
Electron Cloud Generation  
Dave and Jim,  
 
I managed to develop an analytic expression for the maximum electrons density in a 
bend  due to photo-electrons alone. The result is: 
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where  
• eN  number of electrons in a single bunch 
• bN  number of bunches in the ring ( e bN N  is the total number of 

electrons in the ring) 
• 2R abπ π= is the effective area of the ellipse ( R ab= ) 
• ρ  radius of curvature of the bend 

• ( )pe pe
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≡ ∫ - is the average energy of the emitted photo-

electrons in eV's 
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• ( )pef E  is the probability density of emitting a photo-electron in the 
range E E dE→ + . 

Assuming 109 4 3[ ], 80[ ], 5 10 , 100
2 2 e bR cm m N Nρ= = = = × = , 10,000γ =  , and  

1/2
pe pe[ ] 30, [ ] 600E eV E eV� �   we get  (max) 11 3

ec,pe 1.36 10 [m ]n −×�  which seems fairly 
close to what people report as the cloud density – including secondary emission. The 

values of the last two parameters ( )1/2
pe pe,E E  where chosen fairly arbitrarily but they 

are not expected to change the order of magnitude. Regardless, I'll try to investigate 
more thoroughly the parameters of photo-electrons emission.  
 
Please, let me know how this fits to your earlier estimates? The main conclusion is 
that the density is proportional to the square root of the total charge in the ring!! If you 
have the patience, the details of the calculations are brought in the following pages and 
at the end of April I am planning to come to further discuss this result. The effect of 
secondary electrons is yet to be determined. 
Dave, as follow up of your last note regarding e-cloud in the vicinity of the wiggler, I 
will try to repeat this exercise for that case.        Regards,  Levi    



FLOW OF  ELECTRONS 

 
The purpose of this note is to highlight the main steps of a model describing 

the build-up of the electron cloud and develop some preliminary scaling laws for the 
electrons' density. Let us denote by ( ),J t E+  the flux of electrons of energy ( )E  
impinging upon the wall ( r R= ) at an instant t. Due to secondary emission (subscript 
SE), the emerging flux of electrons is denoted by ( ),J t E−  the two being related by a 

"reflection" operator ( )SE , ', 't E t ER  

 ( ) ( ) ( ) ( ) ( )SE, ' ' , ', ' ', ' ,pJ t E dt dE t E t E J t E J t E− += +∫ ∫ R  (1) 
( )pJ  representing the flux of primary electrons which for the moment it is assumed to 

be known. Naturally, emerging electrons occur with a delay SEτ  according to the 
collisions they encounter in the metal. This delay depends on both the energy of the 
impinging electron ( )'E  as well as the energy of the emerging electron ( )E , or 
explicitly, 
 ( ) ( ) ( )SE , ', ' ' ' 'SE SEt E t E E E t t E Eδ δ τ − + �R ; (2) 

the expression ( )'SE E Eδ  representing the yield of the secondary emission. Similar to 
delay, this quantity depends both on the energy of the incoming electron and the 
emitted one. Consequently, 
 ( ) ( ) ( ) ( ) ( ), ' ' ' , ' ,p

SE SEJ t E dE E E J t E E E J t Eδ τ− +  = − + ∫ . (3) 
 
Electrons emerging from the surface are eventually reflected back to the 

surface under the influence of:  (i) the image-charges, (ii) the space-charge 
accumulated in the cloud and (iii) the bunch.  This process is described by the 
electrostatic (subscript ES) reflection  operator ( )ES , ', 't E t ER or explicitly by  

 ( ) ( ) ( )ES, ' ' , ', ' ', 'J t E dt dE t E t E J t E+ −= ∫ ∫ R . (4) 
For simplicity sake, we assume that the effect of the bunch on the cloud may be 
included in an effective way in the term describing the primary electrons. 
Consequently, the operator ESR  represents only the elastic scattering. Subject to this 
assumption, it takes an electron (of an initial energy E') from the instant it has left the 
metallic surface until it hits it again, an average time ( )'ES Eτ   depending primarily on 
its initial energy and the density of electrons in the cloud.  With this conclusion in 
mind we may write for the electrostatic reflection operator in the "vacuum" region the 
following expression 
 ( ) ( ) ( )ES , ', ' ' ' 'ESt E t E E E t t Eδ δ τ− − +  �R  (5) 
Combining equations (3) and (4) in conjunction with (5) we conclude that the equation 
for the for the flux of electrons emerging from the surface is    



