Analysis of CesrTA Electron Cloud-Induced Tune Shifts with POSINST

Kiel Williams

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

• CesrTA beam emits sync. Radiation

- CesrTA beam emits sync. Radiation
- Photons hit wall; photoelectrons freed

- CesrTA beam emits sync. Radiation
- Photons hit wall; photoelectrons freed
- Free photoelectrons ("primaries") hit wall; release more electrons ("secondaries")

- CesrTA beam emits sync. Radiation
- Photons hit wall; photoelectrons freed
- Free photoelectrons ("primaries") hit wall; release more electrons ("secondaries")
- Beam quality disrupted

Finding Parameters

• ~6 main parameters determine cloud

Finding Parameters

• ~6 main parameters determine cloud

 Hard to measure directly; "guess," simulate, and compare

Finding Parameters

• ~6 main parameters determine cloud

 Hard to measure directly; "guess," simulate, and compare

Look across range of different data sets

 Beam oscillates ("tune") in pipe; initial ping + magnet misalignments

- Beam oscillates ("tune") in pipe; initial ping + magnet misalignments
- Electron clouds shift tune up for positron beam; typically down for electron beam

- Beam oscillates ("tune") in pipe; initial ping + magnet misalignments
- Electron clouds shift tune up for positron beam; typically down for electron beam
- Measure position with BPM's; find tune with FFT

- Beam oscillates ("tune") in pipe; initial ping + magnet misalignments
- Electron clouds shift tune up for positron beam; typically down for electron beam
- Measure position with BPM's; find tune with FFT
- Compare simulation to measurement

Simulation Technique

 POSINST takes user "guesses," simulates electron cloud density

Simulation Technique

 POSINST takes user "guesses," simulates electron cloud density

 Mathematica script finds tune shifts from density

Simulation Technique

 POSINST takes user "guesses," simulates electron cloud density

 Mathematica script finds tune shifts from density

• Observe results and iterate

- # of freed electrons/photon ("primaries"):
 - ~.1

- # of freed electrons/photon ("primaries"):
 - ~.1
- # of freed electrons/electron ("secondaries") at peak energy:
 - ~2.0

- # of freed electrons/photon ("primaries"):
 - ~.1
- # of freed electrons/electron ("secondaries") at peak energy:
 - ~2.0
- Incident energy of peak secondary yield:
 - ~310 eV

- # of freed electrons/photon ("primaries"):
 - ~.1
- # of freed electrons/electron ("secondaries") at peak energy:
 ~2.0
- Incident energy of peak secondary yield:
 - ~310 eV
- % of electrons elastically scattered from wall:
 - ~50%

- # of freed electrons/photon ("primaries"):
 - ~.1
- # of freed electrons/electron ("secondaries") at peak energy:
 - ~2.0
- Incident energy of peak secondary yield:
 - ~310 eV
- % of electrons elastically scattered from wall:
 - ~50%
- % of electrons go into wall and reemerge ("rediffused"):

• Nominal values vs. my findings

• Nominal values vs. my findings

•2.1 GeV, 45-bunch positron beam, .75 mA/bunch, 4ns

Nominal values

•New Values

• Nominal values vs. my findings

•2.1 GeV, 45-bunch positron beam, .75 mA/bunch, 4ns

Nominal values

•New Values

•Peak SEY up from 2.0 to 2.2; peak energy down from 310 to 279 eV

Nominal values vs. my findings

•2.1 GeV, 45-bunch positron beam, .75 mA/bunch, 4ns

Nominal values

•New Values

•Peak SEY up from 2.0 to 2.2; peak energy down from 310 to 279 eV

Note nonlinear effects

• Electron beam tune shifts smaller, negative

- Electron beam tune shifts smaller, negative
- Saturate at low levels

- Electron beam tune shifts smaller, negative
- Saturate at low levels
- Less informative due to small tune shift

- Electron beam tune shifts smaller, negative
- Saturate at low levels
- Less informative due to small tune shift

•5.3 GeV 45bunch electron
beam, 0.75
mA/bunch,
8 ns

•Simulation

• 6-D parameter space is *big*

- 6-D parameter space is *big*
 - Parameters strongly correlated

- 6-D parameter space is *big*
 - Parameters strongly correlated
- Some parameters matter more

- 6-D parameter space is *big*
 - Parameters strongly correlated
- Some parameters matter more
- Variant of Newton's Method estimates how to best change parameters

- 6-D parameter space is *big*
 - Parameters strongly correlated
- Some parameters matter more
- Variant of Newton's Method estimates how to best change parameters
- More efficient use of comp. time (and my time)

6-D Newton's Method

• Linear estimate of Jacobian

6-D Newton's Method

- Linear estimate of Jacobian
- Give some guessed parameters

6-D Newton's Method

- Linear estimate of Jacobian
- Give some guessed parameters

•Each fit perturbs one thing; determines sensitivity of each parameter

Newton's Method Results

- 5.3 GeV 45-bunch positron beam, 0.75 mA/bunch, 4 ns
- Before Newton
- After Newton

Newton's Method Results

- 5.3 GeV 45-bunch positron beam, 0.75 mA/bunch, 4 ns
- Before Newton
- After Newton
- 2.1 GeV 45-bunch positron beam, 0.75 mA/bunch, 4 ns

