LCLS Virtual Accelerator: Online Model

Christopher Mayes August 31, 2017

LCLS Virtual Accelerator

We would like to build:

- Detailed computer model and simulation framework of the machine
- Fully start-to-end, from laser shape on the cathode to X-ray production to X-ray tracking to the sample
- Seamless or simple translation from code to code without the need of an expert
- Utilizes HPC resources without the need of a parallel computing expert

This would enable:

- High-fidelity, comprehensive beam physics simulations
- Virtual beam experiments
- Discovery of optimal, robust machine settings

LCLS Online Model

-SLAC

- Subset of the virtual accelerator
- Fast
- Update continuously as the machine is running
- Adjusts automatically to reflect known measurements (wirescan, BPM data)
- High-level `knobs' for rapid tuning
- Scriptable
- Reliable save/load machine state

Plan

Choose a backbone simulation framework that:

- Captures the most physics effects
- Well-supported and documented by the developers
- Mature
- Produces inputs to other programs
- Customizable

Physics features of various accelerator codes

				SI AC-					
Physics features	MAD8	Elegant	Bmad/Tao	Matlab	Impact	OPAL	Astra	GPT	Ocelot
design tool	х	х	х						
Linear optics	х	х	х	х		х			х
Nonlinear optics	х	х	х						
Taylor maps, symplectic tracking, analysis			х						
Wakefields		х	х		х	х			х
low energy space charge					х	х	x	х	х
high energy space charge			х		х	х	x	х	х
Inchoherent synchrotron radiation		x	x		х	х			
coherent synchrotron radiation (CSR)		х	х		х	х		х	х
CSR with shielding			х						
Field map tracking		partial	х		х	х	х	х	
x-ray tracking			х						
spin tracking			х		?				
Touschek scattering		х	х						
intrabeam scattering		x	х		х				
Cavity higher-order modes (HOMs)			х						
Dark current tracking			х			х	х	х	

Practical features of various accelerator codes

				SLAC-					
Code features	MAD8	Elegant	Bmad/Tao	Matlab	Impact	OPAL	Astra	GPT	Ocelot
SLAC specific developer support		partial	х	х	х	partial			
Active development		х	х	х	х	Х			х
Documented	Х	х	х			Х	Х	х	
customizable as a software library			х	х				х	
open source	х	х	Х	х		х			х
Used as online model at other laboratories		х	х	х					х
Parallel		х	partial		x	х		\$\$\$	
GPU support		Х							
Free	х	х	х	х	х	х	Х		х
MAD-like lattice syntax	х	х	х	х		х			
Lattice control structures			х	somewhat					
Birthdate		1988	1996	6				2002	2014
User base (small, medium, large)	L	L	М	S	S	М	L	М	S

Bmad Overview

- Written in Fortran 2008.
- Object-oriented from the ground up.

```
type (lat_struct) lat
call bmad parser ('lat.bmad', lat)
```

- Has structure translation code for interfacing with C++.
- With certain restrictions, Bmad can be run multithreaded.
- Lattice files use a MAD like syntax.
- Well documented (Manual is ~500 pages).
- Open Source:

http://www.lepp.cornell.edu/~dcs/bmad/

s ac

In the Beginning...

SLAC

Brief History of Bmad:

- Bmad is a software toolkit for the simulation of charged particles and X-rays.
- Born at Cornell in mid 1990s
- Started life as modest project: Just wanted to calculate Twiss functions and closed orbits.
- Initially Bmad used a subset of the MAD lattice syntax. Hence the name: "Baby MAD" or "Bmad" for short.

Over the years Bmad had evolved...

And Baby Grows Up...

Currently:

- ~100,000 lines of code
- ~1,000 routines

And it can do much more:

- Lattice design
- X-ray simulations
- Spin tracking
- Wakefields and HOMs
- Beam breakup simulations in ERLs
- Intra-beam scattering (IBS) simulations
- Coherent Synchrotron Radiation (CSR)
- Touschek Simulations
- Frequency map analysis
- Dark current tracking
- Etc., etc.

Bmad Philosophy

Advantages of a toolkit:

- Cuts down on the time needed to develop programs.
- Cuts down on programming errors (via code reuse).
- Provides a simple mechanism for lattice function calculations from within control system programs.
- Standardizes sharing of lattice information between programs.

SLAC

Dynamic Aperture Program

Control System Programs

IBS Simulation Programs

Etc.

Superposition

Superposition allows element overlap. In the lattice file:

cesr: line = (... q1e, dft, ip, dft, q1w ...)
cleo: solenoid, l = 3.5, superimpose, ref = ip

And Bmad does the bookkeeping...