 ( ) ( ) ( ) ( ) ( ), ' ' ' , ' ,p
SEJ t E dE E E J t E E E J t Eδ τ− −  = − + ∫ ; (6) 

wherein the "round-trip" time was conveniently defined as 
( ) ( ) ( )' ' 'SE ESE E E E Eτ τ τ≡ + .  One should not be mislead by the form of this 

equation and conclude that this is a linear equation. The electrostatic delay time ( )ESτ  
depends on the total charge in the volume of interest and the latter depends in turn on 
both fluxes ( ),J J− + . 
 
 Although the secondary yield depends primarily on the energy of impinging 
and emitted electrons, in principle it depends on the incoming and outgoing angles of 
the corresponding electrons. In this note we shall limit the discussion to a bend or a 
quadropole therefore the electrons may be assumed to move (and gyrate) along the 
magnetic fields. Consequently, both the impinging and the emitted electron are 
assumed to be parallel.  Without significant loss of generality, based on the 
experimental data, it is reasonable to further assume that the energy of the secondary 
electrons is uniformly distributed between zero and the incident electron  0 'E E≤ ≤  
i.e.,  
 ( ) ( ) ( ) ( )' ' ' / 'SE SEE E E h E h E E Eδ δ − −  

��  (7) 
and as a result, 
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Before proceeding it is instructive to examine the two components of ( )'E Eτ . 

Assuming an effective decelerating electric field decE , then the average time it takes an 
electron of energy E  to return back to the surface due to electrostatic processes in the 
"vacuum" region is given by 

 ( )
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e
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r EE
c E
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wherein ( )2 3
eff,v 0 dec / 2 eE rε π= E  is the effective energy associated with the decelerating 

processes and er  is the classical radius of the electron. In order to establish the order 

of magnitude of ESτ , let us consider a cloud of density 12 -310 mn  
 �  uniformly1 

distributed in a waveguide of radius 5[cm]R ∼ . The average decelerating field is    

dec 0/ 2 500[V/m]enR ε� ∼E  and consequently for an electron of initial energy 
300[eV]E ∼  we get 200[ sec]ES nτ ∼  which is five orders of magnitude slower than 

the duration of a single bunch 1[ sec]p∼  which is the time-scale of the photons' pulse 
that in turn generate the primary electrons.  
 

                                                 
1 This is a very rough approximation that aims to provide us with an estimate of the decelerating field – the latter is expected to be 
proportional to this density and the radius of the pipe. 



Adopting a similar approach for the secondary emission we find 
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wherein ( )eff,dec eff,accE E  is the typical energy associated with the decelerating 
(accelerating) process of the incident (reflected) electrons in the solid material.  By 
analogy to the process in vacuum, the number of charges is the same but it is 
anticipated to be concentrated in a layer which is orders of magnitude thinner  
therefore, the bouncing time including both the accelerating and decelerating 
processes in the solid are negligible in comparison to the electrostatic bouncing time 
i.e.,  
 ( ) ( )' 'SE ESE E Eτ τ�  (11) 

implying that ( ) ( )' 'ESE E Eτ τ�  and as a result, 
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Taking advantage of the fact that the integrand is independent on the emerging energy 
( E ), it is possible to replace the integral equation with a differential one  

 ( ) ( ) ( ) ( ) ( )1, , ,p
ESJ t E E J t E E J t E

E E E
δ τ− −

∂ ∂
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Before any further simplification is possible we need to discuss in more detail the 
source term namely, the contribution of the photo-electrons. 
 

PHOTO-ELECTRONS GENERATION 

Let us evaluate the number of photo-electrons generated in an energy range 
E E dE→ + .  For this purpose let us assume an arc of radius of curvature ρ,  angle 

0α  and the vacuum pipe having a radius R .  Bending the trajectory of the 
electron/positron leads to synchrotron radiation of intensity [7] 
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wherein 3
cr 3 /cω γ ρ=  and eN representing the number of electrons in the bunch2. 

