

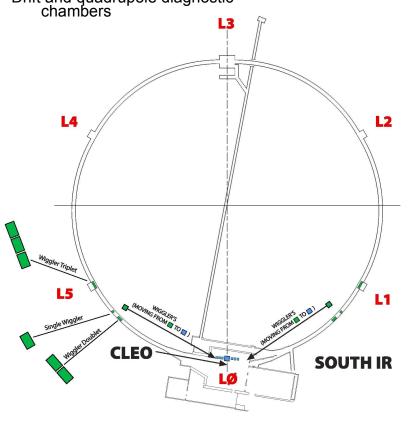
Detailed Characterization of Vacuum Chamber Surface Properties Using Measurements of the Time Dependence of Electron Cloud Development

Jim Crittenden

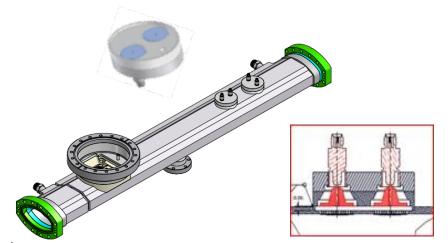
Cornell Laboratory for Accelerator-Based Sciences and Education

CESRTA Advisory Committee

29 August 2012



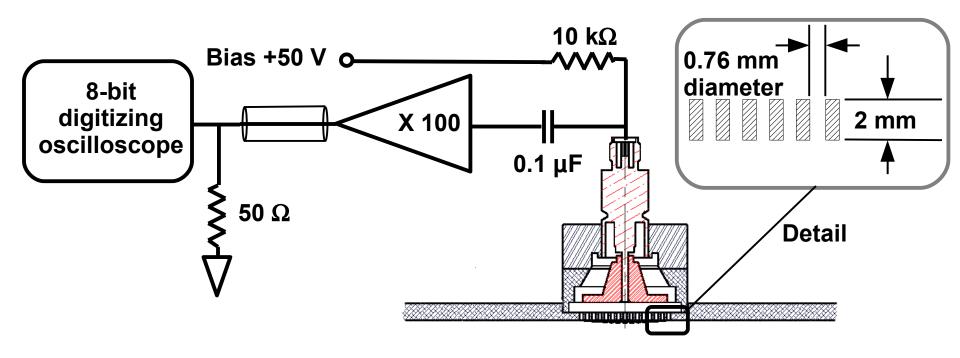
EC Buildup Detectors at CESRTA



PEP-II EC Hardware: Chicane, SEY station Four time-resolved RFA's Drift and quadrupole diagnostic chambers

New electron cloud experimental regions in arcs (after 6 wigglers moved to L0 straight)

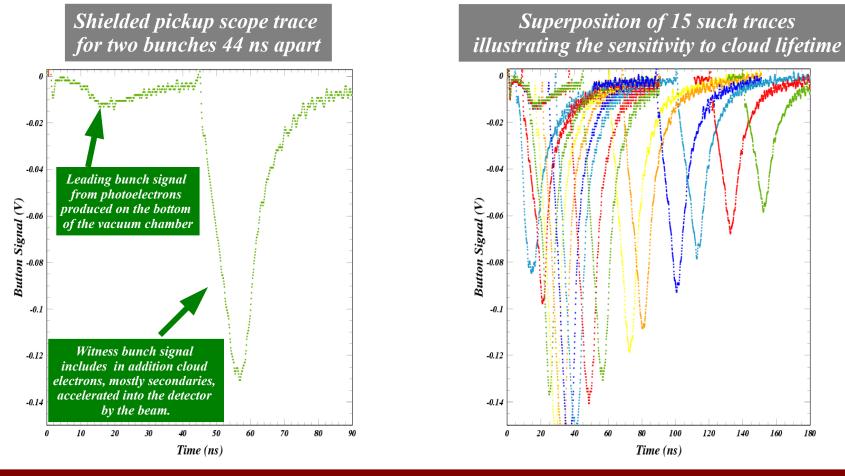
Locations for collaborator experimental vacuum chambers


