

Update to the CESR Vacuum Chamber Model for Synrad and Synrad3D

The 2011 model by S. Milashuk used for all the Synrad3D simulations until now did not have the PEP-II chicane vacuum chamber, even though it was installed in February, 2009.

Rather than the present continuous 3.5" ID (89-mm diameter) chamber between Q48W and Q48E, the 2011 model used pipe sections with radii varying between 88 and 110 mm with a number of steep angle transitions.

In addition to the correction for the chicane, I have now also modified the model to conform to the Q48W vacuum chamber with the QSPU installed in January, 2013.

Jim Crittenden

Electron Cloud Meeting

8 January 2014

Removed January 2013

Fall 2008 L3 Master drawing cited by Serozhah provided by Yulin

8 January 2014

Updated to the CESR Vacuum Chamber Model for Synrad and Synrad3D / J.A.Crittenden

Cornell University Laboratory for Elementary-Particle Physics

SVN Repository /trunk/src/cesr survey/vac pipe

Program PROFILER SYNRAD input files

vac_pipe.measured excerpt

vac_pipe.outline excerpts

! B48W						
beampipe_SB48E	332.1	+ 393	3.7 Q47AW	+	" " + ! Revised April 30, 2011 from	the drawing
pump_lumped	0 0	228.6	Q47AW	+ "	ACUUM PUMPS 128" + !revised - M2 Octobe	er 5 CESR survey;
pump_lumped	0 0	294.7	Q47AW	+ "'	ACUUM PUMPS 128" + !revised - M2 Octobe	er 5 CESR survey;
pump_lumped	0 0	358.2	Q47AW	+ "'	ACUUM PUMPS 128" + !revised - M2 Octobe	er 5 CESR survey;
flange_circular_large	0 0	393.7	Q47AW	+ "	" + ! revised - M2 October 5 CESR s	urvey
					! May 7 Inventor drawings of L	3 region start here
gauge_cc	0 0	-285.9	Q48W	- "C	R VAC GAGE 71" + ! June 8 CESR survey	-
flange_circular_large	0 .	+ -272.0	6 Q48W	- "	" + ! from CESR survey	
flange_circular_large	0 .	+ -270.	6 Q48W	- "	" + ! from CESR survey)	
flange_circular_large	0.	-138.8	8 Q48W	- "	" + ! Measured 1/6/2014 (JAC)	
pump_TiSP () -	-126.7	Q48W	- "	" + ! Measured 1/6/2014 (JAC)	
flange_circular 0	0	-63.7 (Q48W	- "	" + ! Measured 1/6/2014 (JAC)	
valve_gate_VAT	0 0	-57.2	Q48W	- "	" + ! Measured 1/6/2014 (JAC)	
flange_circular_large	0 (0 -51.2	Q48W	- "	" + ! Measured 1/6/2014 (JAC)	
! Q48W						
pump_lumped	0 0	40.0	Q48W	+ "V	CUUM PUMPS 131" + ! Measured 1/6/2014 (JAC)
flange_circular 0	0	45.4 (Q48W	+ "	" + ! Measured 1/6/2014 (JAC)	
gauge_cc 0	0	54.0 Q4	48W	+ "CSR \	AC GAGE 75" + ! Measured 1/6/2014 (JAC)	
synch_light_monitor	0	0 73.2	Q48W	+ "	" + ! May 7 Inventor drawings	
flange_circular 0	0	84.3 (Q48W	+ "	" + ! May 7 Inventor drawings	
flange_circular 0	0	120.1	Q48W	+ "	" + ! May 7 Inventor drawings	
flange_circular 0	0	135.5	Q48W	+ "	" + ! May 7 Inventor drawings	
flange_circular 0	0	212.9	Q48W	+ "	" + ! May 7 Inventor drawings	
flange_circular 0	0	219.3	Q48W	+ "	" + ! May 7 Inventor drawings	
beampipe_L3_center	1753	.9 - 0.	.01 BEAMPI	PE_SB48E +	" - ! from Inventor !added Sep. 10 Revis	ed Oct21 2010