With this expression in mind we may calculate the total energy emitted  

 

( )

2

ph
0 cr cr0

2 2

cr cr
0 00

3 exp 2
4

63 exp 2
4 8 4

e

e e

eN d
c

e eN dx x x N
c c

γ ω ωπ ω
πε ω ω

γ π γπ ω ω
πε πε

∞

∞

 
− 

 

−

∫

∫

�

� �

E

 (15) 

                                                 
2 Only the incoherent process is considered 



as well as the total number of photons emitted 
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Consequently, the number of photons in the energy range E E dE→ +  is  
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satisfying ( ) 3
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represents the probability of emitting a photon in the energy range E E dE→ + . 
Denoting by ( )pe 'E Eδ  the yield of generating a photo-electron of energy Ε  by a 
photon of energy 'E  we conclude that the spectrum  photo-electrons  charge in this 
energy range is 

 ( ) ( ) ( )pe pe ph
0

' ' 'Q E e dE E E N Eδ
∞

∫ �� . (19) 

This yield is dependent only on the properties of the material and is independent of the 
properties of the bunch or the cloud. It tacitly includes information about incident 
angle of incidence of the photons as well as the reflection process.  
 
At this point we may evaluate the density of photo-electrons by first defining the  
average yield    

 ( )pe pe ph
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' ' ( ')dE dE E E f Eδ δ
∞ ∞

≡ ∫ ∫  (20) 

 implying that the total charge of photo-electrons is  
 3

pe pe2.8 10 eQ e Nγ δ−×� . (21) 

The volume of the ring is ( )( )2 2Rπ πρ  therefore, the average density is 
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For a bend of an angle 0 2α π�  the number of photons is reduced proportionally to 
the angle and correspondingly the number of photo-electrons is reduced 
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Before concluding this section, let us develop an upper estimate for the average photo-
electrons yield relying on energy conservation. Specifically, the expression in Eq.(15) 
provides the total energy emitted by the bunch in one revolution. Based on Eq.(20) we 
may define the probability density for generating a photo-electron in the energy range   
E E dE→ +  as  

 ( )pe pe ph
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∞

≡ ∫  (24) 

With this quantity we may determine the average energy of the photo-electrons 
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peE being the average energy of the photo-electrons. Now, since energy conservation 
implies ph pe≥E E  we conclude that 
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For example, in case of a 5[GeV]  bunch, 100[m] radius of curvature of the bend and 
assuming that pe 1[ ]E keV= , the maximum average yield of the photo-electrons is 

(max)
pe 0.15δ ∼  . Moreover, the electron cloud density due to photo-electrons alone is 

10 3
pe 4 10 [ ]n m−×�  assuming 105 10eN = × electrons in the bunch. 

 
So far we assumed that the ring consists of a continuous bend. In practice there are 
straight sections ("straights") that have no contribution to synchrotron radiation.  
Ignoring the straights inflates the estimate of photo-electrons density but since their 
overall length compared with the circumference of the ring is relatively small, the 
error is estimated to be small [???].  
 
 
Finally, in case of a straight of length L  between two bends, it is important to realize 
that there are photo-electrons in the straight because of the bend but in the first region 
of the second bend there are no photo-electrons except if the straight is sufficiently 
short.  



 

DYNAMICS OF CLOUD BUILDUP 

 
Relying on the time-scales indicated earlier (pico-seconds long bunch and many nano-
seconds separation)  the primary electrons (ignoring "snow-plow") are assumed to be 
virtually delta-function occurring at prescribed intervals nT  and their energy 
distribution may be derived from the synchrotron radiation photons namely,   
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wherein pe ( )Q E  is the spectrum of photo-electrons and it was defined in Eq.(19). 
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Since ESτ  is orders of magnitude longer than the characteristic time of  the triggering 
pulses, we consider a zero order (quasi-static)  approximation for the phase term i.e., 
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In the framework of this approximation the current is given by   
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The last term reflects the important role of the dynamics of the electrons in the cloud 
and in particular their impact on the e-cloud lifetime. Moreover, the energy integral 
may be further simplified if we consider the relatively simple relation between the 



delay time and the initial energy E' as it prescribed in Eq.(9). Bearing in mind that the 
Dirac delta function satisfies 
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With the solution in Eq.(30) and (32), it is possible to evaluate the amount of 

charge in the vacuum region at a given time 
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evidently, the amount of charge at any given instant is directly related to the time it 
takes each electron of energy E to return to the metallic wall (electrostatic delay - 

