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We derive the “inversion algorithm” to generate random numbers in a specified interval z; <
x < xo with 100% efficiency for a one-dimensional distribution with a power density, based on the
uniform random number generator in [0, 1]. We then review the method applicable to the case of
the most general one-dimensional density, and apply it to obtain the algorithms for several other
distributions of practical use. We derive the fundamental scaling relation obeyed by any distribution
and apply it to obtain the algorithm for the generation of random numbers with a distribution with
arbitrary RMS o and reference point xg out of the distribution with o = 1 and zo = 0, in the given
interval 1 < x < x2. We then review the 2D algorithms for the generation of gaussian random
numbers and examine their shortcomings. Finally, we recapitulate the Monte Carlo algorithm, and
describe some of the variants that improve its efficiency.

This note was written for practical convenience only; the methods and the results are well known.

I. BASIC CASE: UNIFORM DENSITY.

At the base of essentially everything described in this
note is the generation of random numbers uniformly dis-
tributed in the interval [0,1]. We define the basic distri-
bution function U(z) via

1 if0<z<l
0 otherwise

U - { )

Suppose that we want to generate a set of m random
numbers {z} such that the distribution of the z’s, in the
limit m — oo, is uniform in 0 < x < 1 and vanishes
outside this interval. The distribution density of the z’s
is therefore

dN
— =kU(x 2
= WU () 2)
where k > 0 is an unimportant normalization constant.!
The x’s are therefore given by

=1 (3)

where 4 denotes here, and throughout this note, a ran-
dom number uniformly distributed in [0,1]. We assume
that the user has access to a computer function that per-
forms such random number generation.

If the range of interest is not [0, 1] but rather an arbi-
trary interval [x1, z2], with 21 < xq, then clearly

W ke +0) (1)
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1 In fact, for the cases of uniform distribution, k = m.

where the constants v and ¢ are determined by the re-
quirements yx1 + 9 = 0 and yz2 +J = 1. In this case the
algorithm is given by

yr+0=1u (5)
or, more explicitly, inserting the values for v and ¢,
x = (T2 — 1)U+ 1 (6)

Note that the normalization integral
[N
KE/deZk(ﬂﬁg—m) (7)
z1

plays no direct role in the algorithm: only the ratio
K/k = x9 — x7 matters, and the only requirement on
it is that it must be finite.

II. POWER DISTRIBUTION.

In this case we want to generate random numbers z
such that their distribution, in the m — oo limit, is

dN »
T = kx (8)
in the region x7 < x < x9, for a specified value of p.
While p can, in general, be an arbitrary real number,
we first impose the restrictions p # —1 and 0 < 7 <
To < 00. Removal of these restrictions is possible in
some cases, as discussed below. The power density clearly
makes no sense for x < 0 unless p is an even integer;
we exclude this case from consideration because it is the
mirror image of the x > 0 case.
The trick to generate the z’s is to make the change of
variable defined by

dy = \xPdx (9)



where X is a positive constant to be determined. Eq. (8)
then becomes

dN

— =k/A 10

o= (10)
which is similar to Eq. (4) except that y replaces x, hence
y = at + (. Integrating Eq. (9) yields

y=azPt —b (11)

where a = A\/(p + 1), hence the algorithm is

. 1/(p+1)
o <au+aﬂ+b> (12)

This equation shows that the constants «, 3, a and
b have no independent meaning: only the combinations
a/a and (8 + b)/a matter. We might as well set a =1
and 8 = 0 so that y = @, which justifies the convenience
of the introduction of the constant A. To obtain a (or,
equivalently, \) and b we impose the requirements that
y =0 for x =27 and y = 1 for £ = x5, which yield

_ ,.ptl 1 _ .ptl p+1
—=a, 5—962 —af (13)

from which we get the explicit algorithm

1/(p+1)
v = [(xg’“ — 2PN+ P! (14)

Note again that the normalization integral

T2

k p+1 _  p+1
K:k/dxxp:(x2p+1$1 ) (15)

1

plays no direct role (only K/k matters), and it must be
finite.

A. Special cases (1): 1 =0 or z2 = .

These cases are possible as long as p is such that K <
0, ie., as long as the distribution is normalizable. This
condition implies the following restrictions on p:

zy=0and z3 <oco: p>—1 (16a)
1 >0and 25 =c0: p< —1 (16b)
21 =0 and z3 = 0o : impossible (16¢)

B. Special case (2): p=—1.

One can take the limit p — —1 by using ’Hopital’s rule
applied to either (12) or (14) or, more simply, by starting
directly from Egs. (8) and (9). In this case dy/dz = \/z
hence

y=alnz—b (17)

where a = A. Imposing the conditions y = 0 when x = 2
and y = 1 when = = x5 yields

1_ In (u) , b =Inx (18)
a

therefore, setting y = 4, we obtain

z = exp (“:b> = (ij)u (19)

Note that, in this case, both choices 1 = 0 and x5 =
oo are forbidden because either one of these would make
the distribution non-normalizable (K = o).

III. THE INVERSION METHOD-GENERAL
CASE.

The problem is stated as follows: generate a one-
dimensional random number distribution with a given
probability density p(z),

W o) (20)

in 1 < x < x9. We require that p(x) not vanish in any
finite sub-interval within [z, zs]. If it does, the problem
reduces to generating random numbers from the linear
superposition of two (or more), possibly disjoint, distri-
butions, which is described in Sec. VI.

