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Vacuum chamber comparison: 5.3 GeV e+ 3 mA/bunch 15W
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In situ comparison of vacuum chamber surface mitigation techniques for identical conditions of beam energy,

species, bunch current and position in the ring, i.e. same radiation environment

Shielded pickup signals measured in an amorphous-carbon-coated
chamber in May (blue dotted line) and December (red dotted line) of
2010 for two bunches carrying 4.8x10" 5.3 GeV positrons 28 ns apart.
The synchrotron radiation dose increased by a factor of twenty during
this time interval. The ECLOUD model optimized for the May data is
shown as blue circles, the error bars showing the model statistical

uncertainties.
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production kinematics. Since the conditioning affects both signals
similarly, we can conclude that the conditioning change is in the

0.04 quantum efficiency rather than in the secondary yield.

B ECLOUD QF reduced 50% The December measurement is reproduced by a 50% decrease in the

modeled quantum efficiency for photoelectron production. A reduction

-0.05

A ECLOUD SEY reduced 25% in the secondary yield of 25% is inconsistent with the observed effect,
T since the leading bunch signal is unchanged.
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Bunch Current Scan Analysis
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Disentangling the Photoelectron Production
Kinetic Energy Distribution from the Beam Kick

Strengths

The early SPU signal from the leading bunch for a positron beam is
largely due to photoelectrons produced on the bottom of the
vacuum chamber. This is the closest production point where the
beam Kick attracts the photoelectrons toward the SPU. Thus the
size and shape of the leading bunch signal is determined by the
reflected photon rate, azimuthal distribution, the quantum
efficiency for producing photoelectrons, and the kinetic energy
distribution of the photoelectrons. In particular, the arrival time
distribution determines the shape. By modeling the shape for
different

photoelectron energy distribution. An example of such an analysis

strengths of beam Kkick, we can determine the

is shown on the left. Note that the signal begins just a few

nanoseconds after bunch passage even for weak beam Kicks,
indicating that high-energy photoelectrons
(hundreds of eV).

were produced
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Example: 3 mA/bunch 5.3 GeV e+
15E a-Carbon
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o l jfl The high-energy component (22%) has a peak energy of 80 eV and
4

an asymptotic power of 4.4. Its contribution to the signal is shown

g T as yellow circles in the lower left plot.
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The low-energy component (78%) has a peak energy of 4 eV and

an asymptotic power of 2. It's contribution to the signal is shown as

pink triangles.
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ol Uittty Photoelectron Energy Distribution
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5.3 GeV e+ 15E a-Carbon
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