Custom vacuum chambers with shielded pickup detectors

Uncoated aluminum, and TiN, amorphous carbon, diamond-like carbon coatings

30 RFA's in drift regions, dipoles, quadrupoles, and wigglers

Shielded Pickup Design and Readout



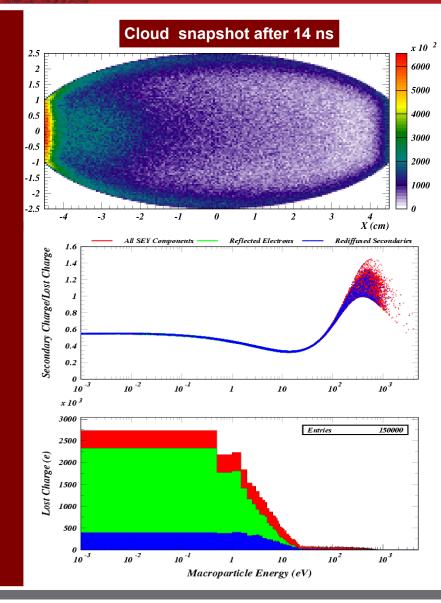
The pickup electrodes are shielded by the vacuum chamber hole pattern against the beam-induced signal.

The positive bias ensures that secondaries produced on the electrode do not escape.

Witness Bunch Method for Constraining Model Parameters Example : 5/9/2010 2.1 GeV e+ 3 mA/bunch Al v.c. 15W

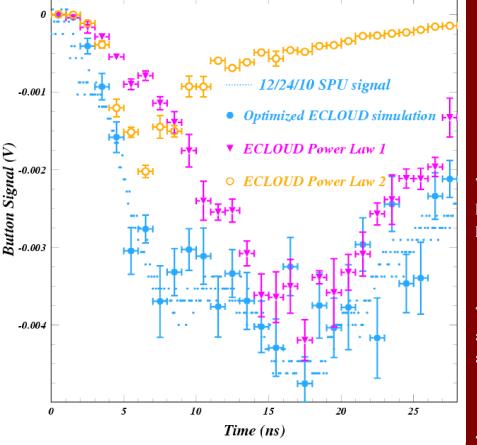
The single bunch signal arises from photoelectrons produced on the bottom of the vacuum chamber. Its shape is closely related to the photoelectron kinetic energy distribution and the beam kick. The witness bunch signal includes the single-bunch signal as well as the that produced by cloud particles accelerated into the shielded pickup by the kick from the witness bunch. The witness signal is therefore sensitive to SEY.

Electron cloud buildup modeling code ECLOUD



Cornell University Laboratory for Elementary-Particle Physics

* Originated at CERN in the late 1990's
* Widespread application for PS, SPS, LHC, KEK, RHIC, ILC ...
* Under active development at Cornell since 2008
* Successful modeling of CESRTA tune shift measurements
* Interactive shielded pickup model implemented in 2010
* Full POSINST SEY functions added as option 2010-2012
* Flexible photoelectron energy distributions added 2011
* Synrad3D photon absorption distribution added 2011


I.Generation of photoelectrons

- A) Production energy, angle
- B) Azimuthal distribution (v.c. reflectivity)
- II. Time-sliced cloud dynamics
 - A) Cloud space charge force
 - B) Beam kick
 - C) Magnetic fields
- III. Secondary yield model
 - A) True secondaries (yields > 1!)
 - B) Rediffused secondaries (high energy)
 - C) Elastic reflection (dominates at low energy)
- IV. Shielded pickup model
 - A) Acceptance vs incident angle, energy
 - B) Signal charge removed from cloud
 - C) Non-signal charge creates secondaries

Modeled photelectron kinetic energy distribution

Electron Cloud Buildup Models and Plans at CESRTA JAC et al, LCWS11

Recent Developments in Modeling Time-resolved Shielded-pickup Measurements of Electron Cloud Buildup at CESRTA JAC et al, IPAC11 **Two Power-Law Contributions** $F(E) = E^{P1} / (1 + E/E_{0})^{P2}$

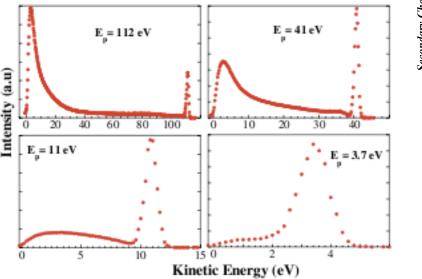
$$\boldsymbol{E}_{\boldsymbol{\theta}} = \boldsymbol{E}_{peak} (\boldsymbol{P}_{2} - \boldsymbol{P}_{1}) / \boldsymbol{P}_{1}$$

