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I. Introduction
The present design of the PEP beam vacuum chamber consists of a more-

or-Tess rectangular pipe roughly 55 mm high by 90 mm wide. In the bending
magnets the inner wall {toward the bending center) is perforated to provide
communication with an adjacent chamber containing the distributed pumps. The
normal beam position is about 30 mm from the inner wall. (See Fig. 1.) This
note shows how an estimate can be made of the possible energy loss of a bunched
beam caused by the electromagnetic effects of the performations between the

two chambers.

First, 1 make use of a calculation of H. A. Bethe which evaluates the
diffraction of an electromagnetic wave through a small hole in a plane con-
ducting sheet. (A variant of this method is in standard use for evaluating
the coupling of two waveguides by a small hole. See e.g. Ref 2.}. Bethe's
theory is used to find the energy diffracted (that is, "scattered") from
the field of the beam bunch as it passes a small circular hole in the wall.

I argue that since the bunch length is shorter than the characteristic
dimensions of the chamber, the energy in the diffracted fields will not be
changed much by the presence of the other walls. I then make an estimate of
a "coherence factor" which takes into account the interaction of nearby holes.
These results are used to estimate the total diffraction loss for PEP.

11. Diffraction by a Single Hole

Bethe has shown that when a plane electromagnetic wave is incident on
an infinite conducting plane with a small circular hole, the diffracted field
is the sum of the fields that would be radiated by an electric and a magnetic
dipole located at the hole. The electric dipole is directed perpendicular
to this surface and has a dipole moment of:

4 = - 0 3 E , (1)

e
where E0 is the incident electric field at the position of the hole -- by which
s meant the field that would be present at the position of the hole if the




hole were not there -- and r is the radius of the hole. The magnetic dipole
is directed parallel to the plane of the hole and has a moment of:

where Eﬁ is the undisturbed magnetic field at the position of the hole. It
is assumed that the diffracting wall is a good conductor so that E0 is perpen-
dicular to the surface, and Bo js parallel. It is further assumed that the
wavelength of the incident field is much larger than r.

The varying dipole moments given by Egs. (1) and {2) will radiate into
the two half-spaces separated by the conducting plane. The total power being
radiated into both half-spaces by a varying electric dipole is given byz

2,
P({elect) = (3)
fwc® .

where Zo = lfebc = 377 ohms is the characteristic impedance of free space.

Similarly, the power radiated by a magentic dipole 152
Z,(m)?
P(mag) = —— (4)
6T

I would now like to argue that the expressions (1) through (4) will also
give a reasonably good result for the energy lost by the beam in passing a
small hole in the chamber wall. First, the electric and magnetic fields pro-
duced at the wall by a relativistic beam bunch are 1like those of a free wave.
Second, the bunch half-Tength ay is shorter than the typical dimensions of the
chamber. This means that during the passage of the beam bunch the fields will
be radiated as if into free space. After the passage of the bunch the fields
will "discover" the presence of the walls and have to adjust themselves into
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Fig. 1. Cross Section of the Vacuum Chamber



the various captured and propagating "waveguide modes” of the pipes. The
total energy diffracted will, however, be the same. We could do a Fourier
analysis of this bunch spectrum and calculate the coupiing of each component
to each of the possible waveguide modes, but this will, I maintain, give the
same answer for the total energy loss as the radiation into free space.

There remains only to find the fields Eo and B0 that the beam produces
at the chamber wall. 1 could solve for the field of the beam bunch in a
rectangular tube, but I will be content to make the approximation that the
fields are the same as would be found at the wall of a cylindrical beam pipe
of radius "a" where a is the half-height of the beam pipe. Ignoring anomalous
bunch lengthening, I take the 1inear charge density X in the bunch at the axial

position y to be given by:

2
A o= 9 ¥, (5)

Yom 9,

where @ is the total charge of the bunch, and o, is the bunch half-length.
The electric field E0 at a given point on the wall will, then vary with time as

~ 2 2
E, = E, e t/20%, (6)

where g, = oz/c, and the peak field is

t

E A . L .. (7)

1.5
2ﬂeoa (2w) € ao,

Now £qs. (6) and (7) can be used with Eq. (1) to find the varying dipole
moment d(t) of the hole. (It's direction can be ignored), and this moment in-
serted into Eq. (3) to find the power being radiated. Here, I am interested



only in the total energy loss U, which is the integral of P over all times.
It is generally more convenient to express the loss in terms of an effective
retarding potential differences Vyigpgs. Then