Even though we are interested in a given x-interval,
in many cases p(x) will be defined in a larger region of
the z axis. If p(z) is given in analytic form, it is typi-
cally defined either in —co < x < coorin 0 < z < oo.
Examples of distributions of the former kind are the
Gaussian, p(r) = kexp(—(x —x¢)?/20?), the Lorentzian,
p(z) = k/((x —20)? +~?), etc. For these distributions
may extend all the way to —oo. Examples of the latter
kind are the power density, p(xz) = kaP, the exponential,
p(x) = kexp(—=x), etc. For either kind, 25 may extend to
400. The formulas below apply equally well to any such
distribution. If p(x) is only known in z7 < x < x9, see
below.

The procedure to find the algorithm to generate the
x’s according to (20) is to: (1) find a change of variables
x = f(y) such that the y’s are uniformly distributed, ie.,
dN/dy =constant; (2) use the result of Sec. I, namely
y = ai + 3; (3) determine o and S from the endpoints
of the interval, 1 = f(8) and o = f(a + B). The
a’s are then given by = f(at + (). In practice, it is
usually easy to find y as a function of z, but it’s often
not possible to invert this relation to find = as a function
of y in analytic form.

The required change of variables is given by

dy = Mp(x)dx (21)

where the scaling constant A is introduced, as in the
power density case in Sec. II, to allow the choice a = 1



and § = 0. Integrating (21) gives
y=AP(x)—b (22)

where the cumulative probability function P(x) is defined
to be the integral of p(z) relative to x = 0,

x

P(x) = /dx'p(x') (23)

0

Eq. (22) yields
z =P} (W) (24)

where P~1(2) is the functional inverse (not to be con-
fused with the algebraic inverse) of P(z) (that is to say,
if z = P(x), then? xz = P~1(2)).

The constants A and b follow from the requirements
that £ = z; when y = 0 and = = 22 when y = 1, ie.

=Pt (i) , xp=P! (1“;b> (25)

or, equivalently,

1+b

Pla A

b

- = P, 26

3 g (26)
where P; = P(z;), i = 1,2. From here we easily obtain b
and b/, hence Eq. (24) yields the general algorithm

r=P (P, — P)i+ P (27)

Again, the normalization K = f;f drp(x) = P, — Py
must be finite.

If the density p(x) is only defined, or only known, in
the interval [z, z2], or is not given in analytic form (for
example, it may be specified as a numerical table in

[z1,22]), then one may deal with an extended density
defined by

(28)
0 elsewhere

plx) if g <z <xo
Pext (33) = {
and proceed as in the case above (a slight confusion
may arise here because P~!(z) is not well defined out-
side [z1, z2], although in practice this is not a problem).
Equivalently, it is conceptually simpler to define P(z)
relative to x = z; rather than to z = 0, namely

2 Note that there is a 1 < 1 correspondence between x and z owing
to the monotonically increasing nature of P(x).

With this definition P, = 0 and P, = K, hence the
algorithm is now written?

r =P Y (Ka) (30)

Depending on the complexity of the expressions for P;
and P, one may be able to simplify somewhat expres-
sions (27) or (30) by the replacement 4 — 1 — 4 because
1—1 is as good a uniform random number in [0, 1] as 4 is.
With this replacement, however, & = 0(1) gets mapped
onto © = xa(x1) rather than x1(z3), an immaterial dif-
ference in the algorithm.

A. Example: power density.

To show how the general formalism above applies to
the power density we use Eq. (23) to obtain

z:Pw%:@fw%m:Zij (31)
0
therefore
v =P (z) = {(pzl)z} v (32)
We now use
P = 7@ plz) = ’;xjil L i=1,2 (33)

0

and, according to (27), insert z = (P, — Py)4 + Py into
(32), thus recovering the original expression (14).

Had we applied Eq. (29) instead of (23) we would have
obtained

x

2= P(z) = k/dx/x'p =

Z1

St e @

hence

x:Pfl(Z) —_ [(erl)Z +x€+1

k

1/(p+1)
] (35)

Following Eq. (30), we use P, =0, P, = K and z = K4
in (35), yielding exactly the same result as above, namely
Eq. (14).

3 This variant of defining P(x) relative to z = z; rather than to
z = 0 is always valid, whether p(z) is given in analytic form or
not. Even though we use the same notation for P(z) in (23)
and (29), it should be clear that these are different functions, as
are their functional inverses (27) and (30), respectively. Also,
expression (29) for P(x) contains an implicit dependence on z
which we suppress for notational compactness.



B. Remark.

This algorithm presented here is most efficient when
(a) P(z) is obtainable in analytic form, and (b) its func-
tional inverse has a simple analytic form. If these condi-
tions are not satisfied, the next best option is to tabulate
both P(z) and P~!(z) in the interval [z, 7o) and use ta-
ble interpolation; this option works well if P(x) is smooth
enough and the interval is finite. If none of the above con-
ditions are met, the conventional alternative to generat-
ing random numbers is the Monte Carlo (“accept-reject”)
method. This method has the advantages of simplicity
and straightforward extension to higher dimensions, but
it may have efficiency problems. See Sec. IX.

IV. OTHER EXAMPLES.

Here we provide a list of examples that might be useful,
without the detailed derivation. For each case we provide
p(x), the relevant interval, and any applicable condition
on the parameters that might appear in p(z).

1. p(z) = kef(“"’m“)?/%a 1 <z < 29,

Conditions: o > 0, x¢ arbitrary.

x=x0+ V20 erf (P, — Py)ii + Py (36a)
;i — X0 .