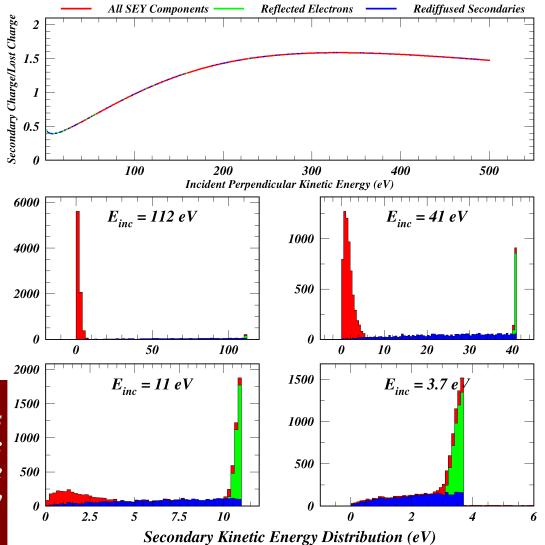
This level of modeling accuracy was achieved with the photoelectron energy distribution shown below, using a sum of two power law distributions.

$$E_{peak} = 80 \ eV \ P_1 = 4 \ P_2 = 8.4$$

The high-energy component (22%) has a peak energy of 80 eV and an asymptotic power of 4.4. Its contribution to the signal is shown as yellow circles in the lower left plot.

$$E_{peak} = 4 \ eV \ P_1 = 4 \ P_2 = 6$$


The low-energy component (78%) has a peak energy of 4 eV and an asymptotic power of 2. It's contribution to the signal is shown as pink triangles.


Modeled secondary electron kinetic energy distributions

Probabilistic Model for the Simulation of Secondary Electron Emission M.A.Furman and M.F.F.Pivi, Phys. Rev. ST-AB 5, 124404 (2002)

Can Low-Energy electrons Affect High-Energy Particle Accelerators? R.Cimino, et al, Physical Review Letters, Vol. 93, Nr. 1, 014801 (2004)

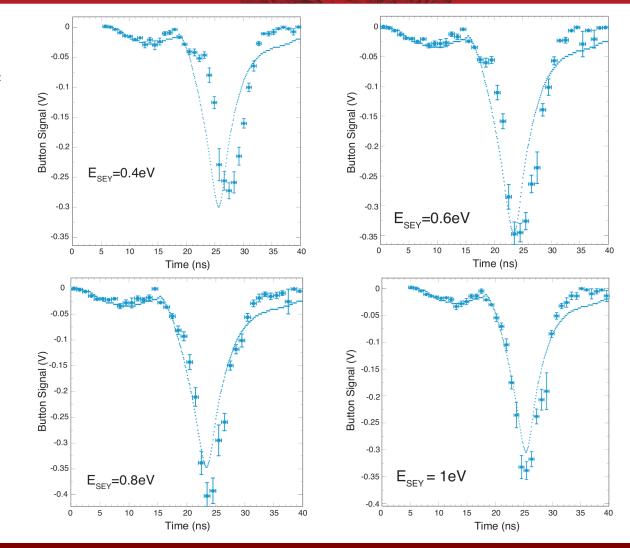
The time development of the cloud is directly dependent on secondary kinetic energies and therefore on the relative probabilities of the three secondary production processes.

Constraints on kinetic energy distribution of secondary electrons $f(E_{see}) \sim E_{sec} \exp(-E_{sec}/E_{SEY})$

