

Spectral Response of GaAs (Cs, NF₃) Photocathodes

Teresa Esposito Mentors: I. Bazarov, L. Cultrera, S. Karkare *August 10, 2012*

- Photocathode is used in ERL gun
- A laser pulse will trigger an electron bunch to be released
- Able to make electron bunches that are ideal for the ERL
 - High Quantum Efficiency
 - Low Mean Transverse
 Energy
 - Short time response

Three Step Model of Photoemission

- 1) Photon absorption by an electron causing excitation from valence band to conduction band
- 2) Diffusion of electrons to the surface
- 3) Electrons escape from the bulk to the vacuum

THREE STEP MODEL

GaAs Photocathodes

GaAs

Study Process of Photoemission

Cornell Laboratory for

Education (CLASSE)

Accelerator-based Sciences and

- Number of emitted electrons per incident photon
 - Shine a 532nm laser onto the surface of the cathode
 - Causes photoemission and creates a current
 - Current is measured using a picoammeter
 - Use laser power (Lp) and photocurrent (Pc) to calculate QE

 $QE = PC * h * C / Lp * e * \lambda$

- Sample 1:
 - P-doped with Zn, doping level 6.3x10¹⁸ and 1.9x10¹⁹ holes/cm³
 - Cleaned with Acetone, Trichloroethylene and Anodized
 - Heated to 650°C under vacuum
- Sample 2:
 - GaAs grown by molecular beam epitaxy under UHV
 - Top 1000nm p-doped with C, doping level 2.0x10¹⁸
 holes/cm³
 - Covered with As Cap to protect from air
 - Heated to 300°C under vacuum

As Cap Removal

Partial Pressures vs Time

Activation With Cs and NF₃

- Yo-yo activation
- Sample 1
 - Consistent activation to 10% QE
 - 1/e Lifetime~80 hours
- Sample 2
 - Activation to 4.2% QE
 - 1/e Lifetime~25hours

Cornell Laboratory for Accelerator-based Sciences and Reflective High Energy Electron Diffraction Education (CLASSE)

• Sample 1 Before and After (same position)

Sample 2 Before and After

- Measure QE as a function of wavelength
- After the cathode is activated, QE is measured using a monochromator instead of a laser
- Isolates out one wavelength of light

Spectral Response on Sample 1 & 2

- Continued measurements as cathode dies
- Band gap=1.33 eV (~900nm)
- Beyond band gap nothing gets excited
- When vacuum level is higher, even the excited electrons can't escape

Comparison

- Sample 2 behaves as Sample 1 after partial killing: may have never reached NEA
- Barrier is higher on Sample 2

 $QE(hf) = B[1 - R(hf)]/1 + 1/\alpha(hf)]$

- QE can be calculated by modeling diffusion of electrons in GaAs
- Start and stay in a thermalized distribution
- GaAs properties
 - R(hf)=optical reflectivity
 - $-\alpha(hf)$ =optical absorption coefficient
 - L=electron diffusion length (1.6µm)
- Surface Properties
 - B=Surface escape probability

Experiment vs Theory

B=20%

- Drawbacks of theory
 - Does not explain band bending, barrier, scattering...

- Begin with electrons in a distribution caused by laser penetration
- Simulates the behavior of electrons in activated GaAs cathodes and tracks their position

- We can run the code multiple times changing various parameters
- QE vs Incident Photon Energy
 - Can compare to experiment from spectral response
- Also changed was Surface Barrier height
 - Maximum Barrier= 0.28eV above Surface Barrier

– Barrier Width= 0.8 nm

Sample 1 Simulation

• Doping level=1.0x10¹⁹

- RHEED: after activation, the pattern gets more diffused
- Sample 1 has a smaller surface barrier than sample 2
- Sample 2 never reached negative affinity
- Monte Carlo simulations explain the experiment until about 1.8eV, so more work must be done to improve the code

- Siddharth, Ivan, Eric, Bill, Xianghong, Adam, Tobey, and Luca
- ERL Group
- NSF
- Cornell REU program

