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We derive the algorithm to generate a one-dimensional random number distribution with a power
density, based on the uniform random number generator in [0, 1]. For completeness, the algorithm
for the case of the most general one-dimensional density is also derived and used to derive a list of
algorithms for several other distributions of practical use.

This note was written for practical convenience only; the methods and the results are well known.

I. BASIC CASE: UNIFORM DENSITY.

Suppose that we want to generate a set of n random
numbers {x} such that the distribution of the x’s, in the
limit n → ∞, is uniform in x1 ≤ x ≤ x2 and vanishes
outside this interval (here x1 and x2 are given, with x1 <
x2). In the limit n → ∞, the distribution of the x’s is
therefore

dN

dx
=
{
k if x1 ≤ x ≤ x2

0 elsewhere
(1)

where k > 0 is a constant.
The algorithm to generate the x’s is, clearly,

x = αû+ β (2)

where û denotes a uniform random number in [0, 1], and
where the constants α and β are determined by the re-
quirements that x = x1 when û = 0 and x = x2 when
û = 1, respectively, hence

x = (x2 − x1)û+ x1 (3)

Note that the normalization constant

K ≡
x2∫
x1

dx
dN

dx
= k(x2 − x1) (4)

plays no direct role in the algorithm: only the ratio
K/k = x2 − x1 matters, and the only requirement on
it is that it must be finite.

II. POWER DENSITY.

In this case we want to generate random numbers x
such that their distribution, in the n→∞ limit, is

dN

dx
= kxp (5)
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in the region x1 ≤ x ≤ x2, for a specified value of p.
While p can, in general, be an arbitrary real number,

we first impose the constraints p 6= −1 and 0 < x1 < x2 <
∞. Removal of these constraints is possible in some cases,
as discussed below. The power density clearly makes no
sense for x < 0 unless p is an even integer; we exclude this
case from consideration because it is the mirror image of
the x > 0 case.

The trick to generate the x’s is to make the change of
variable defined by

dy = λxpdx (6)

where λ is a positive constant to be determined. Eq. (5)
then becomes

dN

dy
= k/λ (7)

which is similar to Eq. (1) except that y replaces x.
Therefore we set y = αû+ β, except that now the intro-
duction of the constant λ affords the freedom to choose
α = 1 and β = 0, so that y = û. Integrating Eq. (6)
yields

y = axp+1 − b (8)

where a ≡ λ/(p + 1) and b is an integration constant to
be determined. The algorithm is, therefore,

x =
(
û+ b

a

)1/(p+1)

(9)

The constants a (or, equivalently, λ) and b are deter-
mined by the requirements that y = 0 for x = x1 and
y = 1 for x = x2, which yield

b

a
= xp+1

1 ,
1
a

= xp+1
2 − xp+1

1 (10)

from which we get the explicit algorithm

x =
[
(xp+1

2 − xp+1
1 )û+ xp+1

1

]1/(p+1)

(11)

Note again that the normalization constant

K = k

x2∫
x1

dxxp =
k(xp+1

2 − xp+1
1 )

p+ 1
(12)
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plays no direct role (only K/k matters), and it must be
finite.

A. Special cases (1): x1 = 0 or x2 =∞.

These cases are possible as long as p is such that K <
∞, ie., as long as the distribution is normalizable. This
condition implies the following restrictions on p:

x1 = 0 and x2 <∞ : p > −1 (13a)
x1 > 0 and x2 =∞ : p < −1 (13b)
x1 = 0 and x2 =∞ : impossible (13c)

B. Special case (2): p = −1.

One can take the limit p→ −1 by using l’Hôpital’s rule
applied to either (9) or (11) or, more simply, by starting
directly from Eqs. (5) and (6). In this case dy/dx = λ/x
hence

y = a lnx− b (14)

where a ≡ λ. Imposing the conditions y = 0 when x = x1

and y = 1 when x = x2 yields

1
a

= ln
(
x2

x1

)
,

b

a
= lnx1 (15)

therefore, setting y = û, we obtain

x = exp
(
û+ b

a

)
= x1

(
x2

x1

)û
(16)

Note that the value p = −1 forbids both choices x1 = 0
and x2 =∞, because either one of these would make the
distribution non-normalizable (K =∞).

III. THE GENERAL CASE.

The problem is stated as follows: generate a one-
dimensional random number distribution with a given
probability density ρ(x),

dN

dx
= ρ(x) (17)

in the interval x1 ≤ x ≤ x2. We require that ρ(x) not
vanish in any finite sub-interval within [x1, x2]. If it does,
the problem reduces to generating random numbers from
two (or more) additive disjoint distributions, which has
a well-known solution.