P, =erf , 1=1,2 36b

( V2o > 68

where erf(x) is the conventional error function,

erf(z) = % / dte " (37)
0

so that erf(+o0) = +1. Note that if 27 = —oo and
To = +00 you get

x =120+ V20erf (24— 1) (38)
2. p(x) = k/[(x — 20)® + 73], 11 < o < 19,
Conditions: v > 0, xg arbitrary.
x =z + ytan[(Ty — Th)a + T1] (39a)

T; = tan™* (wi_mo) , i=1,2 (39b)
v

where the tan~! function is defined in

(=mw/2,47/2). Note that, if z;y = —oo and
To = +00, you get

2u —1
r =9 + ytan [(UQ)F] (40)
3. p(z) =ksinmz, 0 <z <1
1
r=—cos (20 —1) (41)

™

where the function cos™! z is defined in 0 < z < 7.

. p(x) = kcos(rz/2), -1 <x < 1.

2
r= Zsin" (20— 1) (42)
s

where the function sin™'z is defined in —7/2 <
x < 7/2.

plx)=k(z—a)b—2x),a <z <h

z =1z + Wsin (3sin™" (24 — 1)) (43)

where g = (a +b)/2, W = b — a, and where the
function sin~!z is defined in —7/2 < 2 < 7/2.
Note that, if b= —a = 1, you get p = k(1 — 2?), in
which case

x = 2sin (3 sin~' (24 — 1)) (44)

. p(x) = kxP~le " 0 <z < 0.

Conditions: p # 0.

z = (—Ina)l/? (45)

. p(x) = kP~ le™® 0 <2 < 0.

Conditions: p > 0.
=P (p,q) (46)

where P~1(p,x) is the functional inverse (in x) of
the incomplete gamma function P(p,z) defined by

1 xT
P(p,x) = m/dttp_le_t, p>0, >0 (47)
0

If the desired interval in z is 21 < x < 9 where
0 <z <29 <00, then

x =P 'p, (P, — P)i+ P (48a)

cp(x) = kem(@=w0)/e gy < < .

Conditions: ¢ > 0. This is a special case of either of
the above two examples, obtained by setting g = 0
and p = 1, from which we have (z —xz¢)/c = —In 4,
hence

x=z9—clna (49)

If the desired interval in x is 1 < x < x5, then

r =T — cln [(EQ — El)’& + Eﬂ (503)
E;=e @imz)/e 19 (50b)



9. p(z) =kt 11 —2)» "L 0<2 < 1.
Conditions: p,v > 0.

T = ﬁ_l(@a%”) (51>

where 31 (x, u, v) is the functional inverse (in z) of
the normalized incomplete beta function 5(z, i, v),
defined by

I

ﬂ(],‘,/,(,,l/) = M dtt#_l(l_t)u_la
() 0/

L'(p
0<z<1l u>0,v>0 (52)

If the desired interval in z is 21 < 2 < zo where
0<x <z <1, then

x=B""(B2 = B)i+ Bu, p, V]
@‘Eﬂ(%‘,ﬂay)v Z:1a2

(53a)
(53b)

V. THE SCALING RELATION.

A fundamental scaling relation in all of physics ex-
presses the fact that any physically acceptable function
F(z) of a physical (ie., dimensionful) variable x must be
of the form

F(z) = 8" x G (w _S””O) (54)

where 1z is the origin (or reference point) for x, S the
units of = (or the parameter that determines the units of
x), p is the dimensionality of F(z), and G(-) is a dimen-
sionless function of the dimensionless variable (x—x¢)/S.
The above simply expresses the fact that the origin and
scale of any physical variable can be chosen arbitrarily
without changing the physics.

Probability distributions, in their general form, obey
a similar scaling relation that can be used to generalize,
albeit slightly, the algorithm to generate random num-
bers therefrom. Perhaps the simplest and most intu-
itive consequence of this generalization is the following
rather obvious fact: if x is a random number generated
in (—oo, +00) out of a distribution with RMS ¢ =1 and
peak zg = 0, then the random number y corresponding
to the same distribution for arbitrary ¢ and xg is simply
given by

Yy =m0+ ox (55)

where ¢ plays the role of S. The simple transformation
(55) is clearly not valid when o = co. Nor is it valid when
the desired interval for the random numbers is a finite
domain [z7, 23] because this interval changes to [z +
ox1, Ty + ows], which is different from the original one.
In this case, the generalized algorithm, which leaves the
interval [z1,xs] invariant, requires the derivation of the
scaling relation. We thus focus attention on the generic

form of a distribution density, namely p = p(x;xq,S).
This form makes explicit the fact that, in addition to
the variable x, p depends on the two parameters zy and
S, where z( is a reference value for = (ie., a choice of
origin), and S sets the scale for x. For example, for
the Gaussian distribution p = kexp[—(z — ¢)?/20?], z¢
might be chosen to be the location of the peak (xg = ¢)
and S might be the RMS (S = o). For the Lorentzian
distribution, p = k/[(z—c)?*+~?], we might choose z¢ = ¢
and S = v (in this case 0 = 0o hence o is not available
as a scale parameter). For the parabolic distribution,
p =k(z—c)(d— x), with ¢ < x < d, we might choose
xo = c (the left edge) and S = d — ¢ (the full width).
Any such distribution will be of the form

