Modeling LCLS, LCLS-II: Bmad and Beyond

Christopher Mayes October 30, 2017

Bmad Overview

- Written in Fortran 2008.
- Object-oriented from the ground up.

```
type (lat_struct) lat
call bmad parser ('lat.bmad', lat)
```

- Has structure translation code for interfacing with C++.
- With certain restrictions, Bmad can be run multithreaded.
- Lattice files use a MAD like syntax.
- Well documented (Manual is ~500 pages).
- Open Source:

http://www.lepp.cornell.edu/~dcs/bmad/

s ac

In the Beginning...

SLAC

Brief History of Bmad:

- Bmad is a software toolkit for the simulation of charged particles and X-rays.
- Born at Cornell in mid 1990s
- Started life as modest project: Just wanted to calculate Twiss functions and closed orbits.
- Initially Bmad used a subset of the MAD lattice syntax. Hence the name: "Baby MAD" or "Bmad" for short.

Over the years Bmad had evolved...

And Baby Grows Up...

Currently:

- ~100,000 lines of code
- ~1,000 routines

And it can do much more:

- Lattice design
- X-ray simulations
- Spin tracking
- Wakefields and HOMs
- Beam breakup simulations in ERLs
- Intra-beam scattering (IBS) simulations
- Coherent Synchrotron Radiation (CSR)
- Touschek Simulations
- Frequency map analysis
- Dark current tracking
- Etc., etc.

Bmad Philosophy

Advantages of a toolkit:

- Cuts down on the time needed to develop programs.
- Cuts down on programming errors (via code reuse).
- Provides a simple mechanism for lattice function calculations from within control system programs.
- Standardizes sharing of lattice information between programs.

SLAC

Dynamic Aperture Program

Control System Programs

IBS Simulation Programs

Etc.

Superposition

Superposition allows element overlap. In the lattice file:

cesr: line = (... q1e, dft, ip, dft, q1w ...)
cleo: solenoid, l = 3.5, superimpose, ref = ip

And Bmad does the bookkeeping...

Simplifies life for both user and programmer:

- Simplifies lattice file construction
- Simplifies varying element attributes in a program

Forking

- Bmad can join different beam lines using fork elements.
- Example: SuperKEKB Low Energy Ring (LER) injection

```
to_LER: fork, to_line = ler, to_element = injection
inj: line = (..., to_LER)  ! injection line
LER: line = (..., injection, ...)  ! LER ring
use, inj
```

Can splice together rings, dump lines, Linacs, X-ray lines, etc.
 One lattice can hold the description of the entire accelerator complex.

THE PARTY OF

Multipass

Lines having common elements. Example ERL loop:

SLAG

```
BEND_L1: sbend, angle = -25*pi/180, l = 0.2, ...
BEND_L2: BEND_L1
A_PATCH: patch, flexible = T
D_PATCH: patch, x_offset = -0.034, x_offset = asin(-0.32)
INJECT: line = (...)
LINAC: line[multipass] = (BEND_L1, ..., BEND_L2)
ARC: line = (..., BEND_A7)
DUMP: line = (...)
ERL: line = (INJECT, LINAC, ARC, A_PATCH, LINAC, D_PATCH, DUMP)
```

Tracking method selection

Can set how each element is tracked:

bmad_standard
 symp_lie_ptc
 taylor
 linear
 runge_kutta
 custom
 Fast, nonsymplectic
 Symplectic tracking using PTC
 Taylor map tracking using PTC
 Linear tracking
 Track through fields.
 Tracking with custom code

SI AG

my_ele: em_field, tracking_method = runge_kutta, field_calc=custom, ...