The CESRTA Test

Report

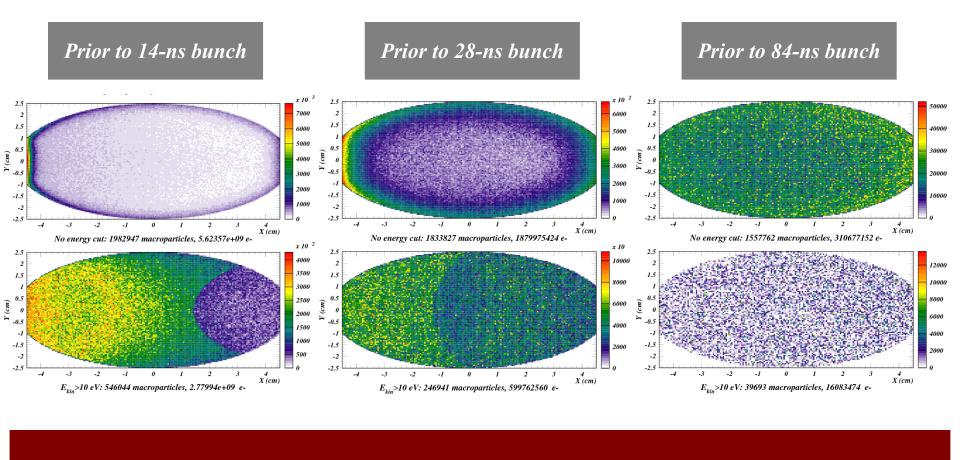
2012


Accelerator Electron Cloud

Research Program Phase 1

M.A.Palmer et al, August,

Recent Developments in Modeling Time-resolved Shielded-pickup Measurements of Electron Cloud Buildup at CESRTA JAC et al, IPAC11


Electron Cloud Buildup Models and Plans at CESRTA JAC et al, LCWS11

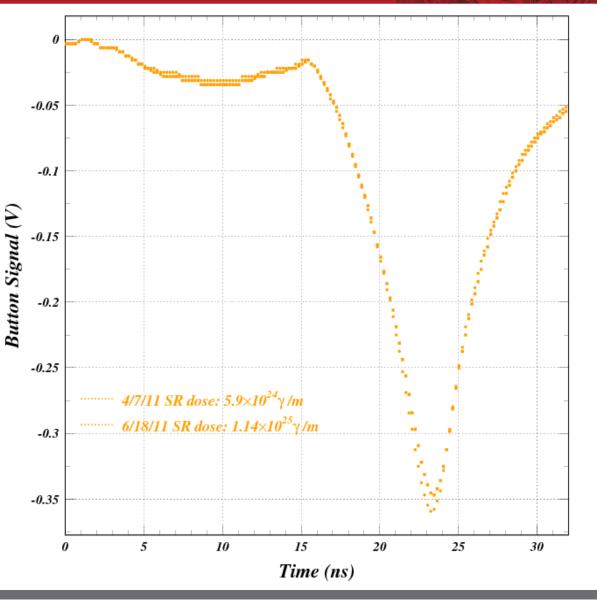
The pulse shape for the 14-ns witness bunch signal sets a lower bound on the model parameter $E_{_{
m SEY}}$

Evolution of cloud profile prior to each bunch passage

Determines the shielded-pickup signal shape and size.

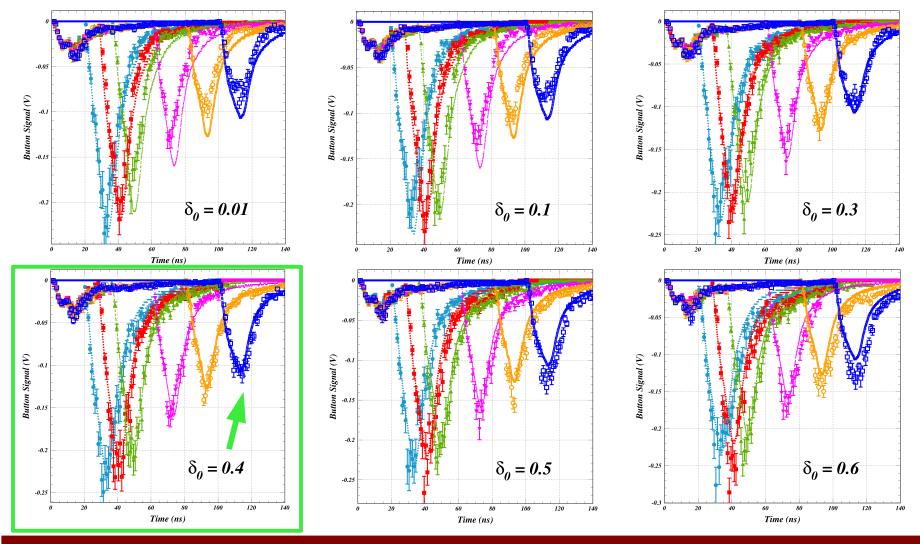
Beam conditioning effects on an amorphous carbon coating

Recent Developments in Modeling Time-resolved Shielded-pickup Measurements of Electron Cloud Buildup at CESRTA JAC et al, IPAC11


Time-resolved Shielded-pickup Measurements and Modeling of Beam Conditioning Effects on Electron Cloud Buildup at CESRTA JAC et al, IPAC12