Even though we are interested in a given x-interval,
in many cases ρ(x) will be defined in a larger region of
the x axis. If ρ(x) is given in analytic form, it is typi-
cally defined either in −∞ < x < ∞ or in 0 ≤ x < ∞.
Examples of distributions of the former kind are the

Gaussian, ρ(x) = k exp(−(x−x0)2/2σ2), the Lorentzian,
ρ(x) = k/((x−x0)2 +γ2), etc. For these distributions x1

may extend all the way to −∞. Examples of the latter
kind are the power density, ρ(x) = kxp, the exponential,
ρ(x) = k exp(−x), etc. For either kind, x2 may extend to
+∞. The formulas below apply equally well to any such
distributions. If ρ(x) is only known in x1 ≤ x ≤ x2, see
below.

The trick to generate the x’s according to (17) is to
make the change of variables

dy = λρ(x)dx (18)

so that dN/dy is a uniform distribution in y, whose solu-
tion is fully described in Sec. I, namely y = αû+β except
that here, as in the power density case in Sec. II, we are
free to choose α = 1 and β = 0. To translate y into x,
we integrate (18),

y = λP (x)− b (19)

where P (x) is defined to be the integral of ρ(x) relative
to x = 0,

P (x) ≡
x∫

0

dx′ρ(x′) (20)

Eq. (19) yields

x = P−1

(
y + b

λ

)
(21)

where P−1(z) is the functional inverse (not to be con-
fused with the algebraic inverse) of P (x) (that is to say,
if z = P (x), then1 x = P−1(z)).

The constants λ and b follow from the requirements
that x = x1 when y = 0 and x = x2 when y = 1, ie.

x1 = P−1

(
b

λ

)
, x2 = P−1

(
1 + b

λ

)
(22)

or, equivalently,

P1 =
b

λ
, P2 =

1 + b

λ
(23)

where Pi ≡ P (xi), i = 1, 2. From here we easily obtain b
and b/λ, hence Eq. (21) yields the general algorithm

x = P−1 ((P2 − P1)û+ P1) (24)

Again, the normalization constant K ≡
∫ x2

x1
dx ρ(x) =

P2 − P1 must be finite.
If the density ρ(x) is only defined, or only known, in

the interval x1 ≤ x ≤ x2, or is not given in analytic form

1 Note that there is a 1↔ 1 correspondence between x and z owing
to the monotonically increasing nature of P (x).
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(for example, it may be specified as a numerical table
in this interval), then one may deal with an extended
density defined by

ρext(x) =

{
ρ(x) if x1 ≤ x ≤ x2

0 elsewhere
(25)

and proceed as in the case above (a slight confusion
may arise here because P−1(x) is not well defined out-
side [x1, x2], although in practice this is not a problem).
Equivalently, it is conceptually simpler to define P (x)
relative to x = x1 rather than to x = 0, namely

P (x) ≡
x∫

x1

dx′ρ(x′) , x1 ≤ x ≤ x2 (26)

With this definition, P1 = 0 and P2 = K, hence the
algorithm is now written2

x = P−1(Kû) (27)

Depending on the complexity of the expressions for P1

and P2, one may be able to simplify somewhat expres-
sions (24) or (27) by the replacement û→ 1− û because
1−û is as good a uniform random number in [0, 1] as û is.
With this replacement, however, û = 0(1) gets mapped
onto x = x2(x1) rather than x1(x2), an immaterial dif-
ference in the algorithm.

Example: power density.

To show how the general formalism above applies to
the power density we use Eq. (20) to obtain

z ≡ P (x) = k

x∫
0

dx′x′p =
kxp+1

p+ 1
(28)

therefore

x = P−1(z) =
[

(p+ 1)z
k

]1/(p+1)

(29)

We now use

Pi =

xi∫
0

dx ρ(x) =
kxp+1

i

p+ 1
, i = 1, 2 (30)

2 This variant of defining P (x) relative to x = x1 rather than to
x = 0 is always valid, whether ρ(x) is given in analytic form or
not. Even though we use the same notation for P (x) in (20)
and (26), it should be clear that these are different functions, as
are their functional inverses (24) and (27), respectively. Also,
expression (26) for P (x) contains an implicit dependence on x1

which we suppress for notational compactness.

and, according to (24), insert z = (P2 − P1)û + P1 into
(29), thus recovering the original expression (11).