Advantages:

- Enables simulation of unique element types
- Can compare different tracking methods

All elements and tracking methods

_Runge_Kutta Bmad_Standard Symp_Lie_Bmad Symp_Lie_PTC Runge_Kutta Symp_Map Custom Taylor Linear Boris Time_ MAD Element Class х х х ab_multipole D х х х Х beambeam D х D bend_sol_quad D capillary Х crystal D х custom х D Х Х х D х х х х х х х Х drift х D e_gun Х х D Х Х х Х х х ecollimator х elseparator D ххххх х х х х х х em_field х D floor_shift D х х х х х hkicker D х Х х х х х х х х instrument D х х х х х х Х х х х kicker D х х х D х х Х х х х lcavity marker D х х х х х D match Х D х х х х х х Х х monitor mirror D х D х х х х multipole х multilayer D х х D х х х Х х х х octupole patch D х х х Х х х D х х х х х х х х quadrupole х rbend D х х х х х х х х х х х rcollimator D Х Х D х х х х х х Х х Х rfcavity х D х х х х sad_mult sample D х sbend D х х х х х Х х Х ХХ х х х х х D х х sextupole хххх х х х х х solenoid D х D х х х х х х х х sol_quad х х х Х taylor D х vkicker D х х х х х Х Х ххх х х х х х x wiggler (map type) wiggler (periodic type) D ххх \mathbf{X}^{a} X^a \mathbf{X}^{a} \mathbf{X}^{a} X^a

bend_sol_quad D х ХХ capillary crystal D х custom х drift D х Х х e_gun D Х х ecollimator D х elseparator D х Х х х D em_field hkicker D х х х х х D х instrument D Х хх kicker D ххх lcavity D х х х marker х match mirror D х х х monitor multipole D х х multilayer х х octupole D х х х patch D х х х quadrupole D ххх rbend D ххх rcollimator х х х rfcavity D sad_mult х sample D х ХХ sbend х х sextupole D х D х х X solenoid sol_quad D ххх taylor

^aSee §3.43.2 for more details

Table 5.1: Table of available tracking method switches for a given element class. "D" denotes the default method. "X" denotes an available method. "*" denotes that the Taylor map will only be first order.

Table 5.3: Table of available spin_tracking_method switches for a given element class. "D" denotes the default method. "X" denotes an available method.

Etienne Forest's FPP/PTC

Etienne Forest's FPP/PTC simulation toolkit:

- Taylor maps to arbitrary order via symplectic integration through elements.
- Spin tracking.
- Normal form analysis.
- Amplitude Dependent Spin Tune and Invariant Spin Field calculations.
- Also used in MAD-X & PTC_ORBIT

Interface routines between Bmad and PTC allow tracking of individual elements or PTC lattices can be constructed for analysis.

FFAG cell

Tao> set	t universe 1 one_tu	irn_ Bma	map d b	_ca	lc che	on		
NUMBER	P OF OPIGINAL LAYOU	Dilla IT F	LEM	нап IEMT	en:		13	
NUMBER	OF THIM OBJECTS -		C.C.N		2 .			
TOTAL	IDEAL LENGTH OF ST	RUC	THE		Č.	48	017111217006	9
TOTAL	INTEGRATION LENGTH		ST	RHE	THR	E (mad8 style s	rvev) :
0.4801	71112170069					- (made beyte b	arrejy i
Tao> sho	normal M							
Tavlor	Terms:							
Out	Coef	Ex	Don	ent			Order	Reference
1:	0.106717137523					0		0.00000000
1:	0.463018521095					0	0 1	
1:	-0.008559384809							
1:	0.124264249964					0	0 2	
1:	0.013819143672							
1:	-0.030396644296							
1:	-0.552799508161							
1:	-0.099815351978							
1:	0.006466536694							
1:	1.049301692601							
1:	-0.430829355799							
1:	0.008461327906							
1:	-11.852233091907							
1:	-2.330817700011							
1:	-1.596186632074						0 3	
1:	0.295025711508							
1:	-55.703921858971					0		
1:	-4.422882301688					0		
1:	-19.224312119077		0			0		
1:	-0.546899007171					٥		
1:	-2.645784875967			0		0		
1:	0.102551496861			۰		0	0 3	
1:	-0.070045988524			٥		٥		
1:	-0.072276245022			0		0		
1:	0.035392059451			٥		•		
1:	1.260320169638					0		
1:	0.454190799268					0		
1:	0.013023091857			0		0		
1:	-1.203/933/1392	1	0			0		
1:	0.386028216044	0				U		
11	-0.008402816/16	0				0		