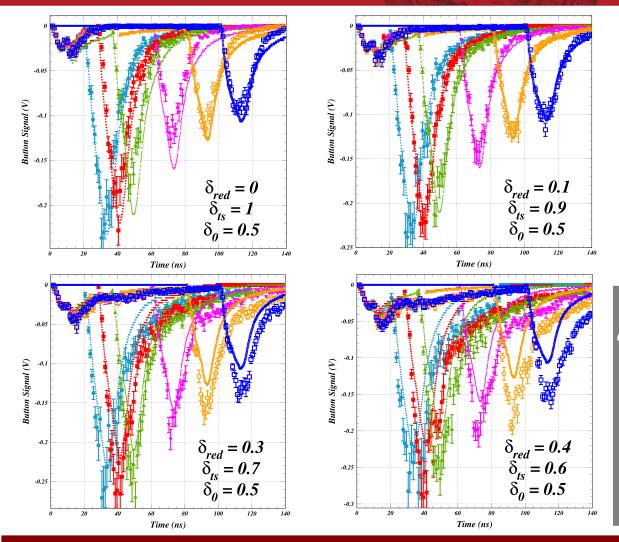
The beam conditioning effect for an amorphous carbon coating is primarily in quantum efficiency in both the early and late conditioning process.

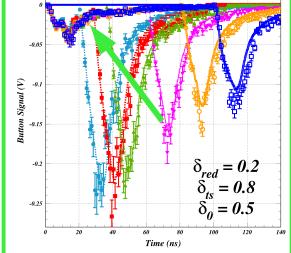
Vacuum Chamber Comparison Under Same Beam Conditions 5.3 GeV Positron Beam Witness bunch with 14-ns spacing



The reproducibility of the measurement is at the level of a few percent after two months.

Witness Bunch Study for Uncoated Aluminum 5/17/2010 15W 5.3 GeV 3 mA/bunch e+ 4-ns spacing 2010 model now updated to use Synrad3D results and vacuum chamber profile with vertical side walls

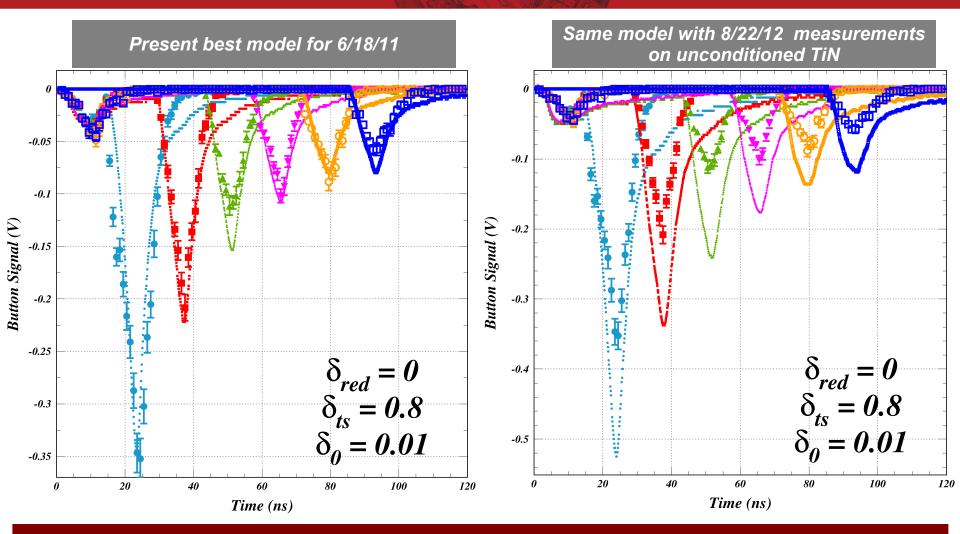



Sensitivity to value for elastic yield.

29 August 2012 Using Measurements of the Time Dependence of Electron Cloud Development for Vacuum Chamber Surface Characterization / J.A.Crittenden