+
- U - 1
T fP(t)dt (8)
Putting all of the pieces together (see Appendix A for details), I find
that the loss potential through the electric dipole channel is
Z.C 6
Vigsstelect) = 0 rg (9)
144 %%  a?g,®

L

To get the diffraction through the magnetic channel, note that for the
fields of a relativistic bunch By = E /C, so that P(mag) = 4P(elect). Further,
recall that the radiation fields of electric and magnetic dipoles are given by
orthogonal functions so that there is no interference in the total power radiated.
We just add the powers, and, therefore, the total energy loss. The total loss
potential for one hole is just five times larger than (9}).

bZ.cC 6
VigsslOne hole) = 0 r'q (10)
144 «3-° azcgs

This diffraction Joss includes both the energy left in the fields dif-
fracted through the hole into the vacuum pump chamber, and the fields “scattered”
back into the beam chamber

I1I. Enhancement by Coherence

As the beam makes one complete circuit of the storage ring it will pass
each of the total of N holes in the chamber. If there were no interaction among



the effects of nearby holes the total energy Toss would be just N times Targer
than the single hole diffraction loss. If, on the other hand, there were full
"coherence" in the diffracted fields we might expect the amplitudes of each
mode to be N times the singTe hole fields and the energy would be N? times the
single hole losses. Since N~10° for PEP, the difference between N and N? is
quite large.

I define a coherence factor g such that the energy loss from N holes is

gN times the single hole loss. As will be shown below, the loss is expected
to be small, so we need only a rough estimate of g. For this estimate we may
take that g is equal to the product of v, the number of holes per unit length
along the chamber, and Ty s the bunch half-length.

g = vo (11)

'8

This choice for g can be justified intuitively as follows. The typical
(angular) freguency W, in the spectrum of the bunch current is equal to c/og.
So the typical reduced wavelength x of the propagating fields is about equal
to 0g- We may expect coherence in the fields of different radiators if they
are excited in place and are within a distance of x of each other. So I
estimate that if there are g holes in the distance equal to X the fields will
be g times larger than from a single hole and the power radiated will be g*
times larger. Since there are N/g sets of such groups of holes, the total
power is proportional to g2 x N/g or gN; with g given by Eq. (11).

In Appendix B I give some perhaps more rigorous arguments for the choice
of the coherence factor.

There is another possible coherence effect. Suppose that the field strength
in the diffracted waves were to become comparabie to the field Eothat the beam
produces near the wall. The induced dipole moment of the hole would be changed,
and so would the radiation diffracted from a single hole. Using the results
obtained below for the total energy in the diffracted fields one can show that
even under the worst imaginable circumstances the diffracted fields are many

orders of magnitude below E There only remains the question of whether the

o
near field of one hole is large near a neighboring hole. It is not, as shown

in Appendix C.



IV. Estimate of the Energy Loss for PEP

The total energy loss for PEP is the single hole loss of Eq. (10) multiplied
by the total number of holes N, and by the coherence enhancement factor g.

]
520c gNr®°Q (12)

144 73°3 ac, s

VIoss

The planned current I for PEP is 55 mA per beam in three bunches (B=3),
and the circulation time T, is 7.3 microseconds. The charge per bunch Q is
then given by

IT,
Q = — = 0.13 microcoulomb (13)

8

For a given area perforated in the wall the number N of holes would have
to vary as 1/r2, and g would vary as, say, 1/r?. So the total loss would
vary as 1/r%. We should use the smallest practical holes. The wall between
the pump chamber and the beam chamber is 4 mm thick so that any hole smaller
than this will not be an effective pumping passage. Let's assume, then, that
the perforations will be circular holes with a radius r of 2 mm, and spaced on
6 mm centers. 1 assume also that there will be 3 rows of holes. There are,
then, 500 holes per meter. The total length of bending magnets in PEP is about
10 ® meters so the chamber will have a total of 5 x 10° holes. The bunch half-
lTength o, is expected to be about 20 mm {any bunch-lengthening will reduce the
loss). If follows that g = 10. The half-height of the chamber "a" is 3 cm.
In summary:

I = 55 mA N=25x 10°
8 =3 r=0.002m
Q= 0.13 uC 0, = 0.02 m

Ty = 7.3 us g =10
a=0.03m



from which, I get that, for nominal operating conditions, Vloss = 1030 volts.
The loss is clearly quite negligible in comparison with the synchrotron energy
loss of 27 Me¥ per turn.