One turn map calc in Tao

X-ray simulation

Both incoherent and coherent ray-tracing implemented (but needs more testing). X-ray tracking elements developed:

- Crystal ! Bragg & Laue diffraction
- Capillary ! Focus X-rays
- Mirror
- Multilayer Mirror
- Diffraction_plate ! Apertures, Zone plates

CSR with Shielding

ICLE INTERACTIO

We developed and benchmarked a 1-D CSR simulation technique with shielding by the vacuum chamber in Bmad

SLAC

[Sagan, Hoffstaetter, Mayes, Sae-Ueng PRST-AB 12, 040703 (2009)]

Transverse Space Charge

Also in the 2009 paper was an excellent approximation of the space charge kick due to a Gaussian slice

$$dK_{\rm SC} \approx \frac{r_c m c^2 {\rm sign}(\zeta) \rho(z') dz'}{\sigma_x \sigma_y \exp[\frac{x^2}{2\sigma_x^2} + \frac{y^2}{2\sigma_y^2}] + \frac{\sigma_x^2 + \sigma_y^2}{\sigma_x + \sigma_y} \gamma |\zeta| + \gamma^2 \zeta^2}.$$
 (31)

This includes both longitudinal and transverse space charge

Longitudinal Space Charge

SLAC

Also in the 2009 paper was an excellent approximation of the space charge kick due to a Gaussian slice

 $dK_{\rm SC} \approx \frac{r_c m c^2 {\rm sign}(\zeta) \rho(z') dz'}{\sigma_x \sigma_y \exp[\frac{x^2}{2\sigma_x^2} + \frac{y^2}{2\sigma_y^2}] + \frac{\sigma_x^2 + \sigma_y^2}{\sigma_x + \sigma_y} \gamma |\zeta| + \gamma^2 \zeta^2}.$ (31)

This includes both longitudinal and transverse space charge

Page Headline

More general 1-D CSR model

- The old code and 2009 paper assumed that the beam followed the reference coordinate system
- The new code has been generalized to deal with arbitrary orbit.
- <u>IPAC17:THPAB076</u>

Beam follows reference (bends with quad moment)

Beam orbit with offset quads

SL

Page Headline

NEW: 3D spacecharge

- Robert Ryne (LBNL, original author of IMPACT) has developed a new standalone space charge package.
- Parallelized via MPI
- Open source
- New collaboration to generalize its use for easy integration into other codes.
- Currently incorporating it into Bmad
- Adding OpenMP parallelization.
- Benchmarks well with Astra, ImpactZ, MaryLie/IMPACT

Bmad Ecosystem

Due to its flexibility, Bmad has been used in a number of programs including:

- tao General purpose design and simulation.
- **synrad3d** 3D tracking of synch photons, including reflections, within the beam chamber.
- **cesrv** On-line data taking, simulation, and machine correction for CESR.
- dark_current_tracker Dark current electron simulation.
- freq_map Frequency map analysis.
- **ibs_sim** Analytic intra-beam scattering (IBS) calculation.
- touschek_track Tracking of Touschek particles.
- etc...

Code reuse: Modules developed for one program can, via Bmad, be used in other programs.

si ac

Dark Current Tracking for LCLS2

https://www.classe.cornell.edu/~cem52/LCLS2/2015_09_16-LCLS2_dark_current.pdf

Tao: Tool for Accelerator Optics

Problem: Bmad is not a program so it cannot be used "out of the box" for simple calculations.

Solution: Develop Tao - a general purpose simulation & design program with

- Twiss and orbit calculations.
- Nonlinear optimization.
- Analysis of complicated geometries.
- Etc.

Additionally: Tao's object oriented coding makes it relatively easy to extend it.