Discriminating between the true and rediffused secondary yield processes

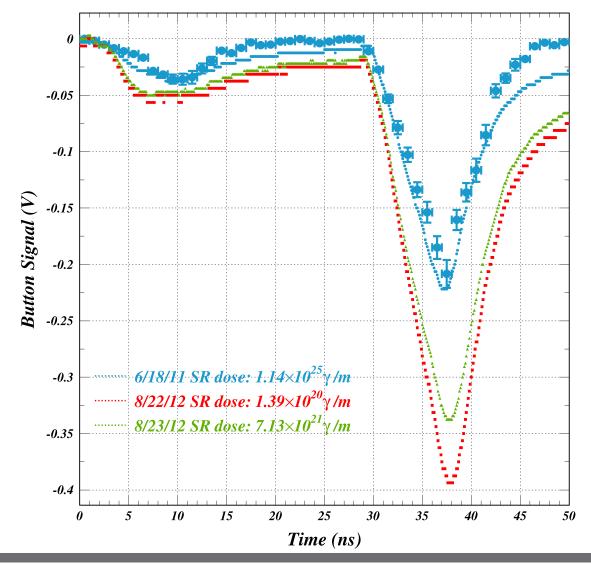
The rediffused secondary yield process determines the trailing edge of the signal from a single bunch.


This trailing edge is insensitive to δ_{ρ} .

The late witness bunch signal used to determine δ_0 is also sensitive to the rediffused yield process.

The witness bunch method provides discriminating power between the true and rediffused processes.

Witness Bunch Study for TiN-coated Aluminum Compare today's measurements to those of 6/18/2011 15W 5.3 GeV 5 mA/bunch e+ 14-ns spacing



Initial indication is the the quantum efficiency is similar, but there is much more cloud due to SEY.

Witness Bunch Study for TiN-coated Aluminum Compare recent measurements to those of 6/18/2011 15W 5.3 GeV 5 mA/bunch e+ 28-ns spacing

Conditioning comparison: 5.3 GeV e+ 15W TiN

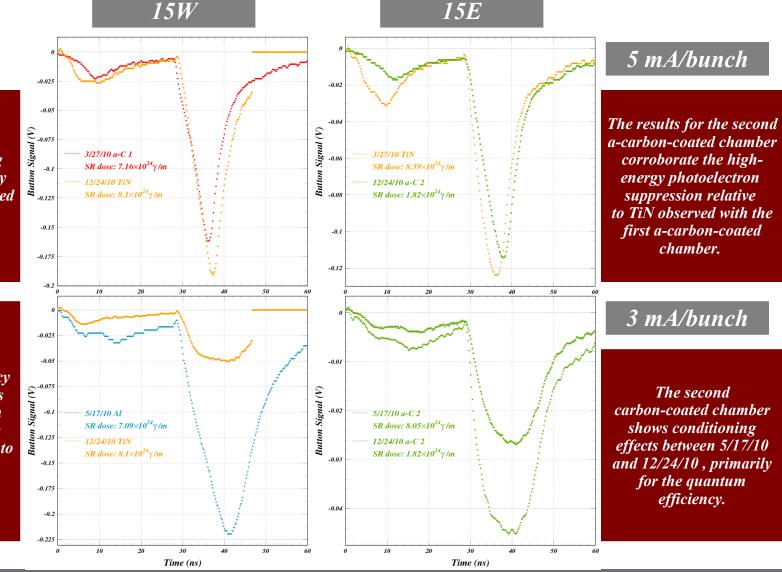
29 August 2012 Using Measurements of the Time Dependence of Electron Cloud Development for Vacuum Chamber Surface Characterization / J.A. Crittenden