V. Effect of Wall Thickness

The Bethe theory used in Section II assumed that the wall was thin in com-
parison with the hole radius. When the wall is thick, as here, the wall cur-
rents and charges induced by the beam will not be deviated as much, and the
diffraction loss will be smaller. There will be, in fact, a large reduction
of the energy radiated into the pump chamber, because the wall charges will
hardly penetrate there at all.-

We can estimate this reduction by thinking of the hole as a circular wave-
guide. (This method has been used to evaluate the effect of the wall thickness
on the aperture coupling between two waveguides. 5See, e.g., Ref. 3.) Assuming
that the hole is much smaller than the bunch half length Oy the dominate fre-
quencies in the beam pulse will be well below the cut-off frequency of the
circular guide. The fields in the hole will then decay exponentially as

exp [- (ALiD ] (14)

where & is the wall thickness (length of the hole) and lc is the cut-off wave-
length of a circular guide of radius r. For the electric dipole field (E paral-
lel to the axis)_kC = 2.6 r, and for the magnetic dipole field (B transverse)
Ao = 3.4 r. Since themagnetic dipole term dominates, let's take ¢ = 3.4a.

Then the reduction factor is

exp '[- _jﬁEL_] = exp [- 3.7 ~%ﬂ] (15)
3.4r

If we take & = 2r then the reduction factor is e"7-*= 10~*. For small
holes the fields in the pump chamber are much smaller than estimated earlier.



The total loss is reduced by about one half.

Actually, the reduction will be even more because the diffracted fields
in the beam chamber will also be reduced somewhat. I do not see how to make
quantitative estimates, but would guess it will not be a large reduction.

IV. Diffraction by Slots

It may be desirable, for technical reasons, to perforate the chamber wall
by slots instead of holes. Referring to Eqs. (1) and (2), let me define the
electric and magnetic polarizibilities of a hole by

o = ;oo = (16)

The polarizibilities of some non-circular holes has been worked out.2

I
report in the table below, the results for a narrow ellipse (semi-major axis
p >> semi-minor axis r} and a narrow rectangular slot {length 1 >> width w).
The electric polarizability is independent of the orientation of the slots,
but the magnetic polarization depends on the orientation of the slot with
respect to Bo‘ All of these polarizibilities assume that the major dimension
of the slot is shorter than the wavelength of the incident field -- which’

means that here they should be used only for stots not as long as the bunch.

Polarizibilities of Ellipses and Slots

%e %n
Circle, radius r —%—r3 %;—ra
Thin ellipse, major axis - 5
perpendicular to B , —§—pr2 —§-pr‘2
Thin ellipse, major axis 2 3
parallel to B JTpr TP
0 3 3 4
n(38)-1
T 2 ™

. . 2
Thin slot, perpendicular to B L -Fglw



First, notice that slots transverse to B, will have much Tess loss than
slots paraliel to Bo' If slots are used they should have their long axes
parailel to the beam axis. (This is the same answer as one would get from
an intuitive feeling that the slot should "interrupt” as 1ittle as possible
the induced wall currents.)

Next, suppose we compare the diffraction of a slot to that from a circular
hole of the same area. Remembering that the diffracted energy is proportional
to the square of the polarizabilities, and that we add electric and magnetic
effects, we see that

* 2
V(slot) T% 124"

Ratioc = ———— = 222 (17)

V(circle) 20

"'§-' r

which with nr? = 1d, gives
3

Ratio = Im 4.4 (18)

2560 1 1

Not very much penalty is paid for distorting a hole to an equal area slot.
ATternativeiy, let's compare the Toss from a Tong slot with the loss from

n holes whose diameter is equal to the slot width, 2r = w. and choosing

n = 1/w, so that the n holes cover roughly the same area as the slot. The

single hole or slot losses are proportional “ez + amz, so the loss for the

stot will be larger than the loss from a single hole by the factor

There are, however, fewed slots than holes by the factor w/1, and the coherence
factor g is smaller for the holes by an additional factor of w/1. So the effective
loss from slots and holes of the same “width" which cover the same area are roughly
equal.
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I remind you that this result is true for slots shorter than the bunch
half-length Gp- For slots longer than oy the diffraction loss probably in-
creases more slowly than &%, and becomes 41'ndependent of 2. I would expect,
however, that for slots longer than g, » One might have losses caused by
interactions of the induction field of the slot with structures in the pump
chamber.

