Resolution of the Puzzle for ECloud Simulations of the Shielded Button Measurements for an Electron Beam

I. The Cause
II. The Solution
III. Effect of the Solution on the Simulation for a Positron Beam
IV. Premature Preview of the Consequences for Modelling Coherent Tune Shifts
V. Next Steps

All material for this talk, including full sets of the analysis plots, may be obtained at www.lepp.cornell.edu/~critten/cesrta/ecloud/28apr10

Jim Crittenden

Cornell Laboratory for Accelerator-Based Sciences and Education

Electron Cloud Meeting

28 April 2010
Movies showed that the cloud particles producing the e+ beam signal between the bunches originate on the floor of the pipe. For the electron beam, those particles are reabsorbed during the first bunch passage. Similarly, those produced on the ceiling are immediately reabsorbed, producing the prompt signal inconsistent with the measurement.
The cloud particles produced on the floor must overcome the potential barrier of the electron beam to reach the ceiling. Their arrival time is very sensitive to the high end of the energy spectrum and to the production angular distribution.

For example, the signal arrives at 12 ns for $E_{\text{peak}} = 40 \text{ eV}$ $\sigma_E = 20 \text{ eV}$, rather than at 5 ns for $E_{\text{peak}} = 100 \text{ eV}$ $\sigma_E = 100 \text{ eV}$.
The parameters which improve the electron beam simulation also improve the positron beam simulation by moving the onset of the signal earlier. However, the simulated signal peaks about 3 ns too early. Adding an contribution 0-50 eV will improve the positron model without affecting the electron model.
The arrival time of the macroparticles is strongly correlated to the arrival energy. The earliest energy is 900 eV. The energy spectrum (truncated gaussian) overemphasizes higher energies, though the maximum energy is about right.

Primary p.e.: $E_{\text{peak}} = 100$ eV, $\sigma_E = 100$ eV
For the electron beam, the earliest energy is 250 eV, rather than 900 eV. This is not high enough to model the signal onset time. Note that most of the energy is due to acceleration by the cloud.
In addition to the work on the photoelectron energy spectrum, the electron beam simulation will require modelling of secondary production in the vacuum chamber holes. Recall that Joe already found this for the low-energy RFA signal. The second-bunch peak for the positrons is also sensitive to the photoelectron energy spectrum!
The consequences of the photoelectron energy spectrum are exaggerated here, because it is too hard on average.
The shielded button signals represent a treasure trove of information on the photoelectron production kinematics.

A study using monochromatic photoelectrons showed a monotonic relationship between their kinetic energy (e⁻: 50-3000 eV, e⁺: 5-3000 eV) and their arrival time (e⁻: 13 – 2 ns, e⁺: 12 – 2 ns).

An ill-conceived attempt to use this information to deadreckon the correct energy spectrum using the ECLoud-implemented double Gaussian option failed.

A simple optimization procedure matching the modeled signal arrival distribution to the measurements will determine the photoelectron energy distribution independent of any assumption about its shape. Then we can just look at it to see what function it is!

We may wish to include an angular production parameter (such as IPANGHEL) in the optimization.

I have now included the production energies and angles in the output file for the macroparticles which produce the shielded button signal. And John has provided the data for the measurements. So we have everything we need.

This is an EASY and FUN job with a tremendous payoff. Interested?