QWG3 CsI-3

• Why CsI?
• Care & Feeding
• Get Ready for Physics
Get Ready for Physics

Outline

- SCal: Shower level Energy Scale
- RCal: Run (time) dependence
- Shower Shape & Track-Shower Matching
- Lepton ID
- Luminosity
- $\pi^0/\eta \rightarrow \gamma \gamma$
- Conclusions
SCal

$E_{sh} = f(E_N) \times E_N$, is a run-time correction

Highest-N is biased toward taking upward noise fluctuations – important at low E

Convention is that isolated single γ’s should peak at the correct energy, despite the asymmetric line shape

Data & MC may (do!) behave differently

MC calibration is easy – correct to E_{gen}

Test any procedure for the data on MC
Crucial Convention

Which do you want?
- γ energy peaks at right place
- π^0 mass peaks at right place

You can’t have both, because
- Line shape has low-side tail (leakage!)

W/correct γ energy, $\gamma\gamma$ mass peaks LOWER than $M(\pi^0)$

CLEO chose γ energy to be accurate, allowing π^0 constrained fit to fix the bias (more on that later)

BaBar chose differently
Calibration Procedure

- Use MC truth to calibrate MC
- In E_{HI} vs E_{LO} bins, fit for π^0 (η) mass peak in each bin, M_{ij} (132.7-134.2 MeV)
- Use 10^6 MC events & 2×10^6 data events
- Determine corrections f_j in each energy bin i by correcting the data to match the MC as closely as possible:

$$\chi^2 = \frac{\sum_{ij} \left\{ \sqrt{f_i} \sqrt{f_j} (M_{ij}(\text{data}) - M_{ij}(\text{MC}) \right\}^2}{\sigma_{ij}^2(\text{data}) + \sigma_{ij}^2(\text{MC})}$$
MC Shower Energy Scale

After fitting MC corrections which are determined bin-by-bin, how accurate is it?

Energy Dependence after New Calibration for CLEOIII MC

- Good Barrel
- Good Endcap
Shower Energy Scale

Features:
- Compensates for noise at low energy
- Data ≠ MC
- MC cross check confirms method !!

Energy-dependent Correction for the Barrel

$E_{\text{true}} / E_{\text{measured}}$

Data: $\gamma\gamma$
Data: π^0
MC (pi0 cal.)
MC (single photon cal.)
Overall Scale Cal

More features:
- Endcap \neq Barrel
- CLEO2 \neq CLEO3 (slightly diff algor.)
- Only \sim3% correc. for $E>100$ MeV
Unfortunately:
- $\pi^0 \neq \eta$
- 0.5% offset
- Not understood
- $\pi^0 = \eta$ in MC
- Split the diff.
- Need tie-breaker

What else can we do?
More SCal Methods

\[e^+e^- \rightarrow \mu^+\mu^- \gamma \]

- With 3 directions ONLY, 0C fit
- For each \(\gamma \), have a measured energy & an expected energy

\[\psi(2S) \rightarrow \gamma \chi_{cJ} : \text{monochromatic} \gamma \]

\[\chi_{cJ} \rightarrow \gamma J/\psi : \text{monochromatic} \gamma, \text{Doppler shifted} \]
$\psi(2S)$ Inclusive γ Spectrum

Bottomonium

Charmonium

Diagram showing various states of charmonium and bottomonium transitions.

Graph showing the inclusive γ spectrum with peaks at different energy levels.
Run (or time) dependence

Need a metric that allows transference of overall scale calibration from one dataset to the next

Something w/high statistics

CLEO uses
- Mean Bhabha energy (high end)
- Mean $M_{\gamma\gamma}$ for soft π^0’s (low end)

Can avoid redoing SCal too often
Shower Shape

- \(\gamma \) showers well-collimated; transverse spreading limited
- Hadronic split-off showers are broader & less regular
- “Photon-like” shower shape cut is powerful non-\(\gamma \) suppression tool; ALSO AN ISOLATION CUT!
- CLEO std: “E9/E25”

- CTR

\[E9 = \text{Energy sum of 3x3} \]
\[E25 = \text{Energy sum of 5x5} \]
\[E9/E25 \leq 1 \text{ always} \]
- Photons: \(E9/E25 > 0.8 \text{-} 0.9 \)
- Splitoffs: \(E9/E25 < 0.8 \)

Other shape variables: tend to be highly correlated w/\(E9/E25 \)
“Unfolded” Shape

1. Suppose 2 photons overlap
2. Define “Unfolded” E9/E25 as the same ratio AFTER removing crystal energy assigned to the OTHER shower
3. Has higher efficiency, but results in a slightly dirtier sample of photon candidates (because energy sharing is not exact).
4. Removes “isolation” effect.
Track-Shower Matching

- Task: Identify showers caused by charged particles
- More subtle than you think!
- Because nuclear int’ns not localized like e-m ones... neutrons travel!

Trade off

- Chgd particle showers correctly tagged
- Photon showers incorrectly tagged
Types of matching

- **Standard**
 - Track projects <8 cm of any crystal in a shower
 - Track can match nothing or several showers

- **Simple**
 - Track is matched only to closest shower to projection point in calorimeter if <20° apart
 - At most, & usually, one shower matched per trk

- **CR**
 - Shower is matched if any in “connected region” have std match - most matches per track

- **CR50**
 - Like CR but left unmatched if $E_{\text{matched shwr}} > 50\%$
Matching Example

Track enters at \times.