- Can add custom commands to interface Tao with a control system.
- Can be driven by Python

X PLplo

si ac

4.05	54 DTD0/14/0	p/	00.440	0.0/7	0 - 10	44 449	0.01 40.474	0.00	40.044	0.00	0.000	474
185	FA.PIP06\1#2	Pipe	32.410	0.06/	0.33	16.163	-0.01 -12.4/1	0.30	19.346	0.00	0.000	Alive
186	FA.CELL04.MAR.BEG\1	Marker	32.410	0.000	0.33	16.163	-0.01 -12.4/1	0.30	19.346	0.00	0.000	Alive
187	FA.PIP07(1#1	Pipe	32.466	0.056	0.6/	16.285	-0.01 -19.060	0.13	19.635	0.00	0.000	Alive
188	FA.PIP0/\FA.QUA0/\1	Quadrupole	32.510	0.044	0.90	16.349	-0.00 -22.819	0.10	19.981	0.00	0.000	Alive
189	FA.BPM04\1	Instrument	32.510	0.000	0.90	16.349	-0.00 -22.819	0.10	19.981	0.00	0.000	Alive
198	FA.PIP07(FA.QUA07(1	Quadrupole	32.599	0.089	0.5/	16.469	-0.01 -19.269	0.20	20.664	0.00	0.000	Alive
191	FA.PIP0/\1#2	Pipe	32.611	0.012	0.48	16.493	-0.01 -17.887	0.25	20.718	0.00	0.000	Alive
192	FA.PAICH071	Patch	32.611	0.000	0.49	16.491	-0.01 -17.995	0.24	20.715	0.00	0.000	Alive
193	FA.BLK04\1	Pipe	32.653	0.042	0.24	16.620	-0.01 -11.290	0.4/	20.841	0.00	0.000	Alive
194	FA.PATCH08\1	Patch	32.653	0.000	0.24	16.617	-0.01 -11.380	0.46	20.840	0.00	0.000	Alive
195	FA.PIP08\1#1	Pipe	32.665	0.012	0.19	16.678	-0.02 -8.923	0.54	20.865	0.00	0.000	Alive
196	FA.PIP08\FA.QUA08\1	Quadrupole	32.787	0.122	0.10	18.079	-0.02 -4.589	0.62	21.045	0.00	0.000	Alive
197	FA.PIP08\1#2	Pipe	32.854	0.067	0.33	18.472	-0.01 -12.471	0.30	21.203	0.00	0.000	Alive
198	FA.CELL05.MAR.BEG\1	Marker	32.854	0.000	0.33	18.472	-0.01 -12.471	0.30	21.203	0.00	0.000	Alive
199	FA.PIP09\1#1	Pipe	32.910	0.056	0.67	18.594	-0.01 -19.060	0.13	21.492	0.00	0.000	Alive
200	FA.PIP09\FA.QUA09\1	Quadrupole	32.954	0.044	0.90	18.658	-0.00 -22.819	0.10	21.838	0.00	0.000	Alive
Index	name	key	S	1	beta	phi	eta orbit	beta	phi	eta	orbit	Track_Sta
					а	а	a x [mm]	b	ь	b	y [mm]	
OTE: Si ao>	ince no range given, the n	umber of elements sh	own is first :	200 of 10	323							

Tao [continued]

Example: Designing or modifying a machine to be/stay within an existing building:

Tao with Bmad gives the flexibility of a library with the convenience of a program.