(w0, 8) = X _ kg (”3 — f’“’”) (56)

dx S S

where the prefactor 1/S accounts for the fact that dN/dx
has dimensions of 1/x, and k is an unimportant dimen-
sionless normalization constant. On a computer, the ran-
dom numbers z would be generated in the interval [z, 5]
via a call to a function R,

x = R(x1, 22,20, 95) (57)

For example, Eq. (36a) says that, for a gaussian distri-
bution the R-function is given by

R(l‘l, T9,Xq, 0') =x9+ \/50’ erffl[(Pg - Pl)ﬂ+P1] (58)

where the P;’s are given by (36b).
Suppose now that we make the variable shift x — y =

a + bz where a and b are arbitrary constants. Then
Eq. (56) yields

dN  k Y — Yo

dy bSG< bS ) (59)

where yo = a+bxg. This implies that dN/dz is invariant
under the simultaneous shifts

r—y=a-+br

S— S =bS

(60a)
(60D)

To obtain the consequences on the R-function of the
fundamental scale invariance of (56) under (60a-60b), we
note that Eq. (59) implies that the y’s are generated via
the operation

y = R(y1, Y2, Yo, bS) (61)
or, using y = a + bx,
R(y1,Y2,Y0,bS) = a + bR(x1, x2, %0, S) (62)
ie.,

R(a+ bxy,a+ bxa,a + bxg,bS) =
a+ bR(x1, 22,20, S) (63)



Using the arbitrariness of a and b we define a = —a’ /b’
and b = 1/b" and plug this into both sides of (63). Upon
relabeling (a’,b") — (a,b), we obtain the fundamental
scaling relation for the R-function

R(z1,29,20,5) =a
+ bR[(z1 — a)/b, (x2 — a)/b, (xo — a)/b, S/b]  (64)

For the particular case of a distribution of finite RMS
o, (64) yields a particularly useful result by making the
choices a = xp and b = S = o. In this case Eqgs. (57) and
(64) yield

x =x0+ oR[(x1 — x0)/0, (X2 — x0)/0,0,1] (65)
and

R(x1, 9, 20,0) = X0
+ oR[(x1 — x0)/0, (x2 — 20)/0,0,1] (66)

respectively. These equations provide the algorithm to
generate random numbers with a distribution with peak
at x = 29 and RMS o out of the distribution with peak
at x =0 and o = 1 in the same interval [z1,x2]: simply
replace, in the R-function for the latter,

x— (x—x0)/0 (67a)

x; — (ri — o) /o, i=1,2 (67b)
For example, gaussian random numbers in 1 < x < x9
are generated from a distribution with 0 mean and unit

RMS according to Egs. (36a-36b),
= R(z1,22,0,1) = V2erf '[(Py — P1)i+ P;] (68)

where P; = erf(z;/v/2), i = 1,2. According to the gen-
eral formula (65) (or (67)), all we have to do to find the
algorithm to generate the random numbers in case the
gaussian has RMS o and is centered at x( is to replace
x — (x—x9)/o and x; — (x; — x0)/0 in (68). Indeed,
these replacements yield precisely the general algorithm
(36a)-(36b).

Some of the distributions in Sec. IV are not of the
generic form (56) because either zy or S or both have
fixed numerical values. However, in all such cases it is
straightforward to generalize p to arbitrary zy and S as
follows: it is clear from the above arguments that xy need
not have the meaning of being the peak of the distribu-
tion, nor an arbitrary origin for x. Indeed, zo may be
any significant place in the distribution that serves as a
reference, or origin, for x. For example, for a bimodal dis-
tribution, xy might be chosen to be, say, the right peak.
Or, for a finite-extent distribution, xy might be the left
edge, etc. For example, general form of the simple expo-
nential distribution p = ke™* is p = ke~ (*=%0)/¢ where
x > xo and ¢ > 0; this expression is of the form (56)
and its corresponding R-function, Egs. (50a-50b), can be
easily shown to obey the scaling relation (64).

Similarly, we may generalize the power distribution (8)
to have an arbitrary left edge xg, ie.

p=k(x —xz)?, x> x (69)

In this case (14) generalizes to
R(z1,x2,20,5) = x0 + [{(CEQ — xo)p+1
- (551 - xo)p+1}ﬂ + (xl o mo)p+1]1/(17+1) (70)

where it is understood that zg < 1 < x9. Note that the
power distribution is scale invariant, hence S does not
appear in the R-function. It is straightforward to verify
that Eq. (70) obeys the scaling relation (64) for arbitrary
a and b.

VI. LINEAR SUPERPOSITION OF TWO OR
MORE DISTRIBUTIONS.

Suppose now that the problem is the following: gen-
erate a set of m random numbers {z} such that, in the
limit m — oo, the z’s are distributed according to

dN

%: LElSISIQ (71)

pl(x) + pZ(I) )
where p; and py are given. In general, the p;’s are de-
fined over different intervals, which we call [z1,1, z2 1] and
[£1,2,®2,2], respectively, and the interval [z, z3] is the
union of the two, [z1,22] = [x11,%2,1] U [21,2, x2,2]. The
four z; ;s may be different (they may be finite or infi-
nite), and the two intervals may or may not intersect.

The technique described here amounts to generating
the z’s from either p; or ps, with specific weights to be
determined. It is particularly useful,therefore, when one
is able use the inversion algorithm described in Sec. IIT
to generate random numbers individually from p; and
p2, but not from the sum p; + po. For example, p1(z)
might be k2P in 2 < z < 5 and ps might be koe™ "
in 0 < z < oo: in this case it is straightfoward to find
y(z) = [ da’p(2’) in analytic form, but it is not possible
to invert this function analytically.