( )ES Eτ  or explicitly ( ) ( ) ( )1 2Q t Q t Q t= + . This expression reflects the direct 
contribution of the photo-electrons to the electron cloud  
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whereas the second expression  
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 represents the contribution of the secondary electrons. 

E-CLOUD BUILDUP DUE TO PHOTO-ELECTRONS ALONE 

  
In the framework of the present model the dependence of the bouncing time on the 
energy of the particle has been established assuming that the average decelerating field 
due to the cloud is known. In other words, the charge in the cloud was effectively 
assumed to be known. Obviously this is not the case, but this assumption has 
facilitated to determine the expression which may provide a good estimate of charge in 
the cloud Eqs.(20-21). It is therefore natural at this stage to determine a self-consistent 
solution of the charge in the electron cloud.  



 
For a rough estimate let us assume a repetition rate 15[nsec]T � , 

dec 1[kV/m]∼E  the latter  implying ( )cr 100[eV] / 4.5E Tτ � � , 

( )cr 300[eV] / 7.8E Tτ � �  and ( )cr 700[eV] / 11.9E Tτ � � .  The left frame of Figure 
7 reveals the impact of the spectrum of the photo-electrons alone. For a 1kV/m 
average decelerating field it is evident that the time it takes a typical electron to 
propagate into the pipe and bounce back, is longer than the period of the bunches. 
Consequently, during the first few bunches we observe accumulation of electrons in 
the volume of the pipe. Eventually, the net flow of electrons is zero and the cloud 
reaches equilibrium – assuming that t NT> , typically this happens when after a time 
duration which is of the order of the electrostatic delay time ( ESt τ� ). The right frame 
reveals the impact of the number of bunches on this accumulation. If the train is 
shorter than ESτ , the cloud does not reach the equilibrium. Moreover, if the pulse 
separation (T=100nsec) is not very short comparing to ESτ , there is no accumulation 
of charge  as illustrated in Figure 8.  In fact, in what follows, we shall develop an 
analytic expression for the accumulated charge. It should be pointed out that in all 
these figures we assumed that the yield of generating photo-electrons (defined in 
Eq.(20)) is unity , pe 1δ � . 
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Figure 7: The left frame reveals the impact of the spectrum of the photo-electrons. For an average 
decelerating field of 1kV/m the time it takes a typical electron to propagate into the pipe and bounce 
back, is longer than the period of the bunches. During the first stages we observe accumulation of 
electrons in the volume of the pipe. Eventually, the average net flow of electrons is zero and the cloud 
reaches equilibrium – assuming that t NT> , typically this happens when t τ�  . The right frame 
reveals the impact of the number of bunches on this accumulation; cr 300[eV]E = . In both frames the 
charge is normalized to the charge of photo-electrons peQ  defined in Eq.(21). 

 
 
It is evident that in certain circumstances, the photo-electrons alone may have a 
significant contribution to the density of the electron cloud. 
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Figure 8:  With the exception of the pulses separation T which is more than six times longer, all the 
parameters are as in Figure 7. It is evident that the electrons accumulation in this case is negligible. In 
both frames the charge is normalized to the charge of photo-electrons peQ  defined in Eq.(B.7). 

 
Based on these results we may conceive a simple model for the build-up of the 
electron cloud due to photo-electrons alone. For this purpose let us assume that the 
reduction in the number of photo-electrons in the cloud in time is proportional to their 
number and the decay time is just the average time it takes a photo-electron to return 
to the metallic wall 
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where the typical decay time  is ( ) ( )pe
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equation may be readily found 
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( )h t  being the step function. Assuming that the round trip in the ring is 2 /C cτ πρ=  
we may evaluate the amount of charge in the ring as 
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where bN  represents the number of the bunches in the ring. The result in Eq.(38) 
clearly reflects the fact that the average charge which accumulates is a function of the 
average bouncing time ESτ . The latter, according to Eq.(xx), depends on the charge in 
the cloud and therefore, in what  follows we shall establish a self-consistent and 
analytic estimate of the e-cloud density.  
 