VII. Conclusions

For perforations whose width (dimension at right angles to the beam
axis) is 0.5 cm or so, and whose length is no longer than the bunch half-
length -- say 2 cm -- the energy loss from the beam due to diffraction from
the perforations is estimated for PEP to be about 10% to 10* electron-volts per
turn. It is, therefore, negligible in comparison with the energy loss by
synchrotron radiation.
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Appendix A. Details of Calculations for a Single Hole

From Egs. (1), (6) and (7)

~ 2 2
d = det /20y

with

3nvT a oy

The power radiated depends on (d)? which goes as

2t?

& ] G2 427 2
+ t d ot /ot
2 ot* .| ot

(d)2 = 1- -

Ot

The integral of (&)2 over all times is easily evaluated by reference to a
table of definite integrals.

. g
[(apae = 2 1
_ -4 Oy 3

50 Vioog @S defined by Eq. (8) is

v _ 1 I, - 35 d®
loss Q 3

2
6re 4 Oy

Taking d from (A.2) and remembering that Oy = €Oy» I get the result shown
in Eq. (9).

(A.1)

(A.2)

(A.3)
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Appendix B, Estimate of Enhancement of the Loss Due to Coherent Effects

B 1. Radiators in free space with same phase

When two antennas are nearby, their combined radiation pattern may be quite
different from the pattern of each antenna working alone. Assuming that the
charge and current distribution of each antenna is not affected by the other,
it is relatively easy to calculate the interference of the individual radiation
fields and to obtain by integration the total power radiated by the system. If
one does so, one finds that for parallel dipole antennas (dimensions small com-
pared with X = c/w), excited with the same phase, the total power radiated
varies from 2P0 when the antennas are-far apart to 4P0 when they are close
together, where P0 is the power radiated by each dipole acting along. The
larger power is obtained if the separation of the two antennas is less than
about x.

When several antennas are involved this method becomse cumbersome, and is
not, for me at least, helpful for intuitive, qualitative calculations. An
alternative method seems more useful. It is based on a direct calculation of
the interaction of the antennas, and it corresponds to one of the methods (the
so-called "e.m.f. method") of evaluating the radiation resistance of an antenna.
See, for instance, Ref. 3. I will use this method for estimating the coherence
effects of diffraction from an array of holes.

Consider, first, two parallel electric dipole antennas whose lengths h
are shorter than both the x = ¢/wof the radiation field and the separation
x between the antennas and take the separation to be perpendicular to the
dipole axes. Let each antenna carry the current

I(t) = Ioe'j‘”t- (B.1)

As is well known such an antenna acting alone will radiate energy at the
average rate:

- 2 mW2 2
P = 1. h K2, (B.2)
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where Z = Jﬁ;?E; = 377 ohms, and k = 1/X = c/w.

This power can be obtained by integrating the Poynting vector over a sphere
(or any closed surface). It can also be obtained by considering the field pro-
duced by each infinitesimal current element at all other current elements and by
adding up the rate at which work is done by each current element.

Now consider the two dipoles described above. The total power P being radia-
ted will be 2P, * P,, + P,, where P,, is the rate at which the current in dipole
number 2 is doing work against the electric force (field) of dipole number 1, and
P,, is the obverse. ' In the present instance the symmetry demands that P;;= Py
s¢ that

P = 2(P+P ) (B.3)

total

To evaluate P,, we need only calculate the field at "2" from "1" -- including
also the near field terms -- and evaluate the work done. The field at the dis-

tance x from the dipole in the plane perpendicular to the dipole axis -- and in
the direction of the positive direction of the moment -- is E(x) = %(x)ejwt;
with
" I.hZ .
E(x) = Q0 gmdkx ) gy jkx + 1 . (B.4)
4arx? - Jkx

The average rate of work done against this field by the in-phase current of dipole
number 2 at x is
1 A"}

P21 = '—é- Ioh-&(E) (B‘S)

(The average power is different from zero only for components of E(t) that are
in phase with I(t).) It will be convenient to express P, as a product of P  with
an "enhancement factor" F.

P = FP (B.6)
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I get that

F = —3 {cos kx + (kx -1/kx) sin kx} (B.7)

2%2x?