Had we applied Eq. (26) instead of (20) we would have
obtained

z ≡ P (x) = k

x∫
x1

dx′x′p =
k

p+ 1
(xp+1 − xp+1

1 ) (31)

hence

x = P−1(z) =
[

(p+ 1)z
k

+ xp+1
1

]1/(p+1)

(32)

Following Eq. (27), we use P1 = 0, P2 = K and z = Kû
in (32), yielding exactly the same result as above, namely
Eq. (11).

IV. REMARK.

This algorithm presented here is most efficient when
(a) P (x) is obtainable in analytic form, and (b) its func-
tional inverse has a simple analytic form. If these condi-
tions are not satisfied, the next best option is to tabulate
both P (x) and P−1(x) in the interval x1 ≤ x ≤ x2 and
use table interpolation; this option works well if P (x)
is smooth enough and the interval is finite. If none of
the above conditions are met, the conventional alterna-
tive to generating random numbers is the Monte Carlo
(“accept-reject”) method. This method has the advan-
tages of great simplicity and straightforward extension to
higher dimensions, but it may have efficiency problems.

V. OTHER EXAMPLES.

Here we provide a list of examples that might be useful,
without the detailed derivation. For each case we provide
ρ(x), the relevant interval, and any applicable condition
on the parameters that might appear in ρ(x).

1. ρ(x) = k exp(−(x− x0)2/2σ2), x1 ≤ x ≤ x2.

Conditions: x0 arbitrary, σ > 0.

x = x0 +
√

2σ erf−1((P2 − P1)û+ P1) (33a)

Pi ≡ erf
(
xi − x0√

2σ

)
, i = 1, 2 (33b)

Note that if x1 = −∞ and x2 = +∞ you get

x = x0 +
√

2σ erf−1(2û− 1) (34)

2. ρ(x) = k/(x2 + γ2), −∞ < x <∞.

Conditions: γ > 0.

x = γ tan
[

(2û− 1)π
2

]
(35)
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3. ρ(x) = k sinπx, 0 ≤ x ≤ 1

x =
1
π

cos−1(2û− 1) (36)

where the function cos−1 x is defined in 0 ≤ x ≤ π.

4. ρ(x) = k cos(πx/2), −1 ≤ x ≤ 1.

x =
2
π

sin−1(2û− 1) (37)

where the function sin−1 x is defined in −π/2 ≤
x ≤ π/2.

5. ρ(x) = k(1− x2), −1 ≤ x ≤ 1.

x = 2 sin
(

1
3 sin−1(2û− 1)

)
(38)

where the function sin−1 x is defined in −π/2 ≤
x ≤ π/2.

6. ρ(x) = kxp−1 exp(−xp), 0 ≤ x <∞.

Conditions: p 6= 0.

x = (− ln û)1/p (39)

7. ρ(x) = kxp−1e−x, 0 ≤ x <∞.

Conditions: p > 0.

x = P−1(p, û) (40)

where P−1(p, x) is the functional inverse (in x) of
the incomplete gamma function P (p, x) defined by

P (p, x) =
1

Γ(p)

x∫
0

dt tp−1e−t , p > 0, x ≥ 0 (41)

If the desired interval in x is x1 ≤ x ≤ x2 where
0 ≤ x1 < x2 <∞, then

x = P−1(p, (P2 − P1)û+ P1) (42a)
Pi ≡ P (xi, p) , i = 1, 2 (42b)

8. ρ(x) = ke−cx, 0 ≤ x <∞.

Conditions: c > 0. This is a special case of either of
the above two examples, obtained by setting p = 1.

x = −1
c

ln û (43)

If the desired interval in x is x1 ≤ x ≤ x2, then

x = −1
c

ln [E1 − (E1 − E2)û] (44a)

Ei ≡ e−cxi , i = 1, 2 (44b)
9. ρ(x) = kxµ−1(1− x)ν−1, 0 ≤ x ≤ 1.

Conditions: µ, ν > 0.

x = β−1(û, µ, ν) (45)

where β−1(x, µ, ν) is the functional inverse (in x) of
the normalized incomplete beta function β(x, µ, ν),
defined by

β(x, µ, ν) =
Γ(µ+ ν)
Γ(µ)Γ(ν)

x∫
0

dt tµ−1(1− t)ν−1 ,

0 ≤ x ≤ 1, µ > 0, ν > 0 (46)

If the desired interval in x is x1 ≤ x ≤ x2 where
0 ≤ x1 ≤ x2 ≤ 1, then

x = β−1((β1 − β1)û+ β1, µ, ν) (47a)
βi ≡ β(xi, µ, ν) , i = 1, 2 (47b)
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