Relying on Eq.(38)  we substitute the definition of ESτ  hence 
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further using the previous definitions ( ) 3
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And again, using previous definitions ( )2 3
eff,v 0 dec / 2 eE rε π= E  and dec 0/ 2enR ε�E  we 

obtain  
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Two conclusions are evident, the average density of electrons in the e-cloud is: 
• Proportional to the square root of the total charge in the ring. 
• Inversely proportional to the area of the vacuum pipe ( )3/ 43/ 21/ 1/R ab∼   

It is difficult to draw a conclusion regarding the scaling with the energy or radius of 
curvature since the photo-electrons are expected to be dependent on both. 
 
With the upper limit for the photo-electrons yield evaluated in Eq.(26) based on 
energy conservation, we get the following estimate for the maximum  average density 
of  generated photo-electrons 
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As a typical example consider 109 4 3[ ], 80[ ], 5 10 , 100
2 2 e bR cm m N Nρ= = = = × = , 

10,000γ =  , and  1/2
pe pe[ ] 30, [ ] 600E eV E eV� �   thus 

 (max) 11 3
ec,pe 1.36 10 [m ]n −×�  (43) 

 
  

APPENDIX: Evaluation of the delay time in a uniform cloud 
 
Cloud density is assumed to be uniform 0( )n r n=  implying an electric field  

 ( ) 0
0

0 0

1 ( )
2r r
e nerE n E r r

r r ε ε
∂

= − ⇒ = −
∂

 (A.1) 

The dynamics of an electron injected inwards with a velocity 0V  into the cloud is 
given by 

 
2

2
2

1
2 p

d r r
dt

ω=  (A.2) 



where 2 2
0 0/p e n mω ε= is the plasma frequency. From this last expression, energy 

conservation entails  

 
2

2 21 1 0
2 4 p

d dr r
dt dt

ω
   − =  

   
 (A.3) 

which together with the initial condition reads 

 
2

2 2 2 2 2
0

1 1 1 1
2 4 2 4p p

dr r V R
dt

ω ω  − = − 
 

 (A.4) 

The electron is assumed to reach zero velocity at a radius 0r R=  therefore 

 ( )2 2 2 2
0 0

1
2 pV R Rω= −  (A.5) 

Defining  0 0 /r R R= and the normalized velocity 02

p

VV
Rω

=  we get 

 2
0 1r V= −  (A.6) 

We now proceed to evaluate the time it takes an electron to reach the edge of the 
cloud. For this purpose we integrate Eq.(B.4) 

 ( )
2

2 2
2 2

1
1

d r d rV r dt
dt V r

  = − − ⇒ = − 
  − +

 (A.7) 

where /r r R=  and / 2pt tω= .  For convenience we substitute Eq.(B.6) to get 

 
2 2

0

d r dt
r r

= −
−

 (A.8) 

Consequently, the normalized round trip (delay) time is 

 
0

0
2 2 2

1 0 0

12 2ln ln
11 1

r

ES
rdr V

Vr r r
τ

   + = − = − =  −   − + − 
∫  (A.9) 

or explicitly  

 N

0

0 0
2

10

21
21 ln 2 4

2 21

p
ES p ES

pV p

p

V
R V V

R RV
R

ω
τ ω τ

ω ω
ω

 
+ 

 = ⇒ 
 − 
 

�
� �  (A.10) 

Further defining dec 0/ 2enR ε�E  and denoting by E  the energy of the emitted 
electron we finally get  

 ( )
eff,v

e
ES

r EE
c E

τ �  (A.11) 

wherein ( )2 3
eff,v 0 dec / 2 eE rε π= E  is the effective energy associated with the decelerating 

processes and er  is the classical radius of the electron. 
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