-
sity distribution, while slightly improved from the result of
the 5mm beam, still exhibited bright fringes and was not
flat. From these results it became apparent that systems
failure to produce a flat-top beam was not due solely to the
incorrect sizing of the beam.

It was found that when the calculated flat-top Zernike
coefficients were input as the target function, it maxed out
the voltage applied to the actuators of the MMDM, which
could explain the systems inability to produce a flat-top
beam. One proposed solution to this problem is to reduce
the magnitude of the phase, consequently reducing the co-
efficients of the Zernike polynomials so they could be input
into the software without maxing out the actuator voltages.
As shown previously, the phase added by the MMDM is

φ(ξ) =
Dfinalk

2f

∫ ξ

0

√
1− e−s2 ds

The magnitude of the phase can be reduced by increas-
ing the size of the initial beam. However, when a beam
size of 10mm (the largest beam size that could reasonably
be used without clipping on the MMDM actuator structure)
was used to recalculate the Zernike coefficients, they were
still too large to input as a target function in the software
without maxing out the actuator voltages. Retrospectively,
it can be seen that the Zernike coefficients should have been
recalculated when the beam was resized to 5mm and 5.75
mm because the phase φ depends on w, the initial beam
width. However, inputting the reduced beam size into the
calculations would have yielded even higher magnitude co-
efficients of the Zernike polynomials, so the undesirable
beam behavior exhibited in those tests cannot be attributed
to the failure to recalculate the Zernike polynomials.

Although reducing the phase by altering the initial beam
width proved impossible, other ways to reduce the phase
may still be effective. Using a Fourier transforming lens
with a longer focal length, and positioning the CCD in the

focal plane of the new lens would also decrease the phase.
Replacing the Fourier transforming lens would be simple
and convenient, and is a logical next step to take in this
project.

5 Conclusions
It was shown that the adaptive optics system employed can
effectively remove aberrations in flat wavefront, success-
fully flattening the beam to within 0.1 wave. While the
goal of producing an arbitrary beam shape was not com-
pleted, significant progress was made, potential sources of
the problems encountered were investigated, and possible
solutions and steps for the future continuation of this project
were proposed.
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