! resolution = 3.0mm ! Added - November 6, 2010 - Serozhah Milashuk

&element

name = 'beampipe L3 center' drawing = 'CESR-TA_L3 Master Layout' units = 'SI'

cross(1)%s = 0.0cross(1)%pt(1) = 0.067282, 0.0

cross(1)%pt(2) = 0.066612, 0.00880885 cross(1)%pt(3) = 0.0632299, 0.0158559 cross(1)%pt(4) = 0.0585436, 0.022903cross(1)%pt(5) = 0.0501576, 0.0264266 cross(1)%pt(6) = -0.0495234, 0.0264266 cross(1)%pt(7) = -0.0585789, 0.022903cross(1)%pt(8) = -0.0636175, 0.0158559 cross(1)%pt(9) = -0.066582, 0.00880885 cross(1)%pt(10) = -0.067282, 0.0

cross(2)%s = 0.030232 cross(2)%pt(1) = 0.067282, 0.0 cross(2)%pt(2) = 0.066612, 0.00880885 cross(2)%pt(3) = 0.0632299, 0.0158559 cross(2)%pt(4) = 0.0585436, 0.022903 cross(2)%pt(5) = 0.0501576, 0.0264266 cross(2)%pt(6) = -0.0495234, 0.0264266 cross(2)%pt(7) = -0.0585789, 0.022903cross(2)%pt(8) = -0.0636175, 0.0158559 cross(2)%pt(9) = -0.066582, 0.00880885 cross(2)%pt(10) = -0.067282, 0.0

cross(22)%s = 3.92241 cross(22)%pt(1) = 0.04445, 0.0 cross(22)%pt(2) = 0.0, 0.04445, 0.04445

cross(23)%s = 13.3258 cross(23)%pt(1) = 0.04445, 0.0 cross(23)%pt(2) = 0.0, 0.04445, 0.04445

cross(24)%s = 13.3297 cross(24)%pt(1) = 0.04445, 0.0 cross(24)%pt(2) = 0.0, 0.04445, 0.04445

cross(25)%s = 13.3525 cross(25)%pt(1) = 0.04775, 0.0 cross(25)%pt(2) = 0.0, 0.04775, 0.07745

cross(26)%s = 14.7067 cross(26)%pt(1) = 0.04775, 0.0 cross(26)%pt(2) = 0.0, 0.04775, 0.07745

cross(27)%s = 14.8294 cross(27)%pt(1) = 0.065, 0.0 cross(27)%pt(2) = 0.0, 0.065, 0.065

cross(28)%s = 14.8527 cross(28)%pt(1) = 0.065, 0.0cross(28)%pt(2) = 0.0, 0.065, 0.065

cross(29)%s = 15.0463 cross(29)%pt(1) = 0.065, 0.0cross(29)%pt(2) = 0.0, 0.065, 0.065

<u>PROFILER_SYNRAD output files (also in repository)</u> vac_pipe.s_positions synrad.wall for Synrad synrad3d.wall for Synrad3D

8 January 2014

Updated to the CESR Vacuum Chamber Model for Synrad and Synrad3D / J.A. Crittenden

Cornell University Laboratory for Elementary-Particle Physics

Outer wall positions in horizontal mid-plane (SYNRAD.WALL used as input to Synrad)

The Synrad3D simulations were run with an incorrect complicated vacuum chamber geometry in the chicane. In particular, RFA 3 is located at an incorrectly steeply angled wall. Location 4 was used for the IPAC13 simulation.

Updated to the CESR Vacuum Chamber Model for Synrad and Synrad3D / J.A. Crittenden

Cornell University Laboratory for Elementary-Particle Physics

Synrad photon rate calculations for e+ beam before and after

The hot spot at RFA location 3 is gone.

Updated to the CESR Vacuum Chamber Model for Synrad and Synrad3D / J.A. Crittenden

Cornell University Laboratory for Elementary-Particle Physics

Reprise of slide 6 of 24 April 2013 talk Synrad3D photon rates in L3 RFA 1-4

Synrad3D calculated quite different photon rates and distributions in the four TR-RFA chambers.

8 January 2014

Updated to the CESR Vacuum Chamber Model for Synrad and Synrad3D / J.A.Crittenden

I have discovered PROFILER SYNRAD. I know how to modify its input files to produce wall files for Synrad and Synrad3D. Much more detailed wall files for Synrad are now available (!) Wall files with updated Q48W vacuum chamber and L3 chicane region are now available. I can run Synrad3D, but remain unfamiliar with PreSynrad3D, which makes the dozens of **RFA input files for Synrad3D.** I also remain unfamiliar with Gerry's automated Mathematica-based analysis of the Synrad3D output files. Both of these are necessary to produce ring-wide and comprehensive RFA output files for use by POSINST and ECLOUD. I can run Synrad3D for individual RFAs, but I don't yet know how to analyse the results. Now there are two major outstanding improvements for the simulations of the time-resolving RFA measurements: 1) Walter's magnetic field acceptance function and 2) the improved Synrad3D. Certain characteristics of other regions of the CESR vacuum chamber model are disquieting.

For example, there appear to be many conical regions which are likely to be cylindrical.