Simplifies life for both user and programmer:

- Simplifies lattice file construction
- Simplifies varying element attributes in a program

Forking

- Bmad can join different beam lines using fork elements.
- Example: SuperKEKB Low Energy Ring (LER) injection

```
to_LER: fork, to_line = ler, to_element = injection
inj: line = (..., to_LER)  ! injection line
LER: line = (..., injection, ...)  ! LER ring
use, inj
```

Can splice together rings, dump lines, Linacs, X-ray lines, etc.
 One lattice can hold the description of the entire accelerator complex.

THE PARTY OF

Multipass

Lines having common elements. Example ERL loop:

SLAG

```
BEND_L1: sbend, angle = -25*pi/180, l = 0.2, ...
BEND_L2: BEND_L1
A_PATCH: patch, flexible = T
D_PATCH: patch, x_offset = -0.034, x_offset = asin(-0.32)
INJECT: line = (...)
LINAC: line[multipass] = (BEND_L1, ..., BEND_L2)
ARC: line = (..., BEND_A7)
DUMP: line = (...)
ERL: line = (INJECT, LINAC, ARC, A_PATCH, LINAC, D_PATCH, DUMP)
```

Tracking method selection

Can set how each element is tracked:

bmad_standard
 symp_lie_ptc
 taylor
 linear
 runge_kutta
 custom
 Fast, nonsymplectic
 Symplectic tracking using PTC
 Taylor map tracking using PTC
 Linear tracking
 Track through fields.
 Tracking with custom code

SI AG

my_ele: em_field, tracking_method = runge_kutta, field_calc=custom, ...

Advantages:

- Enables simulation of unique element types
- Can compare different tracking methods

All elements and tracking methods

_Runge_Kutta Bmad_Standard Symp_Lie_Bmad Symp_Lie_PTC Runge_Kutta Symp_Map Custom Taylor Linear Boris Time_ MAD Element Class х х х ab_multipole D х х х Х beambeam D х D bend_sol_quad D capillary Х crystal D х custom х D Х Х х D х х х х х х х Х drift х D e_gun Х х D Х Х х Х х х ecollimator х elseparator D ххххх х х х х х х em_field х D floor_shift D х х х х х hkicker D х Х х х х х х х х instrument D х х х х х х Х х х х kicker D х х х D х х Х х х х lcavity marker D ХХ х х х D match Х D х х х х х х Х х monitor mirror D х D х х х х multipole х multilayer D х х D х х х Х х х х octupole patch D х х х Х х х D х х х х х х х х quadrupole х rbend D х х х х х х х х х х х rcollimator D Х Х D х х х х х х Х х Х rfcavity х D х х х х sad_mult sample D х sbend D х х х х х Х х Х ХХ х х х х х D х х sextupole хххх х х х х х solenoid D х D х х х х х х х х sol_quad х х х Х taylor D х vkicker D х х х х х Х Х ххх х х х х х x wiggler (map type) wiggler (periodic type) D ххх \mathbf{X}^{a} X^a \mathbf{X}^{a} \mathbf{X}^{a} X^a

bend_sol_quad D х ХХ capillary crystal D х custom х drift D х Х х e_gun D Х х ecollimator D х elseparator D х Х х х D em_field hkicker D х х х х х D х instrument D Х хх kicker D ххх lcavity D х х х marker х match mirror D х х х monitor multipole D х х multilayer х х octupole D х х х patch D х х х quadrupole D ххх rbend D ххх rcollimator х х х rfcavity D sad_mult х sample D х ХХ sbend х х sextupole D х D х х X solenoid sol_quad D ххх taylor

^aSee §3.43.2 for more details

Table 5.1: Table of available tracking method switches for a given element class. "D" denotes the default method. "X" denotes an available method. "*" denotes that the Taylor map will only be first order.

Table 5.3: Table of available spin_tracking_method switches for a given element class. "D" denotes the default method. "X" denotes an available method.

Etienne Forest's FPP/PTC

Etienne Forest's FPP/PTC simulation toolkit:

- Taylor maps to arbitrary order via symplectic integration through elements.
- Spin tracking.
- Normal form analysis.
- Amplitude Dependent Spin Tune and Invariant Spin Field calculations.
- Also used in MAD-X & PTC_ORBIT

Interface routines between Bmad and PTC allow tracking of individual elements or PTC lattices can be constructed for analysis.