1t Jooks, at first sight, as though F diverges for small x. On closer ex-
amination, however, it is found that F+~1 as x-0. This is comforting, because,
for very small x, the two dipoles blend into one dipole of twice the current, and
from Eq. (B.2) the power should quadruple -- as it does if F = 1. For large x,

3 sin kx
F 5 — .20l 322 .
5 X (kx >> 1) (B.8)

The form of F for intermediate x is shown by the curve of Fig. B.1. Speaking
very roughly, we can say that F=1 for kx<1 and F<<1 for kx>1. Or, physically,
we conclude that the radiation from two dipoles is increased by a factor of 2
(P :4P0) if that separation is less than X =1/k and that, otherwise, they radiate
nearly independently (P zZPO).

Now consider what happens if there are n parallel dipoles in the same plane.
If we can make the assumption that the current of each dipole is not changed by
the presence of the other (see Appendix C), then the field seen by dipole number
1 is its own field plus the linear superposition of the fields of the other (n-1)
dipoles,and the total power-- from Eg. (B.5) =- is just the sum of the powers ob-
tained by considering each dipole pair. That is, we may write that

Pl(tota]) n

"

P0 + Pyt Pyy ... P

P2(tota1) 2n

etc...
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Fig. Bl. Form of the Enhancement Function

(a) The function F for each radiator of a symmetric pair
(b) The average enhancement F for two radiators with a
phase shift & = kx
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Suppose that all n dipoles are grouped together with the maximum separation
less than X; then the enhancement factor F for all pairs will be equal to 1 and
pl(tota]) = nPo, and similarly for the other dipoles. The total power radiated
by a1l n dipoles is nzPO, as we expect for full coherence.

Next suppose that some fraction n, of the n dipoles are within the radius
x of dipole "1", and the remainder {n - n,) are dispersed beyond x. The fields
of the n, dipoles will add at dipole "1", but the rest will make, generally, a
negligible contribution. The power radiated by dipole "1" will be increased by
the coherence factor g = n;.

These results justify the intuitive arguments of Sect. III that were used
to obtain Eq. (11).

In the remainder of this appendix I wish only to tie up a few loose ends.

I will next show that roughly the same results are obtained even when the radia-

tors are not excited in phase (as they are not in our problem). Then I will
show that the results are not sensitive to the fact that the radiators are not,
in fact, in free space -- that similar results hold for an array of radiators
in a waveguide.

B.2 Radiators in free space with phase shift

Since the radiating dipole that represents the effect of a hole in the chamber
wall is in phase with the beam current, there will be an additional phase shift in
‘the radiation from two holes with different axial coordinates. In fact, if two
holes are separated by the axial distance x, the phase shift of the Fourier com-
ponent at frequency w = kc will be § = kx. Let's say that dipole "2" is downstream
of dipole "1" by the distance x. Then the field at "2" from "1" is the field of
Eq. (B.4). But the current of "2" is retarded by the phase shift 6 so Eq. (B.5)
should be changed to

P, = % Ih e (e1F) | (B.9)
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Then we get for Fy,

Fyy = —3 { cos (kn-§) + (kx --1-)sin (kx-ﬁ)} (B.10)
kx

2k2x?

Now if kx = & the term in curly brackets becomes exactly 1, and

Fap = ——S (B.11)

.2k3x?

This time Fy does indeed become very large for small kx. For dipoles close to-
gether the energy from dipole "2" can be much larger than Po"

Remember, however, that we no longer have symmetry between "1" and "2". In
fact, the coherence factor Fy, in the energy taken from "1" by the field of "2"
1s just Eq. (B.10) with the sign of § reversed. Specifically,

———§;;- { cos (kx+8) + (kx-—f%) sin (kx*—é)} (B.12)

If we Took at the behavior of F;, for small kx when ¢ = kx, we find that

Fo o= =3 a4 e (8.13)
2k?x?

Comparing this equation with (B.12) we see that the large power from dipole “2"
at small x is compensated by an equally large power given to dipole "1". The
dipoles are not radiating larger power only exchanging it.
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For this situation it becomes convenient to use an average enhancement
factor F, defined by

F = —mm— (B.14)

Using (B.11) and (B.13) the average enhancement is found to be, for small kx,
just equal to 1 as for F in the symmetric case. In general, when § = kX,

E, R 1 + cos 2kx + (kx - 'k—lf) sin 2 kx (B.15)

4k2x?

The behavior of F is shown by curve (b) of Fig. B.1. It is aqualtatively
similar to F, so the conclusions of the preceeding subsection are still valid.

B.3 Coherence effects in propragating waveguide modes

There may be skeptics who are suspicious that interference effects among
radiators may be different when they are radiating into a pipe rather than into
free space. The following is for them.