Shielded-pickup Witness Bunch Measurement Program

2010 - present

Date	Species	Beam Energy (GeV)	Bunch Current (mA)	15E/W	Mitigation Technique	Bunch Spacing (ns)
03/27/2010	Positrons	5.3	5	W	a-carbon (1)	14-84
03/27/2010	1 031110113	0.0	0	E	TiN	14-04
	Electrons		5	w	a-carbon (1)	14-70
	Licotronic		0	E	TiN	1110
05/09/2010	Positrons	2.1	3	W	Al	4-140
	robitions	2.1	0	E	a-carbon (2)	1 1 10
	Electrons		3	W	Al	4-20
				E	a-carbon (2)	
05/17/2010	Positrons	5.3	3	W	Al	4-100
				E	a-carbon (2)	
	Electrons		3	W	Al	4-100
				E	a-carbon (2)	
05/19/2010	Electrons	2.1	1	W	Al	4-120
				E	a-carbon (2)	
09/21/2010	Positrons	5.3	1,2,4,6,8,10	W	TiN	14
				\mathbf{E}	a-carbon (2)	
09/24/2010	Positrons	2.1	2,4,6	W	TiN	14
				E	a-carbon (2)	
	Electrons			W	TiN	
				E	a-carbon (2)	
12/10/2010	Electrons	2.1	1,2,3,4,5,6,8,10	W	TiN	14-84
				E	a-carbon (2)	
12/20/2010	Positrons	2.1	1,2,3,4,5,6,8,10	W	TiN	56,84
				E	a-carbon (2)	
12/24/2010	Positrons	5.3	3,5	W	TiN	14-84
				E	a-carbon (2)	
	Electrons		3,5	W	TiN	14-84
				E	a-carbon (2)	
04/07/2011	Positrons	5.3	1,2,3,4,5,6,8,10	W	TiN	14-84
				E	DL carbon	
	Electrons		$1,\!2,\!3,\!4,\!5,\!6,\!8,\!10$	W	TiN	14-84
				Е	DL carbon	
04/16/2011	Positrons	2.1	1,2,3,4,5,6,8,10	W	TiN	14-84
				E	DL carbon	
04/17/2011	Electrons		$1,\!2,\!3,\!4,\!5,\!6,\!8,\!10$	W	TiN	14-84
06/11/2011				Е	DL carbon	
	Positrons	2.1	$1,\!2,\!3,\!4,\!5,\!6,\!8,\!10$	W	TiN	14-84
	-			E	DL carbon	
06/12/2011	Electrons		$1,\!2,\!3,\!4,\!5,\!6,\!8,\!10$	W	TiN	14-84
00/10/0011	D 14	5.0	100150010	E	DL carbon	11.02
06/18/2011	Positrons	5.3	$1,\!2,\!3,\!4,\!5,\!6,\!8,\!10$	W	TiN	14-98
			100450010	E	DL carbon	14.04
	Electrons		$1,\!2,\!3,\!4,\!5,\!6,\!8,\!10$	W	TiN DI sashas	14-84
06/27/2011 09/27/2011	Positrons	4.0	199456910	E W	DL carbon TiN	14-98
	Positrons	4.0	1,2,3,4,5,6,8,10	W E		14-98
	Electror -	9.1	199450	E W	DL carbon	94
	Electrons	2.1	1,2,3,4,5,6	W E	TiN DL carbon	84
	Positrons	5.3	1994560	W		14-84
	FOSITIONS	0.3	$1,\!2,\!3,\!4,\!5,\!6,\!8$	W E	a-carbon (2) DL carbon	14-84
09/30/2011	Positrons	5.3	1,2,3,4,5,6,8	W	a-carbon (2)	14-84
	1 OSITIOUS	0.0	1,2,3,4,0,0,8	W E	DL carbon (2)	14-04
10/04/2011	Positrons	5.3	1,2,3,4,5,6,8	W	a-carbon (2)	14-84
	1 OSITIOUS	0.0	1,2,3,4,0,0,8	W E	DL carbon (2)	14-04
10/11/2011 10/25/2011	Positrons	5.3	1,2,3,4,5,6,8	W	a-carbon (2)	14-84
	FOSITIONS	0.3	1,2,3,4,0,0,8	W E		14-84
	Desit	E 9	1994500		DL carbon	14.04
10/20/2011	Positrons	5.3	$1,\!2,\!3,\!4,\!5,\!6,\!8$	W E	a-carbon (2)	14-84
11/27/2011	Desitner -	5.3	199456910	W	DL carbon	14.09
	Positrons	0.3	1,2,3,4,5,6,8,10		a-carbon (2)	14-98
	Electrons		199456910	E W	DL carbon a-carbon (2)	14-84
	Electrons		1,2,3,4,5,6,8,10			14-04
				Е	DL carbon	

2.1, 4.0, and 5.3 GeV *Electron and positron beams* 1-10 mA/bunch Uncoated aluminum TiN-coated aluminum Two amorphous-carbon coatings Diamond-like carbon coating Unconditioned uncoated aluminum Unconditioned TiN coating Unconditioned a-carbon coating


4-ns, 14-ns bunch spacings up to 140 ns

Vacuum Chamber Comparison Under Same Beam Conditions 5.3 GeV Positron Beam Witness bunch with 28-ns spacing

The a-carbon coating suppresses high-energy photoelectrons compared to the TiN coating.

The quantum efficiency for reflected photons and the SEY are both much smaller for the TiN coating compared to uncoated aluminum.

29 August 2012 Using Measurements of the Time Dependence of Electron Cloud Development for Vacuum Chamber Surface Characterization / J.A.Crittenden