

Fields resulting from geometry errors in the newly assembled and installed EC quad magnet at 15W

Jim Crittenden and John Sikora Electron Cloud/Impedance Meeting 28 September 2016

Cornell University Laboratory for Elementary-Particle Physics

Central Field Uniformity $1/16 \rightarrow 1/2$ Model

28 September 2016

Measured Geometrical Errors

1) SW-NE diagonal bore error of 0.38 mm. 2) Lower aisle quadrant short by 1.6 mm.

The bore error alone affects the central field uniformity. It lowers the gradient by 2.5 per mil with negligible consequence for the L/R symmetry.

28 September 2016

Cornell University Laboratory for Elementary-Particle Physics

Field Integral Uniformity $1/16 \rightarrow 1/2$ Model

The additional numerical fluctuations in the ½ model are well within specification.

28 September 2016

Measured Geometrical Errors

1) SW-NE diagonal bore error of 0.38 mm. 2) Lower aisle quadrant short by 1.6 mm.

With Errors

Both errors contribute to the field integral uniformity. Any field asymmetry introduced is negligible.

28 September 2016