Witness Bunches

•Send bunches after main train to measure cloud decay

Witness Bunches

•Send bunches after main train to measure cloud decay

 4.0 GeV 20-bunch positron beam, 0.50 mA/bunch, 8 witnesses, 20 ns

Simulation

Data (black)

Witness Bunches

•Send bunches after main train to measure cloud decay

- 4.0 GeV 20-bunch positron beam, 0.50 mA/bunch, 8 witnesses, 20 ns
- 4.0 GeV 20-bunch positron beam, 1.00 mA/bunch, 8 witnesses, 20 ns

Simulation

Data (black)

SEY value higher compared to other methods;
 2.3 vs. ~1.5

- SEY value higher compared to other methods;
 2.3 vs. ~1.5
- Global vs. local minima

- SEY value higher compared to other methods;
 2.3 vs. ~1.5
- Global vs. local minima

Spurious parameter sets possible

- SEY value higher compared to other methods;
 2.3 vs. ~1.5
- Global vs. local minima

Spurious parameter sets possible

Difficulty with high-current and/or low-energy data

- SEY value higher compared to other methods;
 2.3 vs. ~1.5
- Global vs. local minima

Spurious parameter sets possible

- Difficulty with high-current and/or low-energy data
 - Nonlinearities

Acknowledgements

- Many thanks to mentor David Kreinick
- Thanks to Joe Calvey for help with Newton technique
- Thanks to Gerry Dugan for Mathematica tune shift scripts
- Thanks to the National Science Foundation and Cornell CLASSE REU program for making this experience possible

Questions?

193350	8 50010	And Parata at 18.	A COLOR OF COLOR	1000	TOTATIAN TOTA
193366	8.58018	Witness di	ENGLE C. 1 open	etter.	06/13/2012 16:4
105553	A SADIR	train draf	CALLEADER	22.04	80/15/2012 10:4
195554	0.50018	train drat	Charles & B. (L. States)	ATM.	00/15/2012 18:1
105550	8 508.18	train dina	CHEXA LIXAM	et se	00/15/2012 18:1
195569	8 59018	train drat	USEL UL STORE	ation	00/15/2012 18:1
105565	0.50018	train_dipo	CWITCIAM	ndam,	06/15/2012 18:1
193505	O FODIE	Centh delt	WILLIAM	- RT W	06/15/2012 18:1
493300	O. SOULE	train dipo	TWILLIam	CTW .	06/15/2012 18:1
493371	0.50018	rearo dere	TWIRLiam	quer	06/15/2812 18:1
493372	8.50018	train dipo	twitting	CL.M.	00/15/2012 18:1
493321	0.00080	witness_dr	Twilliam	Figw	86/15/2812 16:4
493322	0.00000	witness_di	TWILLIAM	hqw	06/15/2012 16:4
AN ANALY	0.00000	witness dr	twilliam	hqw	06/15/2012 10:4
4933325	0.0000	witness_dr	TWILLIAM .	Digw	86/15/2012 10:4
493326	8.00000	witness_di	twilliam	tiger	80/15/2012 10:40
493327	0.0000	witness_dr	RWELLERSON	hqw	86/15/2012 16:44
493328	0.00000	witness_di	twilliam	higw	00/13/2012 16:44
493329	0.00000	witness dr	IWILLIAM	hque	00/15/2012 16:48
493331	6.00000	witness dr	twillion	TROPH.	00/15/2012 10:45
493332	0.00000	witness di	twilllham	high	06/15/2012 10:46
483333	8.60000	witness dr	Twilliam	1 Incom	00/15/2012 10:40
493334	0.00000	watness di	twillion	Incast .	00/15/2012 16:46
493335	0.00000	witness dr	TWILLIAM	Ricps?	00/15/2012 16:40
493337	0.0000	sultness dr.	TWILLIAM	Fricher	06/15/2012 10:40
493338	8.00000	witness di	twillion	higw:	06/15/2012 16:46
493339	0-08006	witness_dr	INTILLIAM	In spice	06/15/2012 16:46
493340	0.0000	witness_di	Rwilliam .	hqui	06/15/2012 16:46
493341	0,00000	MITTINGS dr	zwilliam.	hqù	06/15/2012 16:46
1493343	0.00006	witness dr.	TWEILIAM	Figw	06/15/2012 16:46
493344	0.00000	witness di	Rangl Linns	Property in	26/15/2012 16:46
493345	0.00000	witness dr	EWS LIAM	Strain.	06/15/2012 16:46:
493340	0.0000	WITHONS di	twilliam .	(ind m	06/15/2012 10:46:
+93347	0.00000	watness dr	twittlam	naw	06/15/2012 16:46:
5 Haller	0.00000	Willness di	twilliam	udw	00/15/2012 10:46:
04550	00000	Wallocos di	LWILLIAM	15 gw	00/15/2012 16:40:
- Contraction	0.0000	HATTNELT DL	UNITITUS.	th Clim.	00/10/2012 10:401
		A DECEMBER OF L	LWLLLLL.	In C.W.	
	0 0000	and the state of the	A STATE OF THE OWNER	ALL DO	MARTINERALS IN AN
2.4.11.2.2.4	0.00000		Town I. T. Barris	Butter	DE /19/2012 15 15