Optimization of Elliptical SRF Cavities where $v < c$

Joel Newbolt

Mentor: Dr. Valery Shemelin
Why $v < c$?

- Acceleration of large subatomic particles
- Accelerator driven systems (ADS)
 - Neutron Spallation
 - Tritium production
 - Nuclear waste transmutation

INFN Milano Cavity, $v/c = 0.5$
Elliptical Cell Geometry

Non-reentrant ($\alpha > 90^\circ$)
Reentrant ($\alpha < 90^\circ$)

Geometric Constraints
- Half-Cell Length, L
- Wall Angle, α
- Equatorial Radius, R_{eq}
- Aperture Radius, R_α

Free Parameters
- Equator Ellipse Axes
 - A and B
- Iris Ellipse Axes
 - a and b
Geometric Constraints

Half-Cell Length, L

- Constrained by mode of operation
 - In-phase mode
 - π mode

Wall Angle, α

- Constrained by chemical treatment method
 - Non-reentrant
 - Reentrant
Geometric Constraints (cont.)

Aperture Radius, R_a
- Propagation of higher-order modes (HOMs)
 \[f_{cutoff} \propto 1/R_a \]
 - Removed by resistive loads
- Power left in cavity by wakefields
 \[P \propto 1/R_a \]
- Cell-to-cell coupling in multi-cell cavities

Equatorial Radius, R_{eq}
- Tuned to make the frequency of TM_{01} equal to the driving frequency

8/15/12
Joel Newbolt, Valery Shemelin
Peak Fields

Magnetic Quenching

- Superconductor enters a normal conducting state
 - Magnetic field changes too rapidly
 - Magnetic field is too strong

- Causes heating of the material
 - Spreads the region of normal conductivity

Field Emission

- Electrons are emitted from the superconductor
 - Electric field is too large

- Threshold raised by heat treatment
Numerical Simulation

SUPERLANS

- Simulation for axially symmetric cavities

TunedCell

- Wrapper code for SUPERLANS
 - Adjusts R_{leq} to make the frequency of TM01 equal to the driving frequency
 - Creates geometry file for SUPERLANS
 - Linearly varies free parameters
Cavity Optimization

Goal of Optimization
- **Minimize** B_{pk}/E_{acc} (and equivalently H_{pk}/E_{acc})

- **Optimization constraints**
 - Minimum wall angle, α
 - Maximum E_{pk}/E_{acc}
 - Minimum radius of curvature of the cell (two times the Niobium sheet thickness ≈ 6 mm)

Cavity Optimizer
- Matlab wrapper code for TunedCell
- Minimizes B_{pk}/E_{acc}
- Enforces geometric and electromagnetic constraints

8/15/12

Joel Newbolt, Valery Shemelin
Multi-Cell Cavity Optimization

Optimization by V. Shemelin

- Reducing wall angle reduces minimum H_{pk}/E_{acc}

Optimization when $\beta = \nu/c < 1$

- Same trend for $\beta < 1$
- Increasing β increases minimum H_{pk}/E_{acc}
Free Parameters

- Equator Ellipse Ratio, $R = B/A$
- Iris Ellipse Ratio, $r = b/a$
- Wall Distance, d
- Wall Angle, α

- Produces a minimum E_{plk} and E_{acc} for a given R, d and α
- Increasing wall angle increases optimal iris ellipse ratio

- Increasing wall distance increases optimal iris ellipse ratio
Bhabha Atomic Research Center (BARC)

BARC Optimization

- Single-cell cavity
 - $\beta=0.49$
 - $A=B=20$ mm
 - $a/b=0.7$
 - $R\perp a=39$ mm

Multi-Cell Boundary Conditions

- Qualitatively similar
- Differences attributed to
 - Different levels of free parameter accuracy
 - Different simulation codes (SUPERLANS vs. SUPERFISH)
BARC Verification

Single-Cell Boundary Conditions

- Clear minimum in E_{pk} / E_{acc}
- Lower values of E_{pk} / E_{acc} and B_{pk} / E_{acc}

Multi-Cell Boundary Conditions
BARC Improvement

<table>
<thead>
<tr>
<th>BARC Optimization Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Parameters</td>
</tr>
<tr>
<td>$A=20$ mm</td>
</tr>
<tr>
<td>$B=20$ mm</td>
</tr>
<tr>
<td>$a/b = 0.7$</td>
</tr>
<tr>
<td>$\alpha = 96.5^\circ$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Single-Cell Cavity Optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free Parameters</td>
</tr>
<tr>
<td>$A=20.81$ mm</td>
</tr>
<tr>
<td>$B=51.3$ mm</td>
</tr>
<tr>
<td>$a=10.51$ mm</td>
</tr>
<tr>
<td>$b=18.41$ mm</td>
</tr>
</tbody>
</table>

- Optimized under BARC constraints ($\beta = 0.49$ and $R\perp a = 39$ mm)
- Result for minimum B_{pk}/E_{acc}
Single-Cell Cavity Length

Half-Cell Length

- Half-wavelength cell
 - \(L = \frac{v}{4f} \)
 - \(L = \beta \frac{\omega}{c} \frac{c}{4f} \)

Beam Pipe Fields

- Electric field decays exponentially into the beam pipe

\[E_r = E_0 e^{-\frac{r}{L}} \]
Scaled Cavity Length

- Reducing cavity length decreases B_{pk}/E_{acc}
- Reduction from BARC design
 - B_{pk}/E_{acc} by 8%
 - E_{pk}/E_{acc} by 17.8%
Future Work

- Continue optimization of cavities with $\beta < 1$
 - Prove reentrant shape is ineffective

- Optimize the shape and length of single-cell cavity with record setting accelerating gradient
Acknowledgements

Special thanks to

- Dr. Valery Shemelin
- Dr. Ivan Bazarov and Dr. Georg Hoffstaetter
- CLASSE Student Researchers

Funding Agency

- National Science Foundation