Define the normalization integrals

T2
K; = /dmpi(m), i=1,2 (72)
T1,4

and the weights

K

= — , =1,2
KK, 1 , (73)

w;
so that w; > 0 and w; + wo = 1. Then the algorithm to
generate x is the following:

1. Generate a uniform random number 4 in [0, 1].

2. If 0 < 4 < wi, generate x with density p;(z) in
[©1,1,22,1].



3. Otherwise, if w1 < @ < wi + we = 1, generate x
with density pa(x) in [21,2, T2 2].

To prove the validity of the algorithm, one starts from
the well-known theorem for joint probability distribu-
tions:

Theorem 1 Suppose that one generates a random num-
ber x1 with probability distribution p1 and a random num-
ber xo with probability distribution py. Suppose that one
combines x1 and xo via a given function, x = f(x1,x2).
Then the probability distribution of x is given by

p(r) = /dﬂﬁldﬂh p1(x1)p2(x2)dlx — f(x1,22)]

This theorem has the obvious generalization. If
one combines n random variables zi,...,z, via x =
f(x1,...,x,), where x; is generated from the distribution
pi(z;) (i=1,...,n), then the probability distribution of
x is given by

pla) = [ dar - day pa(ar) -+ ()
X 8lx — fay,...,25)] (74)

To prove that the three-step algorithm above yields
Eq. (71) for the distribution of the z’s, we first translate
the algorithm into a joint distribution with a given com-
bination function, then apply Theorem 1 to obtain p(z).
We first define the functions 6;(z) in 0 < < 1 via

bu(z) = {O otherwise (752)
1ifw <zx<1
Oa(z) = {O otherwise (75b)

and consider the joint distribution of three random vari-
ables, namely z1 (generated from p;(x1)), z2 (generated
from ps(z2)), and u (generated from U(u)) combined via
the function

x = f(x1,22,u) = 01 (u)x1 + O2(u)xs (76)

Clearly, Eq. (76) is the mathematical expression of the

algorithm. Substituting (76) into (74) for n = 3 yields

p(z) Z/dﬂfldm/lduﬂl(ﬂ?l)m(@)
0

X 8(z — 01 (u)xy — O2(u)xs) (77a)
= [ dxrdzs p1(x1)p2(x2) dud(xz — x1)

/ /

1

+ / dud(x — x2) (77b)
:/dxldxg p1(z1)p2(x2) [wid(z — xq)

+ wad(x — x9)] (77¢)
—k(p1(2) + () (77d)

which proves Eq. (71) (in (77d) k = K1 K3 /(K1 + K3) is
an unimportant normalization constant).

The algorithm generalizes in a straightforward way to
the case of a sum of n distributions: to generate a set of
random numbers {z} such that

%:pl(x)+...+pn(x) (78)

proceed as follows: define the normalization integrals
T2
Ki:/dxpi(x), i=1,...,n (79)
T4

and the weights

Ki

w; = )
K+ + K,

i=1,...,n (80)

so that w; > 0 and wy + - - - + w,, = 1. Define the partial
sums s; as follows:

50 =0 (81a)
S1 = W1 (81b)
So = w1y + Wwo (81c)
Sp=w; +we+ - +w, =1 (81d)

so that sg < s1 < -+ < s, = 1. Then the algorithm to
generate x is the following:

1. Generate a uniform random number 4 in [0, 1].

2. Find the interval within the s’s where 4 belongs,
i.e., find the value of i for which s;,_1 < u < s;.

3. Generate z with density p;(x).



VII. OTHER APPLICATIONS OF THEOREM 1.

Theorem 1 and its generalization (74) allows a simple
way to generate random numbers with (possibly) compli-
cated distributions. For the simplest case in which n = 1,
the algorithm yields

pu>=/ﬁmp@nax—ﬂm»

__pla)
[f' (1)

(82)

z1=f"1(x)

which is equivalent to the inversion method described in
Sec. III.

Examples.

For each case, we specify the value of n, the distribu-
tion(s) p;, the combination function f, and any restric-
tion on the function parameters.

L.n=1,p(x) =U(x), f(z) =27, p>0:
1
plar) = / dzy §(x — 2}/7) = pa? U (x)  (83)
0
2.n=1,pi(x) =U(x), f(z) =a=/7,p>0:
1
o) = [[driote a7/ =0~ Dlpt (5
0
8.n=1, pi(a) = U(a), f(a) = —Ina:
1
plz) = /d:cl 0(z+1Inz) =0(x)e™ ™ (85)
0

4. n=1, pi(z) =U(x), f(x) = (—Inz)"/?:

plx) = [ deyd(z — (—Inazy)/P)
/
= 60(x)|pla? e, p#0 (86)

5.0 =1, pi(x) = U(w), f(x) = Infw/(1 - )]

1
plx) = /d:z:1 O(x —In[z1 /(1 — z1)])
= 071 87
 4dcosh®(z/2)’ TosEse 87)

6. n=1, p1(z) =U(x), f(z) = —In[dx(1 — z)]:

plx) = [ dzydlx + In{dxy (1 — 1) }]
/
e—ac/2

4/e* — 1

(note that p(z) has an integrable divergence as x —
0%, namely p(z) ~ 2~1/2).