FFAG cell

Tao> set	t universe 1 one_tu	irn_ Bma	map d b	_ca	lc che	on		
NUMBER	P OF OPICINAL LAYOU	Dilla IT F	LEM	нап IEMT	en:		13	
NUMBER	OF THIM OBJECTS -		C C N		2 .			
TOTAL	IDEAL LENGTH OF ST	RUC	THE		Č.	48	017111217006	9
TOTAL	INTEGRATION LENGTH		ST	RHE	THR	E (mad8 style s	rvev) :
0.4801	71112170069					- (made beyte b	arrej y r
Tao> sho	normal M							
Tavlor	Terms:							
Out	Coef	Ex	Don	ent			Order	Reference
1:	0.106717137523					0		0.00000000
1:	0.463018521095					0	0 1	
1:	-0.008559384809							
1:	0.124264249964					0	0 2	
1:	0.013819143672							
1:	-0.030396644296							
1:	-0.552799508161							
1:	-0.099815351978							
1:	0.006466536694							
1:	1.049301692601							
1:	-0.430829355799							
1:	0.008461327906							
1:	-11.852233091907							
1:	-2.330817700011							
1:	-1.596186632074						0 3	
1:	0.295025711508							
1:	-55.703921858971					0		
1:	-4.422882301688					0		
1:	-19.224312119077		0			0		
1:	-0.546899007171					٥		
1:	-2.645784875967			0		0		
1:	0.102551496861			۰		0	0 3	
1:	-0.070045988524			٥		٥		
1:	-0.072276245022			0		0		
1:	0.035392059451			٥		•		
1:	1.260320169638					0		
1:	0.454190799268					0		
1:	0.013023091857			0		0		
1:	-1.203/933/1392	1	0			0		
1:	0.386028216044	0				U		
11	-0.008402816/16	0				0		

One turn map calc in Tao

X-ray simulation

Both incoherent and coherent ray-tracing implemented (but needs more testing). X-ray tracking elements developed:

- Crystal ! Bragg & Laue diffraction
- Capillary ! Focus X-rays
- Mirror
- Multilayer Mirror
- Diffraction_plate ! Apertures, Zone plates

CSR with Shielding

ICLE INTERACTIO ren in Fig. 1. We developed and benchmarked a 1-D CSR simulation technique with shielding by the vacuum chamber in Bmad

SLAC

[Sagan, Hoffstaetter, Mayes, Sae-Ueng PRST-AB 12, 040703 (2009)]

Transverse Space Charge

Also in the 2009 paper was an excellent approximation of the space charge kick due to a Gaussian slice

$$dK_{\rm SC} \approx \frac{r_c m c^2 {\rm sign}(\zeta) \rho(z') dz'}{\sigma_x \sigma_y \exp[\frac{x^2}{2\sigma_x^2} + \frac{y^2}{2\sigma_y^2}] + \frac{\sigma_x^2 + \sigma_y^2}{\sigma_x + \sigma_y} \gamma |\zeta| + \gamma^2 \zeta^2}.$$
 (31)

This includes both longitudinal and transverse space charge

Longitudinal Space Charge

SLAC

Also in the 2009 paper was an excellent approximation of the space charge kick due to a Gaussian slice

 $dK_{\rm SC} \approx \frac{r_c m c^2 {\rm sign}(\zeta) \rho(z') dz'}{\sigma_x \sigma_y \exp[\frac{x^2}{2\sigma_x^2} + \frac{y^2}{2\sigma_y^2}] + \frac{\sigma_x^2 + \sigma_y^2}{\sigma_x + \sigma_y} \gamma |\zeta| + \gamma^2 \zeta^2}.$ (31)

This includes both longitudinal and transverse space charge

Page Headline

More general 1-D CSR model

- The old code and 2009 paper assumed that the beam followed the reference coordinate system
- The new code has been generalized to deal with arbitrary orbits and is currently being benchmarked

Beam follows reference (bends with quad moment)

Beam orbit with offset quads

Bmad Ecosystem

Due to its flexibility, Bmad has been used in a number of programs including:

- tao General purpose design and simulation.
- **synrad3d** 3D tracking of synch photons, including reflections, within the beam chamber.
- **cesrv** On-line data taking, simulation, and machine correction for CESR.
- dark_current_tracker Dark current electron simulation.
- freq_map Frequency map analysis.
- **ibs_sim** Analytic intra-beam scattering (IBS) calculation.
- touschek_track Tracking of Touschek particles.
- etc...

Code reuse: Modules developed for one program can, via Bmad, be used in other programs.

si ac

Dark Current Tracking for LCLS2

https://www.classe.cornell.edu/~cem52/LCLS2/2015_09_16-LCLS2_dark_current.pdf

Tao: Tool for Accelerator Optics

Problem: Bmad is not a program so it cannot be used "out of the box" for simple calculations.

Solution: Develop Tao - a general purpose simulation & design program with

- Twiss and orbit calculations.
- Nonlinear optimization.
- Analysis of complicated geometries.
- Etc.

Additionally: Tao's object oriented coding makes it relatively easy to extend it.

