Filtering Noise in QSPU Measurements by Averaging Time Intervals

Jim Crittenden and Chris Shill

Cornell Laboratory for Accelerator-Based Sciences and Education

Electron Cloud Meeting

12 June 2013

Original Witness Bunch Measurements (0.5-ns bins)

- Witness test used in studying EC decay rate
- Beam-synchronous noise obscures data
- Time-interval averaging allows us to minimize some of the noise

JPS measurements of QSPU detector frequency response

- Detector response falls off 0 - 100 MHz
- High-pass begins around 300 MHz
- The signal of interest has frequencies below 100 MHz.
- We hope to use timeaveraging to filter the higher frequencies out of the measured data. For now just use simple interval averaging.

Original Witness Bunch Measurements (0.5-ns bins)

- Bunches passages cause beamsynchronous noise
- Difficult to analyze
- >Lines are blurred together
- Decay rate is noticeable but inconclusive

Averaging over 1 ns

QSPU in Q48W: 5.3 GeV e+ 8.1 mA/bunch Run 199

- Some noise present
- Lines are less blurred
- Bunch passages are more clearly evident
- Witness signals clear

Averaging over 1 ns

Averaging over 2 ns

QSPU in Q48W: 5.3 GeV e+ 8.1 mA/bunch Run 199

- Noise is somewhat minimal
- All Bunches passages are visible
- Easier to analyze
- Seems to be the best option with bunch data still present

Averaging over 2 ns

QSPU in Q48W: 5.3 GeV e+ 8.1 mA/bunch Run 199

- Noise is reduced
- All bunches passages are visible
- Easier to analyze
- Seems to be the best option with bunch data still present (see following plots)

Averaging over 2 ns

Averaging over 2.5 ns

- Data irregular, perhaps some beating between 2.5 ns and 14 ns
- Some bunch signals disappear entirely

Averaging over 2.5 ns

Averaging over 5 ns

- Bunch passage signals averaged out
- Data is smooth and easy to analyze
- Bounceback and witness bunch signals are clear (contain lower frequencies than bunch passage signals)
- Decay rate is easily visible and quantifiable

Averaging over 5 ns

- Time-bin averaging does get rid of some beamsynchronous noise
- This is an approximate method, some information is lost
- We plan to model an RC-like exponential response in both the signal and the model using the type of convolution technique used the the TR_RFA modeling shown at IPAC13. We can expect the appropriate RC time constant to be 3 +- 1 ns.