= 0(x) (83)

7.n=2, pi(z) = p2(z) =U(x), f(z1,22) = T122:

1
p(x) = [ deydas §(x — x122) = —U(z) Inz (89)
/

8. n=2pi(x) =pa(x) =U(z), f(x1,22) = xi/pxé/q,
p,q > 0:

1
p(z) = /dl’ldl'g o(x — xi/pxé/q)
0

pg(z?~! —a171)
=-Ulx)——— 90
(z) P (90)
In the special case p = ¢ you get
1
plx) = /dxldxg §(x — (w122)Y/P)

0

= —U(x)p*x? 'Inz (91)

9. n =2, p1(x) = p2(x) = U(x), fla1,22) = 21 — 2

1
plx) = /d:cld:ﬁg 0(x — 21 + x2)
0

1+2z for —1<z<0
=¢l—2 for0<z<l (92)
0 otherwise

10. n =2, p1(x) = po(x) = U(x), f(x1,22) = 21 + X2:

1
plx) = /dmldxg 0(x —x1 — x2)
0
x for0<ax <1
=2—z forl<axz<?2 (93)
0 otherwise

1. n = 2, pi(z) = exp(—22/202)/V2m0; (i = 1,2),



flz1,m2) = 21 + z2:

oo

/ dxidrs 6(x — x1 — x2)

— 00

1

2mo 09

p(x) =
o o—t% /2033 /203
6—12/222
=, E
V2

12. n = 2, pi(z) = exp(

(of +03)'/? (94)

—22/202) /210 (i = 1,2),

f(x1,32) = |z122|Y/P, p #£ O
p(x) = 5 / dzxidxs §(x — |x122] /p)
TO102
X 6711/201712/202
p—1 p
TO109 0109

where K| is the usual modified Bessel function.

1B.n = 3, pi(x) = pa(z) = Ulz),
f(l’l,xg, ng) = T1T2X3:

p3(z) =

1
p(z) = /dl’ldl'gdl'g §(z — zwomws) = 2U(2) In*z (96)
0

14.n = 2, p1(z) = p2(x) = U(x), flar,22) = (1 +
xg)/Z:

= /dmldl‘g 5(37 — (xl + 332)/2)

_ [Ax, 0<z<1/2
_{4(1:1:), 12<z<1 (97)
15.n = 3, pi(z) = p2(x) = p3(x) = Ulx),
f(a?l,l‘g,xg) = (.%‘1 + 2o + 3;‘3)/3:
= /dxldxgdacg §(z — (x1 + 22+ 23)/3)
2722 /2, 0<z<1/3
—9(6x — 622 —1)/2, 1/3<a<2/3  (98)
27(1 — 22) /2, 2/3<z<1
16.n = n, pi(r) = exp(—x2/20%)/\2n0; (i =
1,...,n), f(z1,...,zn) = (1 + -+ xp) /0
pla) = [ dor-edon pr(an) -+ puen)
x0(x—(x1 4+ +xn)/n)
:ﬂ = 3(02 4. +g2)1/2 (99)
mz ’ n 1 n

Note that if all the o;’s are equal, you get ¥ =
o/+/n. This is perhaps the simplest example of the
central limit theorem.

VIII. TRICKS SPECIAL TO THE GAUSSIAN

DISTRIBUTION.

The unique property of the exponential function f(z+
y) = f(z)f(y) allows a simple way to generate Gaus-
sian random numbers in 1D by generating 2D normally
distributed random numbers (z,y), which are simpler to
generate than in 1D, and then simply selecting either x
or y. This is clearly seen from the 2D distribution

dN

— Lo~ (@4y?)/2
dxdy ke

(100)

and noting that its 1D projection, say onto the z-axis, is

dN /
Y dxdy

= ke /2 (101)
where k' is an unimportant constant.
A. The basic 2D algorithm [1].
By going to cylindrical coordinates (x,y) =

r(cos ¢, sin ¢) with 0 < ¢ < 27 and 0 < r < oo, Eq. (100)
becomes
dN  dN
dedy — rdrdp

e /2 (102)

Defining ¢ = r2/2, this equation is further simplified to
(103)

which means that ¢ and ¢ are decoupled: ¢ is gener-
ated uniformly in [0, 27) and ¢ is generated in [0, co) with
distribution e~*. These actions are implemented by the
following algorithm:

1. Generate ¢ in [0,27) with uniform density, ie.,
¢ = 2w, where 47 is a uniform random number
in [0,1].

2. Generate t in [0,00) with density e, ie., t =

—Indy (cf. Eq. 49), where @y is another uniform
random number in [0, 1].

3. Compute x = /2t cos ¢ and/or y = /2t sin ¢.

Both x and y are normally distributed about 0 with unit
standard deviation.



B. The Box-Muller 2D algorithm [2].

The above basic algorithm has the disadvantage that it
requires the evaluation of trigonometric functions, hence
it might be too slow in applications dominated by the
generation of random numbers. The trick to get around
this deficiency is the following: make the change of vari-
ables (z,y) — (2/,y") defined by

(z,y) = g(s) x (¢, y/) (104)
where s = 2/2 + 2, and the function g(s) is to be de-

termined. The Jacobian of this transformation is given
by

o(x,y) _ o dg _ d(sg®)
a(z',y") g+ 9 s ds (105)
hence Eq. (100) becomes
2
dN _k*592/2xd(5‘q) (106)