- **Std:** A & B are matched
- **Simple:** Only B is matched
- **CR:** A, B, C, & D are matched
- **CR50:** A, B, & C are matched
What is your metric?

Showers from Photons - Simple TM Best

Showers from non-Photons - Simple TM Worst
Track-Matching Conclusions

- Several algorithms - there are others
- Optimal one depends on what you want
- “Std” method is a reasonable intermediate choice, if you want to choose just one (default CLEO)
- Shower shape & isolation (E9/E25) cuts reduce the importance of track-shower matching: split-off showers are not photon-like, & tend to fail such requirements
Physics: Lepton ID

- e^\pm deposits ~all energy, in contrast w/ μ^\pm, π^\pm, K^\pm, p
- μ^\pm deposits ~220 MeV (min. i.) with Landau tail, ~independent of momentum
- Form “E/p” variable: shower energy/momentum
 - Peak near ~1 for e^\pm
 - Only small tail from π^\pm at high E/p
 - μ^\pm peak near small E/p
Lepton efficiencies

\(e^\pm \): E/p > 0.85 is \(\sim 98\% \) efficient

- Usually combined with dE/dx to achieve \(\pi^\pm \) suppression of \(\sim 1000:1 \)

\(\mu^\pm \): E < 400 MeV is \(\sim 95\% \) efficient

- Suppresses \(\pi^\pm \) by \(\sim \)half
Lepton ID Example

Consider $\psi(2S) \rightarrow \pi^+\pi^- J/\psi$, $J/\psi \rightarrow e^+e^-$ or $\mu^+\mu^-$

Very clean signal, so the easiest case for id

Only very small contributions from $J/\psi \rightarrow \pi^+\pi^-$, K^+K^-, $\rho\pi$
Lepton ID Example

- Notice log scale!
- Excellent MC/data agreement
- Cuts are:
 - One E/p > 0.85, other E/p > 0.5
 - One E/p < 0.25, other E/p < 0.5
- Very loose, eff.
- Easiest case!
Physics: Luminosity

Tag e^+e^- & $\gamma\gamma$ final states with calorimeter only

- CLEO uses this online for lumi: fast, no tracking info needed
- Simple cuts: two showers with ~beam energy in both
- e^+e^- has showers not back-to-back in ϕ due to magnetic bending
- $\gamma\gamma$ exactly back to back in ϕ
Luminosity

- Energy response of MC not perfect, but cut loosely
- Angular MC modeling is excellent
- $\gamma\gamma$ more useful when running on $\psi(2S)$- no bgd from direct decays to dileptons
Physics: $\pi^0/\eta \rightarrow \gamma\gamma$

Finding/fitting/usage

Finding

- Loop over pairs of showers
- Restrict $M_{\gamma\gamma}$? Sidebands useful!
- Unmatched to a track?
- Include regions of poorer resolution? (CLEO: 1γ in endcaps)
\(\pi^0/\eta \rightarrow \gamma\gamma \) Fitting

Input: \(E_1, \theta_1, \phi_1, E_2, \theta_2, \phi_2 \)

& their errors

Constrain: \(m(\gamma\gamma) = M(\pi^0/\eta) \)

\[m(\gamma\gamma) = 2 E_1 E_2 \sin^2(\alpha/2) \] where \(\alpha \) = opening angle between showers

\[\text{Minimize } \chi^2: \text{ non-linear problem} \]

\[\text{Iterate with method of Lagrange multipliers} \]

\[\text{Converges in 2-3 iterations} \]
Key points

- Uncertainties from “lookup table”, unlike, e.g. tracking errors
- Must compute error matrix for input to later kinematic fits
- Fit “wiggles” input values commensurate with uncertainties to get mass to match
- Exercise: for CLEO energy & angle resolutions, prove that for $E(\pi^0) \sim < 1$ GeV, that energy resolution dominates the $m(\gamma\gamma)$ resolution (hint: take case of $E_1=E_2$ as limit for which angular resolution should matter most)
\[\pi^0 / \eta \rightarrow \gamma \gamma \] Usage

- Need to access
 - Fitted momentum
 - \(M(\gamma \gamma) \) “pull” = \(\#_\sigma \) from \(M(\pi^0) \)
 - \(\chi^2 \)
 - Unconstrained mass
 - \(\cos \theta^* \) = decay angle in c.m. w.r.t. momentum direction... flat in this variable

- Fakes accumulates near \(|\cos \theta^*| = 1 \)
Example: $\psi(2S)\rightarrow\pi^0\pi^0, J/\psi, J/\psi\rightarrow l^+l^-$

Very clean, well-modeled
Example: $\psi(2S) \rightarrow \eta \ J/\psi$, $\eta \rightarrow \gamma\gamma$

Very clean, well-modeled

$\psi(2S) \rightarrow \gamma \chi_{c0}$, $\chi_{c0} \rightarrow \gamma J/\psi$
QWG3 CsI: Conclusions

- W/careful design, a CsI(Tl) EMCal offers excellent resolution in energy (1.5-8%) & angle (3-15mr) for E=0.05-5 GeV
- Long term stability demonstrated (glue joints!)
- ECal, XCal straightforward: can be ~stable
- Preserve energy resolution w/careful summing; angular resolution w/MC corrections to c.o.g.
- SCal a challenge, but can achieve <0.5% accuracy above 50 MeV with some work
- Shower shape, track-shower matching both useful for isolation & splitoff rejection