Tao running the LCLS2 lattice

SLAC

22

Tao as an online model

Tao Live interactive display

Tao> call read_EPICS.tao (repeat) Tao> call write_data.tao

Discover errors

Tao> use data bpms Tao> use variable quad_offsets Tao> derivative. ! Calculates response of offset quad to BPM Tao> show derivative

Tao> call read_BPMS_EPICS.tao Tao> run optimizer

Python wrapper

Pytł	non >>>
>>>	from pytao.tao import Tao
>>>	<pre>tao = Tao('-lat my_lat.bmad')</pre>
>>>	<pre>tao.command('use var *')</pre>
>>>	<pre>doutput = tao.capture('show top10')</pre>
>>>	print(output)

Bmad online model of LCLS (Current State)

Complete translation of the MAD lattice, including comments and structure

- Overlays to add functionally for:
 - Klystrons [ENLD, PHAS, STAT], including feedback klystrons
 - Bunch compressors [angle]
 - Linac overall [phase, fudge]
- Python scripts read EPICS PV values, write Bmad compatible statements
- Tao script for 'LEMing' based on energy measurement PVs

Summary Bmad advantages

- State-of-the-art tracking methods, fast and slow
- Arbitrary trajectory 1-D CSR model with shielding
- Medium-High energy space charge model
- New: 3D Space Charge
- Field maps for any element, can overlap other elements
- Superposition: Greatly simplifies lattice layout, bookkeeping
- Patch element: Enables arbitrary arrangement of magnets
- Controller elements: define arbitrary knobs
- Continuous beam chamber walls, masks
- Forking: Multiple connected lines
- Reads MAD, XSIF, SAD lattice formats
- Translation routines to Astra, OPAL, MAD, XSIF, SAD, …
- Spin tracking
- X-ray tracking
- Dark current tracking
- Software toolkit: Maximum flexibility for custom programs

s ac

Summary Tao advantages

- Design tool
- Fast online optics calculation
- Multiple optimization methods
- Bunch tracking with CSR, Space charge
- Response of anything to anything: effect of quad misalignments, etc.
- Wave analysis: discover isolated orbit and focusing errors.
- Built-in plotting
- Customizable via hook routines, e.g. interface with a control system
- Python interface for automation, advanced GUIs, also interface with control systems

SLAC FEL Lightsource Modeling

Goals:

- Maximize FEL performance.
- Minimize downtime (rapid/automated tuneup, diagnose problems).
- Enable advanced beam dynamics studies.

Existing modeling problems:

- LCLS: Measured optics do not match existing model, no collective effects
- LCLS-II: Collective effects and their impact on FEL performance are not fully understood
- LCLS-II-HE: Space charge limits the injected emittance; What bunch qualities are really needed at injection?

Current state of modeling

-SLAC

SLAC FEL Lightsource Modeling

Proposal:

- Construct realistic start-to-end models of the electron machines (LCLS, LCLS-II, LCLS-II-HE).
- Develop a simulation pipeline for tracking electrons from the cathode through X-ray production.
- Bridge this to X-ray transport simulation pipeline.

Benefits

A realistic start-to-end model and simulation framework will enable holistic optimization, understanding, and performance prediction of SLAC's lightsources.

- For the existing machines (LCLS, soon LCLS-II), this would be used as an operational tool to understand and tune-up the machine.
- For future machines (LCLS-II-HE and beyond) it would be used to understand requirements for various components (e.g. electron gun, injector) and sensitivities.
- Subtle beam physics effects that limit ultimate performance would be identified early on.
- When bridged with X-ray transport, this would be used to predict the success of individualized experiments.
- The model could be optimized as a whole (correlate experiment performance with accelerator parameters), or be used to train machine learning algorithms for online control.

Plan

Most of the simulation codes and techniques exist, but are not bridged. We will:

- Identify the relevant codes and human expertise for each of the parts of the machine (injector, Linac, beam transport, FEL light production, X-ray optics, X-ray final focus, detector)
 - Avoid re-inventing the wheel: Use existing, well-developed codes as much as possible (e.g. Impact, Bmad, Genesis)
- Quantify and experimentally validate various beam effects (e.g. space charge, coherent synchrotron radiation, wakefields)
- Tune models to match machine measurements (e.g. alignment, field errors)
- Develop a software wrapper to enable 'push button' start-to-end simulation runs usable by both experts and students.
- Collaborate with the X-ray optics group (which is pursuing a parallel effort) for truly start-to-end simulations.

Custom simulation pipeline

Start-to-End simulation