

Two Papers for IPAC15

SYNCHROTRON RADIATION ANALYSIS OF THE SUPERKEKB POSITRON STORAGE RING

J.A. Crittenden and D.C. Sagan CLASSE*, Ithaca, New York, 14853 USA

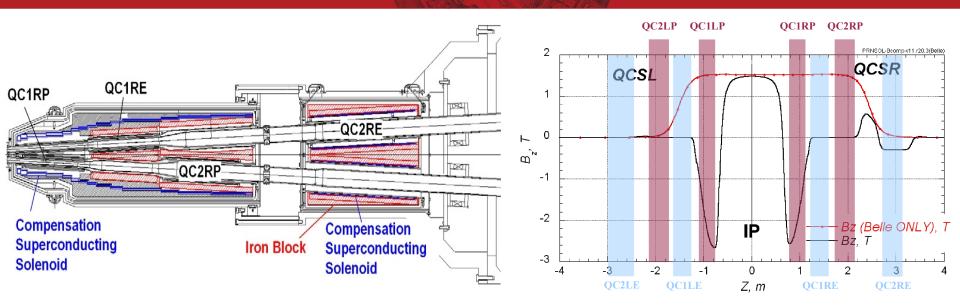
T. Ishibashi and Y. Suetsugu High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

INITIAL MODELING OF ELECTRON CLOUD BUILDUP IN THE FINAL-FOCUS QUADRUPOLE MAGNETS IN THE SUPERKEKB POSITRON RING

J.A. Crittenden CLASSE*, Ithaca, New York, 14853 USA

-- **Updated 27 April 1015 --**

Jim Crittenden

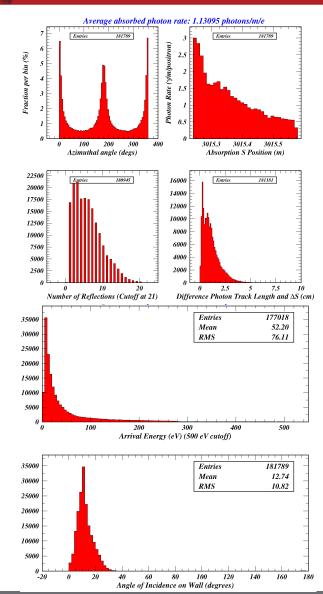

Electron Cloud Meeting

22 April 2015

SuperKEKB Interaction Region Solenoid and quadrupole magnetic fields

Final-focus Quadrupole Magnets for the 4 GeV Positron Beam

QC2RP: 0.410 m 28 T/m QC1RP: 0.334 m 69 T/m

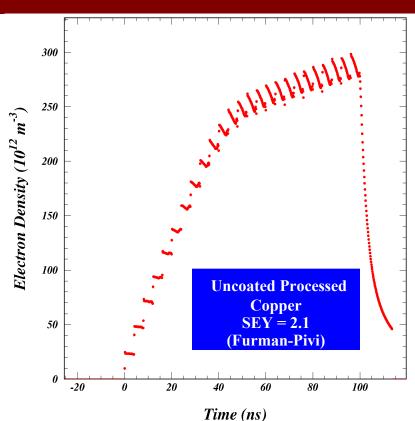

QC2LP: 0.410 m 28 T/m QC1LP: 0.334 m 69 T/m

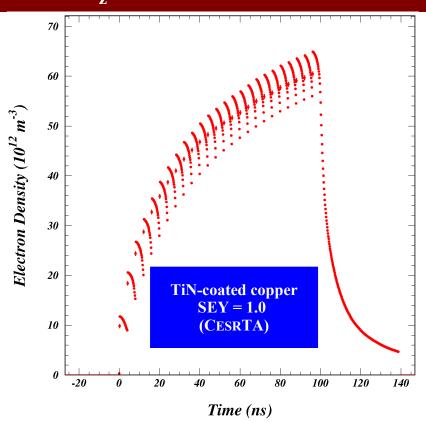
The combined BELLE-II detector solenoid and compensation solenoid fields produce a field which varies along the length of QC1RP, ranging from about 0.6 T to about 2.4 T. The direction of the field is rotated 83/2 mrad relative to the LER beam axis.

Electron Cloud Buildup Model with Input Parameters from Synrad3D

Electron cloud simulation package ECLOUD

- * Originated at CERN in the late 1990's
- * Widespread application for LHC, KEK, RHIC, ILC ...
 - * Under active development at Cornell since 2008
- * Successful modeling of CESRTA tune shift measurements
- * Validated with CESRTA measurements of electron trapping in a quadrupole magnet (PRSTAB 2015)
 - I. Generation of photoelectrons
 - A) Production energy, angle
 - B) Azimuthal distribution (v.c. reflectivity)
 - II. Time-sliced cloud dynamics
 - A) Cloud space charge force
 - B) Beam kick
 - C) Magnetic fields
 - III. Secondary yield model
 - A) True secondaries (yields > 1!)
 - B) Rediffused secondaries (high energy)
 - C) Elastic reflection (dominates at low energy)
 - IV. Model for a stripline detector in a quadrupole field
 - A) Acceptance vs incident angle, energy, B-field
 - B) Charge entering holes removed from cloud
 - C) Charge hitting wall creates secondaries

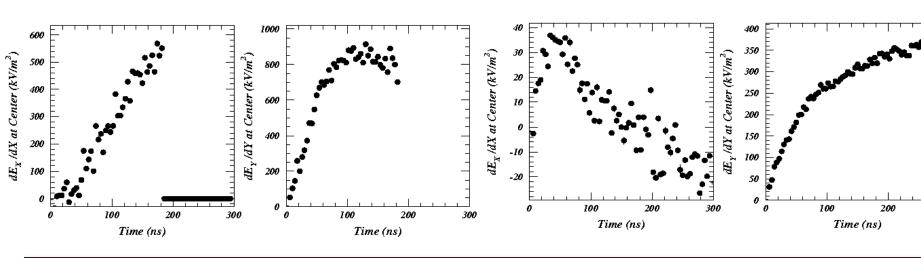

Electron Cloud Buildup Model Results


SuperKEKB Positron Ring Operating Parameters

4 GeV 2500 bunches @ 9.4e10 e+

 $\sigma_z = 6 \text{ mm}$

4 ns spacing



Such electron cloud densities are 3-4 orders of magnitude higher than the ring average estimated by the KEK vacuum group.

Huge Tune Shifts! Factor >100 larger than Ohmi (IPAC14)

Uncoated Processed Copper SEY = 2.1 (Furman-Pivi)

Fractional tune shift =
$$\Delta L*dE_Y/dY*\beta_Y/(4\pi E/eV)$$
 = 2.0e-7 dE_Y/dY (V/m²) = 0.16
 (β_V = 3000 m !)

Ohmi calculated maximum values of 0.0009 for ρ_e = 6e11 m-3 about 30 m from the IP (IPAC14). No electron cloud production in the final-focus quadrupoles was taken into account, since no photon scattering simulation had been done.