- Can add custom commands to interface Tao with a control system.
- Can be driven by Python

X PLplo

si ac

4.05	54 DTD0/14/0	p/	00.440	0.0/7	0 - 10	44 449	0.01 40.474	0.00	40.044	0.00	0.000	474
185	FA.PIP06\1#2	Pipe	32.410	0.06/	0.33	16.163	-0.01 -12.4/1	0.30	19.346	0.00	0.000	Alive
186	FA.CELL04.MAR.BEG\1	Marker	32.410	0.000	0.33	16.163	-0.01 -12.4/1	0.30	19.346	0.00	0.000	Alive
187	FA.PIP07(1#1	Pipe	32.466	0.056	0.6/	16.285	-0.01 -19.060	0.13	19.635	0.00	0.000	Alive
188	FA.PIP0/\FA.QUA0/\1	Quadrupole	32.510	0.044	0.90	16.349	-0.00 -22.819	0.10	19.981	0.00	0.000	Alive
189	FA.BPM04\1	Instrument	32.510	0.000	0.90	16.349	-0.00 -22.819	0.10	19.981	0.00	0.000	Alive
198	FA.PIP07(FA.QUA07(1	Quadrupole	32.599	0.089	0.5/	16.469	-0.01 -19.269	0.20	20.664	0.00	0.000	Alive
191	FA.PIP0/\1#2	Pipe	32.611	0.012	0.48	16.493	-0.01 -17.887	0.25	20.718	0.00	0.000	Alive
192	FA.PAICH071	Patch	32.611	0.000	0.49	16.491	-0.01 -17.995	0.24	20.715	0.00	0.000	Alive
193	FA.BLK04\1	Pipe	32.653	0.042	0.24	16.620	-0.01 -11.290	0.4/	20.841	0.00	0.000	Alive
194	FA.PATCH08\1	Patch	32.653	0.000	0.24	16.617	-0.01 -11.380	0.46	20.840	0.00	0.000	Alive
195	FA.PIP08\1#1	Pipe	32.665	0.012	0.19	16.678	-0.02 -8.923	0.54	20.865	0.00	0.000	Alive
196	FA.PIP08\FA.QUA08\1	Quadrupole	32.787	0.122	0.10	18.079	-0.02 -4.589	0.62	21.045	0.00	0.000	Alive
197	FA.PIP08\1#2	Pipe	32.854	0.067	0.33	18.472	-0.01 -12.471	0.30	21.203	0.00	0.000	Alive
198	FA.CELL05.MAR.BEG\1	Marker	32.854	0.000	0.33	18.472	-0.01 -12.471	0.30	21.203	0.00	0.000	Alive
199	FA.PIP09\1#1	Pipe	32.910	0.056	0.67	18.594	-0.01 -19.060	0.13	21.492	0.00	0.000	Alive
200	FA.PIP09\FA.QUA09\1	Quadrupole	32.954	0.044	0.90	18.658	-0.00 -22.819	0.10	21.838	0.00	0.000	Alive
Index	name	key	S	1	beta	phi	eta orbit	beta	phi	eta	orbit	Track_Sta
					а	а	a x [mm]	b	ь	b	y [mm]	
OTE: Si ao>	ince no range given, the n	umber of elements sh	own is first :	200 of 10	323							

Tao [continued]

Example: Designing or modifying a machine to be/stay within an existing building:

Tao with Bmad gives the flexibility of a library with the convenience of a program.

Tao running the LCLS2 lattice

Tao as an online model

Tao Live interactive display

Tao> call read_EPICS.tao (repeat) Tao> call write_data.tao

Discover errors

Tao> use data bpms Tao> use variable quad_offsets Tao> derivative. ! Calculates response of offset quad to BPM Tao> show derivative

Tao> call read_BPMS_EPICS.tao Tao> run_optimizer

CSR, Space Charge tracking

SLAC

Python wrapper

Python >>>
>>> from pytao.tao import Tao
>>> tao = Tao('-lat my_lat.bmad')
>>> tao.command('use var *')
>>> doutput = tao.capture('show top10'
>>> print(output)

Architecture

Summary Bmad advantages

- State-of-the-art tracking methods, fast and slow
- Arbitrary trajectory 1-D CSR model with shielding
- Medium-High energy space charge model
- Field maps for any element, can overlap other elements
- Superposition: Greatly simplifies lattice layout, bookkeeping
- Patch element: Enables arbitrary arrangement of magnets
- Controller elements: define arbitrary knobs
- Continuous beam chamber walls, masks
- Forking: Multiple connected lines
- Reads MAD, XSIF, SAD lattice formats
- Translation routines to Astra, OPAL, MAD, XSIF, SAD, ...
- Spin tracking
- X-ray tracking
- Dark current tracking
- Software toolkit: Maximum flexibility for custom programs

Summary Tao advantages

- Design tool
- Fast online optics calculation
- Multiple optimization methods
- Bunch tracking with CSR, Space charge
- Response of anything to anything: discover quad misalignments
- Built-in plotting
- Customizable via hook routines
- Python interface for automation, advanced GUIs