Time-Resolved Retarding Field Analyzer Measurements & Modeling:

-- SEY Mitigation Effectiveness of Grooves in Uncoated Aluminum --

-- Recent Measurements of Cloud Buildup with Dipole Field

Jim Crittenden and John Sikora
Cornell Laboratory for Accelerator-Based Sciences and Education
CESRTA Collaboration Meeting
7 May 2013
In contrast to the modeling studies for the shielded pickup data with SEY-mitigating coatings, the photoelectron production model is unchanged in the time-resolved RFA experiments, since the photoelectron production is predominantly at the primary photon impact point on the outside of the vacuum chamber.

This example comparison shows the sensitivity to the peak secondary yield to be better than 10%.

This determination of the effective SEY value for grooves should instruct our upcoming publication on the electron cloud buildup analysis for the ILC damping ring. However, in that design we recommend TiN-coated grooves.
Dramatic signal fluctuations are smoothed out by the TR-RFA time resolution.

Cloud increases and decreases between bunch passages. Saturates at $3 \times 10^{12} \text{ e/m}^3$. 

More cloud buildup information

Before RC time constant

Cloud density
In spite of beam noise and ringing, the reduction of cloud with TiN grooves is clear.