The simplest algorithm to generate (z’,y’) is obviously
given by dN/dx'dy’ = constant, which implies that z’
and 3y’ are to be generated uniformly in a 2D domain that
is yet to be specified. The uniformity condition yields the
elementary differential equation

d(SQQ) — k/68g2/2

107
I (107)
whose solution is
—21In(k k

o(s) = | 22 mls £ k2) = + k) (108)

where ks is an integration constant and k1 = —k'/2.
Defining r2 = 22 + y2, we obtain
r? = sg* = —21In(kys + ks) (109)

The constants k; and ko are determined by the choice of
domain in the 2’ — 4’ plane that gets mapped onto the en-
tire —y plane according to Eq. (104). Now Eq. (104) also
maps circles around the origin in the x —y plane to circles
around the origin in the 2’ —y’ plane. Since x and y must
range in (—oo, +00), we conclude that the points (z/,y’)
must be allowed in all four quadrants. Since 0 < 72 < oo,
we conclude from (109) that 0 < k1s + ko < 1 hence s is
allowed to range only in a finite interval. Furthermore,
the function r(s) is 1 «» 1. Combining these arguments,
we conclude that the most general acceptable domain
for («',y’) is an annulus defined by s1 < s < s9, where
0 < s1 < s3. The constants k1 and ko can be readily
expressed in terms of the endpoints s; and s, and these,
in turn, can be computed by the requirement that s = s1
map onto r = oo in the z —y plane, and that sy map onto
r = 0, or viceversa. However, a bit of hindsight quickly
shows that by far the simplest algorithm arises when the
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domain for (z/,y’) includes the origin, ie., s; = 0, which
implies k3 > 0. The upper limit sy can be chosen to be
any positive number, but the simplest choice is sy = 1,
so that Eq. (104) maps the unit disc in the 2’ — 3/ plane
to the entire  — y plane, and the function 7(s) is mono-
tonically decreasing. Requiring that » = 0 for s = 1 and
r = oo for s = 0 yields k; = 1 and ke = 0, hence

—2Ins
s

g9(s) = (110)

The algorithm, therefore, is the following;:

1. Generate two uniform random numbers (z/,y’) in
[—1,41], ie., ' = 247 — 1 and y' = 24y — 1, where
@1 and Gg are uniform random numbers in [0, 1].

2. Compute s = 22 + 32, If s > 1, reject 2’ and o/
and go back to step 1. Repeat until you get s < 1.

3. Compute g(s) according to Eq. (110), and then x =

g(s)a’ and y = g(s)y’.

The execution of this algorithm yields two random
numbers (z and y) normally distributed with zero mean
and unit standard deviation. On the other hand, the al-
gorithm is not 100% efficient owing to the possible rejec-
tion of (2/,y’) in step 2: the acceptance rate (efficiency)
is /4 ~ 78.5% (= the ratio of the area of the unit circle
to the area of the square of side 2), but since you get
two random numbers in one shot, the overall efficiency of
the algorithm is 1 — (1 —7/4)/2 ~ 89.3% which, depend-
ing on the particular application, might be advantageous
vis-a-vis the computation of two trigonometric function
in the basic algorithm of Sec. VIIT A.

C. Caveat.

These 2D algorithms are simple to implement and work
well when the desired range for the random numbers is
(—00,400) (or half of this interval, say (0,00)). Unfor-
tunately, they are not successfully modified when the de-
sired range is a given, finite, interval [x1,z5]. One can
always, of course, use the algorithms as described above
and simply reject the z’s that fall outside [z, 3], but
this introduces a possibly unacceptable inefficiency.

Consider the basic 2D algorithm of Sec. VIITA. De-
pending on the interval [z1, 2], there are three sub-cases:
(a) 0 < z1 < xg; (b) 1 < 22 <0; and (¢c) 1 <0, z2 > 0.
For case (a), a bit of algebra and a sharp pencil yield the
following algorithm:

1. Generate ¢ uniformly* in [0, 7], ie. ¢ = 7i; where

4 If the reader attempts to reproduce this derivation, he/she should
be aware that, in the x—y plane, this ¢ is measured relative to the
semiaxis (x = 0,y < 0) rather than to the conventional semiaxis
(y=0,z>0).



@1 is a uniform random number in [0, 1]; compute
sin ¢.

2. Compute r; = x;/sin¢ for i = 1, 2.
3. Compute F; = e /2 for i = 1,2.

4. Compute x = (sin @) x [~2In{(Ey—E1 )is+Fy }]'/?,
where 5 is another uniform random number in
[0,1].

What’s the deficiency of this algorithm? It is 100%
efficient and, mathematically, yields the desired result.
The problem is with numerical round-off: even if the z;’s
are relatively small numbers, ie. of order of a few, the
r;’s can easily be so large (due to the sin ¢ denominator)
that, even if using double precision, the E;’s will easily
underflow (or be set to 0), effectively yielding a distribu-
tion for the z’s that is substantially non-gaussian or that
may have the incorrect limits [x1, z2].

The algorithms for cases (b) and (c) are minor vari-
ants of the above,® but the underflow problem is equally
severe. This underflow problem is probably the only dis-
advantage of this 2D algorithm over the erf/erf™! algo-
rithm, Eq. (36).

We have not succeeded in finding the generalization
of the Box-Muller algorithm applicable to the case of a
given, finite, interval, but we have reasons to believe that,
at least in the general case, it is not possible to express
such an algorithm in terms of simple analytic expressions.