Consider first a single radiator at x = 0, and consider a particular Fourier
component at w of its exciting current. For the typical frequencies in the bunch
spectrum the radiator will couple into many propagating waveguide modes (because
0, = 20 mm is much less than the 100 mm width of the chamber)}. At each frequency
the radiator will launch waves going in both directions. Consider only the waves

going in the +x direction; the field amplitudes will be proportioned to

aoej(“t'kx). (B.16)

And the Poynting vector in the wave will be proportional to ao2 for small x.
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(Note that k is now the propagation coefficient of the guide, not of free space.)
Now consider the waves of this mode that arrive at x = 0 from all the radiators

upstream of x - 0. Let all the radiators be identical, and with an even spacing

Ax. The wave from the n-th radiator will arrive at x = 0 with a phase shift ne,

where § is the net shift due to (a) the delay of the beam in traveling the distance

Ax, and (b) the propagation delay of the wave in the guide. Namely,

9 = (Lg--k) AX. | (B.17)

né

In addition, the wave from each radiator will be attenuated by e~ The complex

amplitude of the wave arriving at x = 0 from the n-th radiator is then

2, e~n(8+36) (B.18)

The total amplitude from a large number N of radiators is then

N -

. -N(s + jo)

Y - Z'ao o-n(s+ e} a, l1-e - (B.19)
n=90 1 - e'(6+ Je)

v
I assume that N§ is much larger than 1. Then the amplitude A is independent of N

%

[ QS (B.20)
1- e-a-Je

")
The power P in this wave is proportional to |A|2. Its ratio to P,» the power
in the wave from a single radiator, is

L 1 (8.21)
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We may expect that for the different frequencies of the bunch k will, generally,
be of the same order as w/c, so that © will be of the same order as wAx/c --

which is, say =0.2 for the mid-frequency of the bunch. Let's just say that 8 is
distributed more or less uniformiy from -8, to +eo with 6o = Ax/ore which we assume
is less than 1. With both o and 6 less than 1 we can rewrite (B.21) as

ﬁp_ = 1 (B.22)
0 62+ 82 _

We expect, generally, that § will be-a very small number {1072 or less)
while 8 may be typically 0.1 or so. For such frequency components P/Po ~ 1792,
For those frequencies that are “"on resonance" 6 = 0 and P/P0 A 1/0? which is a
much larger number. For a best estimate of the energy loss we should take the
average of P/P0 for overall relevant frequencies. [ do this roughly by assuming
that 8 is uniformly distributed from-eo to +60, and find that the average'<P/P°> is

<P/P,> = 1 . (B.23)

606

Observe that if there were no coherence at all we would expect P = 1/8
because 1/6 = Nabs is the number of radiators in one absorbtion distance. The
wave at x = o will have a power equal to N Po' On resonance (6= 0) there is
an enhancement by an additional factor of Nabs (not suprising, since all MNabs

radiator work in phase}. Off resonance (6>>§), P/P, = 1/95 = n_? which will

o]
be generally much less than n , . 0On the average, Eq. (B.23) says that <P/P > =
Naps * M- The "normal" (non-coherent) power "abspo js increased by an enhancement

factor Ny which is roughly the number of radiators in a bunch length. This is
the enhancement factor assumed in Section III.
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Appendix C. The Influence of Nearby Holes on Dipole Moments

I have assumed throughout the paper that the dipole moment of each hole was
not affected by the presence of other holes. I now justify this assumption.
The dipole moment is -- see Eq. (1) -- given by

2€or3
d = —— E_, (C.1)
0 3 0
so is proportional to the total electric field at the hole. Let Eo be of two
parts EB’ the field from the beam and E' the field from a nearby hole. I will
show that the assumption that E' << EB is self-consistent.
Take Ej = Eg in Eq. (C.1). The dipole current I, = Jwdy/h. The field E'
of a nearby hole will be given by Eq. {B.4) of Appendix B. The most significant
component will be the one that is out of phase with I,» and, therefore, in phase
with d, and E . For small separations (kx <<1)
I hiZ
(o= 9 o 1 (C.2)
dmx?  kx
‘ 2e0r3kc
Taking Ioh = wd0 = kcd0 = - ; EB
I get that (using €o¢ Ly = 1)
' _ 1 r® (C.3)
B 6 x?

Since the center-to-center separation x of two holes must be at least twice the
hole radius r, I get that E'/EB < 1/48n. There are,at most,six such nearest neighbors
For farther neighbors the fields are much less. So E' << EB’ always .
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