IX. THE MONTE-CARLO METHOD.

Suppose you want to generate random numbers with
a given, regular (i.e., nondivergent), distribution density
function p(z) in a given interval x; < x < 5. Say that
M maximizes p(z) in the interval [z1, x2]. The algorithm
is:

1. Generate a random number x uniformly distributed
in [z1,x2], i.e., x = (w2 — 1)Uy + 21.

2. Generate a random number y uniformly distributed
in [0, M], i.e., y = M.

3. Compute p(z); if y < p(z), accept x, otherwise
reject it and go back to Step 1.

Step 3 implies that « is accepted with probability p(z)/M
which implies that the accepted x’s are distributed ac-
cording to dN/dx o« p(x), justifiying the validity of the
algorithm. Its efficiency e is given by

[ da p(a)
€= 7(;2—%)1\4 (111)

5 I'll be happy to provide the fortran code for the three cases, but
the user would be foolish to use them.
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Note that M doesn’t have to be the exact maximum of
p(x): as long as M > p(z) in [z1, 23] the method works.
However, the tighter the bound M is the more efficient
the algorithm. Figure 1 illustrates the method.

This technique works for any function p(z) whose ana-
lytic form may be complicated or nonexistent. It has the
advantages of simplicity, simple coding, and straightfor-
ward generalization to higher dimensions.

FIG. 1: The Monte Carlo method of generating random num-
bers z in the range 1 < x < 3 with a probability distribution
plz) = 7Y% 4 2e72=2°  The approximate maximum in
this interval is M = 3.

A. Refinements of the Monte Carlo algorithm.

The disadvantage of the Monte Carlo method is that
it can be very inefficient when p(x) is highly peaked, es-
pecially when the interval [x7,z5] is large compared to
the width of the peak (or peaks) of p(z). For example,
for the case shown in Fig. 1, if z; were 0.01 instead of 1,
we would be forced to choose M ~ 10 just to capture all
possible values of  near x = 0, resulting in a very low
value for e. There are various techniques that ameliorate
this inefficiency.

1. Splitting p(x).

In case p(z) has a high, sharp, peak plus a low, smooth,
background in [z1,x2], it is far more efficient to split
p(z) into the sum of a peaked plus a background pieces,
p = pp + pp, and then apply the technique described
in Sec. VI. This splitting allows the application of the
Monte Carlo algorithm to p, and p, separately, typically
resulting in a much higher efficiency than for the sum

Pp + Po-



2. Partial integration.

Suppose that you want to generate random numbers
x in an interval [0,z2] and the function p(z) has an
integrable divergence at x = 0, i.e., it is of the form
p(x) = 2 Pg(z) with p < 1 and g(0) # 0, and where g(x)
is regular and smooth in [0, z2]. In this case M = oo,
hence the Monte Carlo algorithm is not applicable. How-
ever, the form dN/dx o« z7Pg(x) suggests a change of
variables similar to that in Sec. II, given by x Pdz = A\dy
where A > 0 is an unimportant proportionality constant.
This yields dN/dy « g(z), which is amenable to the basic
Monte Carlo method of Sec. IX.

Integrating z7Pdx = Ady yields, up to an irrelevant
additive constant,

z = [(1—p)Ay]/ 7P (112)

Since 1 —p > 0, this transformation maps x = 0 to y = 0.
Without any loss in generality we choose (1 — p)A = 1
so that the top value of y is given by y, = x%fp. The
algorithm is therefore:

1. Generate a random number y uniformly distributed
in [0,y2], i.e. ¥y = yatiy.

2. Compute z = /=) and g(z).

3. Generate a random number z uniformly distributed
in [0, M] where M is the maximum of g(z) in 0 <
T < 29, 1.e. 2= Mis.

4. If z < g(x), accept x, otherwise reject it and go
back to Step 1.

The efficiency of this algorithm is determined by the
smoothness of g(x). If the singularity is not at « = 0 but
somewhere else in the interval z; < x < x5, the method
may require splitting the interval into two sections and
then applying the technique described in Sec. VI.

3. Hybrid Monte Carlo-inversion method.

Suppose you can find a function M (z) such that: (a)
M(z) > p(x) in 1 < z < x9; (b) M(z) is amenable to
the inversion method described in Sec. IIT (we are assum-
ing that p(z) is not amenable to this inversion method);
and (¢) M (z) reasonably follows the shape of p(z) in
[x1,22]. Then the efficiency of the algorithm in Sec. IX
can be greatly improved.

The algorithm in this case is the following:

1. Generate a random number z distributed with
density M (x) in [x1, 23] by the inversion method
(Sec. III).

2. Compute M (z) and p(z).
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3. Generate a random number y uniformly distributed
in [0, M (z)] i.e., y = M(x)i.

4. If y < p(x) accept z; otherwise reject it and go back
to Step 1.

Figure 2 shows an example of p(z) and M (x) for which
the technique is applicable. Step 1 implies that the tenta-
tive a’s are generated with distribution dN/dx o« M (z),
while Steps 3-4 imply that the acceptance probability is
p(x)/M(z), hence the resultant distribution of the ac-
cepted z’s is given by

dN plz)

(113)

which justifies the validity of the algorithm. Its efficiency
is given by

[ dz p()
€= (114)
J dxz M(x)

Z1

which is closest to 100% the closer M (x) follows p(z) in
[x1, 22] subject to the constraint M (x) > p(x).

4

I reject

FIG. 2: The hybrid Monte Carlo-inversion method of generat-
ing random numbers z in the range 1 < z < 3. The parabolic
function M (x) satisfies M (z) > p(z) in this interval.
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